
J
H
E
P
0
9
(
2
0
1
2
)
1
0
0

Published for SISSA by Springer

Received: June 18, 2012

Accepted: August 20, 2012

Published: September 24, 2012

Duality covariant non-BPS first order systems

Guillaume Bossard and Stefanos Katmadas
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1 Introduction and overview

Black holes in the context of string theory have been a long lasting field of research, due to

its deep connection to fundamental aspects of the theory. One important facet of the sub-

ject has been the construction of supergravity solutions describing the low energy strong

coupling regime of these systems. For supersymmetric black holes, it has been possible to

find these solutions explicitly, making use of the constraint imposed by the residual super-

charges, even including higher derivative corrections, see e.g. [1–9]. Such a task however

has proven more difficult for more general black holes, since one is forced to consider the full

second order equations of motion rather than the first order BPS conditions. The simplest

generalisation is the class of extremal black holes, which are still characterised by a van-

ishing Hawking temperature, but do not preserve any supersymmetry. The corresponding

static solutions are known to be described by first order equations as well [10–21], although

the latter are then not a direct consequence of supersymmetry.

Extremal black holes in supergravity theories fall in two distinct categories, namely

the under-rotating and the over-rotating branches, where the former contains several sub-

classes. The over-rotating (or ergo) branch is characterised by the presence of an ergo-region

and includes the extremal Kerr solution. In contrast, we will focus on the under-rotating

(or ergo-free) black holes, which then admit a flat three-dimensional base, and include

the static extremal black holes [22–24]. Single centre under-rotating non-BPS black holes

have been studied throughout the last decade or so, from various aspects and using vari-

ous techniques, see for example [10, 12, 15, 17–19, 25–28] and references therein for some
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developments. Using the seed solution of [11, 13, 29] combined with a general duality trans-

formation as explained in [30], one can construct any desired solution, but a manifestly

duality covariant formulation was lacking.

For theories coupled to a symmetric scalar manifold, as the ones we will deal with,

there are three classes of solutions describing interacting ergo-free extremal black holes,

distinguished by the algebraic properties of the first order systems that describe them.

These are the standard BPS solutions [4, 5], the so-called almost BPS solutions [31], and

the composite non-BPS solutions [32]. After the BPS class, the almost-BPS class is perhaps

the best studied, especially in the five dimensional uplift, where it was originally discovered

and extended, see e.g. [29, 33–36]. On the other hand, the composite non-BPS class appears

to be simpler in the four dimensional context and is the class we discuss in the following.

In this paper we will consider the equations of motion for stationary solutions as

described by the dimensional reduction of the theory along time, i.e. as a non-linear sigma

model over a pseudo-Riemannian symmetric space coupled to three-dimensional Euclidean

gravity [37]. Spherically symmetric black hole solutions correspond to geodesics on this

symmetric space and, in particular, extremal static black holes correspond to the subclass

of null geodesics. It was shown in [14, 38–41] that null geodesics associated to extremal

black holes are classified by the nilpotent orbits in which the corresponding Noether charges

lie in, thus recasting the equations of motion to an eigenvalue equation for the momentum

of the coset scalars. The classification of extremal solutions in terms of nilpotent orbits

has been studied in details in [17, 20, 42, 43].

Considering a general stationary Ansatz with a flat three dimensional base, one finds

that the only regular solutions are described by scalar fields taking values in a nilpotent

subgroup of the three-dimensional duality group. Using the nilpotent orbits classification,

one can determine pertinent nilpotent subalgebras, which lead to the description of station-

ary solutions describing interacting black holes. It was shown that all the three systems,

BPS, almost BPS and composite non-BPS can be described in terms of associated nilpotent

subalgebras [32, 44]. In these papers, explicit examples of these solutions were constructed

in terms of specific nilpotent subalgebras.

However, these seed solutions are not duality covariant by construction, whereas one

should be able to construct them without referring to a specific representative. Although

the general solutions can be obtained from these seed solutions by duality transformations,

the resulting form of the solutions is not easy to parametrize in terms of physically rele-

vant quantities. A duality covariant formulation of these solvable systems would permit

to obtain these solutions in a form exhibiting their physical properties. This is of particu-

lar importance when addressing issues such as existence and stability of composite bound

states. For the BPS solutions (as well as the non-BPS Z∗ = 0), the first order system asso-

ciated to the corresponding nilpotent orbits was written in a manifestly duality invariant

form [45], leading to a generalisation of the BPS solutions [4, 5] to N = 8 supergravity,

and non-BPS Z∗ = 0 solutions.

In what follows, we explain how the composite non-BPS solutions can also be described

in a manifestly duality invariant form. As it turns out, the system is characterised by a

constant very small charge vector (i.e. such that its quartic invariant satisfies I4 = ∂I4 =
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∂2I4|ad = 0), which has only one charge component in an appropriate duality frame. This

represents an auxiliary variable that restricts the types of charges allowed in the various

centres, or conversely is fixed by the physical charges for a regular solution.

As a first application, we will solve explicitly the system in the restricted case de-

scribing single centre (or non-interacting multi-centre) black holes in a manifestly duality

covariant way. The reduction to this subclass is effected by a suitable reality constraint

on the scalar momenta, which we use systematically to simplify the problem. The re-

sult is a stabilisation equation for the scalars throughout the black hole background that

parallels the one derived in [4, 5] for supersymmetric solutions. However, we find new

terms, proportional to the very small vector driving the flow and its magnetic dual, with

coefficients depending on the harmonic functions carrying the electromagnetic charges and

angular momentum. These represent a duality covariant realisation of the simple change

of sign for a particular charge, which has been observed to relate some simple non-BPS

solutions to supersymmetric ones [26, 27, 46], and the non-harmonic term obtained in [21]

by considering the seed solution of [29], respectively.

Understanding how to solve the first order system when restricted to single centre

solutions is a necessary step towards the resolution of the composite non-BPS system.

In order to do so, one must rewrite the non-linear first order system we describe in this

paper, in a second order linear system of differential equations. The explicit solution of the

composite non-BPS system will be the purpose of forthcoming research.

We start by setting up notation and giving some background on both four dimensional

N = 2 supergravity and the corresponding non-linear sigma model obtained by time-like

reduction in section 2. In section 3 we proceed to the discussion of the algebraic structure of

the composite non-BPS system and discuss the reality constraint that reduces it to describe

single centre solutions. We then go on to solve explicitly the flow equations for the single

centre class and discuss some aspects of the solutions obtained in section 4. We conclude

in section 5 with some general remarks and future plans of extending to the multi centre

classes, whereas the two appendices are devoted to the illustrating the general solution

with the seed solution of [29] and to the derivation of the duality invariant constraints on

the charges.

2 Non-linear sigma model formulation of stationary solutions

In this section, we collect various formulae and conventions which will be essential for the

connection of the objects appearing in the three-dimensional non-linear sigma model formu-

lation of N = 2 supergravity describing stationary solutions to standard four-dimensional

supergravity variables.

2.1 N = 2 supergravity and symmetric special Kähler geometry

The bosonic Lagrangian ofN = 2 supergravity coupled to nv vector multiplets reads [47, 48]

8π e−1 L = −1

2
R− i 〈DµV̄, DµV〉 −

1

4
F I
µν G

µν
I , (2.1)
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where the F I
µν = ∂µA

I
ν − ∂νA

I
µ for I = 0, . . . nv encompass the graviphoton and the gauge

fields of the vector multiplets and Gµν
I are the dual field strengths, defined in terms of

the F I
µν though the scalar dependent couplings, whose explicit form will not be relevant in

what follows. The gauge field equations of motion and Bianchi identities can then be cast

as a Bianchi identity on the symplectic vector

Fµν =

(

F I
µν

GI µν

)

, (2.2)

whose integral over any two-cycle defines the associated electromagnetic charges through

Γ =

(

pI

qI

)

=
1

2π

∫

S2

F . (2.3)

The physical scalar fields ti, which parametrize a special Kähler space M4 of complex

dimension nv, only appear in (2.1) through the section, V , of a holomorphic U(1)×Sp(2nv+

2,R) bundle over M4. Choosing a basis, this section can be written in components in terms

of scalars XI as

V =

(

XI

FI

)

, FI =
∂F

∂XI
, (2.4)

where F is a holomorphic function of degree two, called the prepotential, which we will

always consider to be cubic

F = −1

6
cijk

XiXjXk

X0
≡ −N [X]

X0
, (2.5)

for completely symmetric cijk, i = 1, . . . nv, and we introduced the cubic norm N [X]. The

section V is subject to the constraint

〈V̄ ,V〉 = i , (2.6)

and is uniquely determined by the physical scalar fields ti up to a local U(1) transformation.

The U(1) gauge invariance of (2.1) is ensured by the appearance of the Kähler connection

Qµ in the covariant derivative. The Kähler potential on M4 is defined up to an arbitrary

holomorphic function f(t) as

K = − ln
(

iN [t− t̄]
)

+ f(t) + f(t̄) (2.7)

and we fixed the U(1) gauge invariance in terms of Kähler transformations by requiring

that the Kähler connection is determined by the Kähler potential as

Q = Im [∂iKdti] , (2.8)

such that

gi̄ = ∂i∂̄K , DµV = (∂µ + iQµ)V = DiV ∂µt
i =

(

∂iV +
1

2
∂iKV

)

∂µt
i, (2.9)
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where DiV is the corresponding Kähler covariant derivative on the components of the

section. With the prepotential (2.5), the special geometry identities [49] reduce to

D̄̄DiV = gi̄V , DiDjV = ieK cijkg
kk̄D̄k̄V̄, (2.10)

which will be used extensively in what follows.

We introduce the following notation for any symplectic vector J

Z(J ) = 〈J ,V〉 , (2.11)

Zi(J ) = 〈J , DiV〉 , (2.12)

with the understanding that when the argument is form valued, the operation is applied

component wise. For instance, the central charge of the gauge field is

Z(F) = e
K

2

(

G0 + tiGi +
1

2
cijkt

itjF k −N [t]F 0

)

, (2.13)

for the prepotential (2.5). With these definitions it is possible to introduce a scalar depen-

dent complex basis for symplectic vectors, given by (V , DiV), so that any vector J can be

expanded as

J = 2Im [−Z̄(J )V + gı̄jD̄ı̄Z̄(J )DjV ] , (2.14)

whereas the symplectic inner product can be expressed as

〈J1,J2〉 = 2Im [−Z(J1) Z̄(J2) + Za(J1) Z̄
a(J2)] . (2.15)

Finally, we introduce the notion of complex selfduality of the gauge fields (2.2), which

satisfy the identity

JF = − ∗ F , (2.16)

where J is a scalar dependent complex structure defined as

JV = −iV , JDiV = iDiV . (2.17)

In this paper we will consider that M4 is moreover a symmetric space, such that the

coefficients cijk are left invariant by the action of a group G5. In this case one can define

the vielbeins on M4 such that

gi̄ = eiae
a ̄, (2.18)

and

cabc = i eKeiae
j
be

k
c cijk , (2.19)

where cabc is a constant symmetric tensor left invariant by the action of K4, which is the

compact real form of G5. Then, the contravariant symmetric tensor cabc in the conjugate

representation satisfies the Jordan identity [50]

cf(abccd)gc
efg =

4

3
δe(acbcd) . (2.20)
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The symmetric space M4 is defined as the coset space of the four-dimensional duality

group G4 by its holonomy subgroup

M4
∼=
(

U(1)×K4

)∖

G4 . (2.21)

The scalar fields can then equivalently be described by a coset representative υ in G4,

and the associated Maurer-Cartan form in the coset component Cnv ∼= g4 ⊖ (u(1) ⊕ k4) is

defined as

dυυ−1 + υ†−1dυ† = eai dt
iYa + eaı̄dt̄

ı̄Ya (2.22)

where Ya (and Hermitian conjugate Ya) define a basis in g4 ⊖ (u(1) ⊕ k4). Combined

with (2.9), this equation permits to relate the expression of the Maurer-Cartan form to the

derivative of the section V in the tangent frame. Similarly, we also define

Za(F) = eiaDiZ(F) = 〈F , eiaDiV〉 , (2.23)

which transforms in the same Cnv representation of K4.

2.2 Time-like reduction and para-quaternionic geometry

In order to describe stationary asymptotically flat extremal black holes, we introduce the

standard Ansatz for the metric

ds2 = −e2U (dt+ ω)2 + e−2Udx · dx , (2.24)

in terms of a scale function U(x) and the Kaluza-Klein one-form ω(x) (with spatial com-

ponents only), which are both required to asymptote to zero at spatial infinity. Here and

henceforth, all quantities are independent of time, so that all scalars and forms are defined

on the flat three-dimensional base. The gauge fields are decomposed in a similar fashion as

2A = ζ(dt+ ω) + w (2.25)

and accordingly for the field strengths

2F = dζ (dt+ ω) + F , F = ζ dω + dw , (2.26)

where we defined the gauge field scalars ζ, arising as the time component of the gauge fields,

and the one-forms w describing the charges. Here, F is defined as the spatial component

of the field strength, and is not closed but satisfies

dF = e2U ⋆ dω ∧ JF , (2.27)

according to (2.16), which reads

dζ = e2UJ ⋆ F . (2.28)

Note that this first order equation determines the ζ in terms of the vector fields w and the

scalars.

The scalar field σ dual to the Kaluza-Klein vector ω

e4U ⋆ dω = dσ + 〈ζ, dζ〉 (2.29)

– 6 –
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defines the coordinate of an S1 fiber over the symplectic torus T parametrized by the

ζ’s. Altogether with the scaling factor U and the moduli ti, these fields parametrize the

para-quaternionic symmetric space1

M3
∼= G3/

(

SL(2)×G4

)

. (2.30)

This defines the so-called c∗-map, which can be related to the standard c-map [51] by an-

alytic continuation. The three-dimensional symmetry group Lie algebra g3 decomposes as

g3 ∼= 1(−2) ⊕ l
(−1)

4 ⊕ (gl1 ⊕ g4)
(0) ⊕ l

(1)

4 ⊕ 1(2), (2.31)

where the weights refer to the eigenvalues under the adjoint action of the gl1 generator.

The grade one generators in l
(1)

4 are associated to the gauge invariance with respect to a

constant shift of the scalars ζ, and accordingly the grade two generator correspond to the

invariance under shift of the scalar σ.

At this stage it is important to introduce some properties of the g3 algebra. The

components of an element of the Lie algebra g3 in the coset component g3⊖(sl2⊕g4), can be

decomposed in terms of U(1)×K4 irreducible representations as two complex parameters w

and Z and two complex vectors Z̄a,Σa which transform in the Cnv representation ofK4 (the

same as the scalar fields momenta eai dt
i in four dimensions) such that N [Z̄] ≡ 1

6cabcZ̄
aZ̄bZ̄c

is K4 invariant. The quadratic trace invariant defines the SL(2)×G4 invariant norm

|w|2 − |Z|2 − ZaZ̄
a +ΣaΣ̄a , (2.32)

and the sl2 algebra is realised on these components as

δw = iρw+ λ̄Z , δZ = −iρZ + λw , δZ̄a = iρZ̄a + λ̄Σa, δΣa = −iρΣa + λZ̄a,

(2.33)

for a complex λ. Closure of this algebra can conveniently be checked in the Cartan complex,

considering anticommuting parameters λ, ρ and the differential δ

δρ = iλλ̄ , δλ = −2iρλ , (2.34)

whose nilpotency is equivalent to the Jacobi identity, similar to the BRST formalism in

gauge theories. In the same way, the g4 algebra is realised in terms of the elements of k4,

denoted by Ga
b, a real γ and a complex vector Λa, associated to the decomposition

g4 ∼= u(1)⊕ k4 ⊕ C
nv , (2.35)

which defines the symmetric space M4. The action of g4 on the coset component can be

written as

δw = ΛaZ̄
a + 3iγw

δZ = ΛaΣ
a + 3iγZ

δΣa = Λ̄aZ + cabcΛbZc +Ga
bΣ

b + iγΣa,

δZ̄a = Λ̄aw+ cabcΛbΣ̄c +Ga
bZ̄

b + iγZ̄a.
(2.36)

1Here para-quaternionic refers to the property that the holonomy group of M3 SL(2) × G4 ⊂ SL(2) ×

Sp(2nv,R).
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The corresponding algebra is realised in terms of anticommuting parameters with the nilpo-

tent differential

δΛa = −Gb
aΛb + 2iγΛa δγ =

i

3
Λ̄aΛa ,

δGa
b = Ga

cG
c
b + cacecbdeΛcΛ̄

d + Λ̄aΛb +
1

3
Λ̄cΛcδ

a
b . (2.37)

Note that the variation of Ga
b indeed leaves invariant the cubic norm N [Z] for an anti-

commuting Λa.

We now consider the equations of motion for the scalar fields parametrizing the sym-

metric space M3. These are expressed in terms of the corresponding Maurer-Cartan form

v−1dv = P +B , (2.38)

which decomposes accordingly into the coset component P defining the scalar momenta,

and the sl2 ⊕ g4 component B defining the pulled back spin connection. In components,

the scalar momenta are defined as

w ≡ −dU − i

2
e2U ⋆ dω , Σa = −eai dt

i, Z ≡ eUZ(⋆F ) , Za ≡ eUZa(⋆F ) ,

(2.39)

where we introduce some shorthand notations that will be used for the remainder of the

section. Analogously, we give the components of B along sl2

ρ(B) = −1

4
e2U ⋆ dω − 1

2
Q , λ(B) = eUZ(⋆F ) , (2.40)

its components along g4

γ(B) = −1

4
e2U ⋆ dω +

1

6
Q , Λa(B) = eUZa(⋆F ) , (2.41)

and finally Ga
b(B) defines the k4 valued traceless component of the pulled back spin con-

nection on M4:

Ga
b(B) = eai ∂̄e

i
b dt̄

̄ − e̄b∂ie
̄adti − 2i

3
δabQ , (2.42)

where Q is the pulled back Kähler connection (2.8).2

These formulae given, one can straightforwardly compute the equations of motions of

the scalar and vector fields respectively as coming from the equation of motion and Bianchi

identity on P , as follows

dB ⋆ P = 0 , dBP = 0 , (2.43)

where dB stands for the covariant derivative on the coset. For instance, the components of

the equation of motion for P are

dB ⋆ w = −d ⋆ dU − 1

2
e4Udω ⋆ dω + e2URe

[

Z(F )Z̄(⋆F ) + Za(F )Z̄a(⋆F )
]

= 0 ,

dB ⋆ Σa = −∇ ⋆ eai dt
i + e2U

(

2Z(F )Z̄a(⋆F ) + cabcZb(F )Zc(⋆F )
)

= 0 , (2.44)

2To prove that Ga
b(B) is indeed traceless, one can use (2.20) to show that cacdcbcd = nv+3

3
δab and

substitute (2.19) in cabc∂̄ı̄cabc = 0.

– 8 –
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and

dB ⋆ Z = eU
(

DZ(F )− eai dt
i ∧ Za(F )− ie2U ⋆ dω ∧ Z(F )

)

= 0 , (2.45)

dB ⋆ Za = eU
(

DZa(F )− eaı̄dt̄
ı̄ ∧ Z(F )− cabce

b
idt

i ∧ Z̄c(F ) + ie2U ⋆ dω ∧ Za(F )
)

= 0 ,

where (2.27) and the standard special geometry identities (2.10) were used. In the following

we will not analyse these equations directly, but will rather employ arguments based on

the nilpotency of P for extremal solutions to obtain equivalent first order equations that

can be solved directly.

3 Nilpotent orbits and first order systems

In this section we generalise the formalism developed in [45] to arbitrary nilpotent orbits

of G3, with a specific emphasis to the ones describing non-BPS black holes. The basic

observation is that the only regular stationary solutions of N = 2 supergravity with a flat

three-dimensional base metric are such that the momentum P is nilpotent. This implies

in particular that P can be written in a basis of generators eα which lie in a nilpotent

subalgebra of g3. Such a nilpotent subalgebra is always associated to a semi-simple element3

h of sl2 ⊕ g4 such that

heα := [h, eα] = pαeα , 1 ≤ pα ≤ n , (3.1)

where n defines the maximal possible eigenvalue of adh in g3. This implies for instance the

equation
n
∏

i=1

(h− i)P = 0 , (3.2)

which defines a first order constraint between the components w, Z, Za and Σa of P . In

order to be consistent with the equations of motion and the Bianchi identity (2.43), the

covariant derivative of the generator h must satisfy

n
∑

i=1

n
∏

j=i+1

(h−j)dBh
i−1
∏

k=1

(h−k)∧P = 0 ,
n
∑

i=1

n
∏

j=i+1

(h−j)dBh
i−1
∏

k=1

(h−k)⋆P = 0 . (3.3)

These equations are satisfied if dBh also lies in the nilpotent algebra defined by h, or

equivalently that
n
∏

i=1

(adh − i)dBh = 0 . (3.4)

In general, one can always choose the generators h such that only its components λ and

Λa do not vanish. Equation (3.4) can be viewed as first order equations for these aux-

iliary components, which can be solved to determine their evolution in space in terms

of the physical fields. As mentioned above, equation (3.2) defines first order equations

for the physical fields which contain these auxiliary components λ and Λa and determine

3Semi-simple means that it is in the conjugation class of an element of the Cartan subalgebra.
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dU + i
2e

2U ⋆ dω and eai dt
i in terms of eUZ(⋆F ) and eUZa(⋆F ), plus some possible con-

straints on the latter if the dimension of the coset component of the nilpotent algebra

defined by h is strictly less than 2nv + 2.

For BPS solutions one has Λa = 0 and λ = eiα, where the phase α defines the covari-

antly constant spinors as in [5], and (3.4) is equivalent to the equation

dα+Q− 1

2
e2U ⋆ dω = 0 . (3.5)

The non-BPS solutions with vanishing central charge at the horizons are described in

a similar fashion, with λ = 0 and a normalised rank one Λa (i.e. cabcΛbΛc = 0 and

ΛaΛ̄
a = 1) [45]. We will now discuss the specific examples of the nilpotent orbits asso-

ciated to the systems describing respectively composite and single centre non-BPS black

holes with a non-vanishing central charge at the horizon.

Composite nilpotent elements. The composite non-BPS solutions admit a scalar mo-

mentum P which lies in the positive grade components of the graded decomposition of the

coset component 2⊗R2nv+2, associated to an element h of g4 that leads to the decompo-

sition

g4 ∼= (Rnv)(−2) ⊕
(

gl1 ⊕ g5
)(0) ⊕ (Rnv)(2), (3.6)

for g4 itself and

2⊗R
2nv+2 ∼= 2(−3) ⊕ (2⊗R

nv)(−1) ⊕ (2⊗R
nv)(1) ⊕ 2(3), (3.7)

for the coset component, i.e. P ∈ (2 ⊗ Rnv)(1) ⊕ 2(3). Such an element h can always be

chosen to be Hermitian (i.e. to lie in g4 ⊖ (u(1)⊕ k4)) so that it is realised for Λa(h) = Ωa,

where Ωa satisfies

N [Ω]Ω̄a =
1

2
cabcΩbΩc . Ω̄aΩa = 3 . (3.8)

Equivalently, Ωa is in the U(1)×K4 orbit of the Jordan algebra identity.

More explicitly, one finds the following action on the coset component

hw = ΩaZ̄
a hZ = ΩaΣ

a hZ̄a = Ω̄aw + cabcΩbΣ̄c hΣa = Ω̄aZ + cabcΩbZc .

(3.9)

Considering the grade three part of P , from the equation [h, P (3)] = 3P (3) one obtains the

solution

Z(3) = N [Ω]w̄(3) Z̄a (3) = Ω̄aw(3) Σa (3) = N [Ω]Ω̄a w̄(3) (3.10)

for an arbitrary w(3). Similarly, from the equation [h, P (1)] = P (1) for the grade one part,

one obtains the solution

w(1)= ΩaZ̄
a (1), Z(1)= −N [Ω]Ω̄aZ(1)

a , Σa (1)= cabcΩbZ
(1)
c −N [Ω]Ω̄aΩ̄bZ(1)

b (3.11)

for an arbitrary Z(1)
a .

Considering a general linear combination of these two solutions one concludes that Z

and Za are arbitrary, whereas w and Σa are determined as

w =
1

2

(

ΩaZ̄
a −N [Ω]Z̄

)

, Σa = cabcΩbZc +
1

2
Ω̄a
(

Z −N [Ω]Ω̄bZb

)

, (3.12)

which are the explicit first order relations for the scalar momenta.
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These contain the auxiliary componentsN [Ω] and Ωa of h in (3.8), which can be viewed

as defining a very small vector R of unit mass (i.e. I4(R) = ∂I4(R) = ∂2I4(R)|ad = 0 and

|Z(R)| = 1) through

Z(R) = N [Ω] Za(R) = Ωa . (3.13)

The flow equations for these fields are given by (3.4), which in this system reduces to

[h, dBh] = 2 dBh . (3.14)

Using the explicit form ofB (2.40)–(2.42) and the first order constraint (3.12), one computes

the components of dBh as

γ(dBh) =
2

3
Im [Ω̄aZa] ,

Λa(dBh) = Za(dR) +N [Ω]eaı̄dt̄
ı̄ + cabcΩ̄

becidt
i − i

2
e2U ⋆ dωΩa

= Za(dR) + Re[N [Ω̄]Ωbe
b
idt

i]Za(R)−
(

Za +N [Ω]cabcΩ̄
bZ̄c − ΩaΩbZ̄

b
)

Ga
b(dBh) = cacecbde

(

Ω̄dZc − ΩcZ̄
d
)

+ΩbZ̄
a − Ω̄aZb −

2i

3
δab Im[Ω̄cZc] , (3.15)

where we explicitly separated the terms depending on the derivative of the vector R. It

is now straightforward (though cumbersome) to compare (3.14) with the above relations,

using that

cacecbdeΩ̄
d
(

N [Ω]ccfgΩ̄
f Z̄g − ΩcΩf Z̄

f
)

− Ω̄a
(

N [Ω]cbcdΩ̄
cZ̄d − ΩbΩcZ̄

c
)

= −cacecbdeΩcZ̄
d +ΩbZ̄

a, (3.16)

which follows by (2.20). The result is that (3.14) is satisfied provided that

dR = −Re[N [Ω̄]Ωbe
b
idt

i]R , (3.17)

which implies that there exist a constant symplectic vector R̂ such that

R =
R̂

|Z(R̂)|
. (3.18)

We conclude that the generator h is in this case determined by a constant very small

projective vector R̂ and the scalar fields such that

Λa(h) =
Za(R̂)

|Z(R̂)|
. (3.19)

One can now return to (3.12), which becomes a first order flow equation for the scalars eU ,

⋆dω and dti in terms of the gauge fields and the constant vector R̂.
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Single centre nilpotent elements. The composite non-BPS system above can be con-

sistently reduced to a system describing the single centre class of solutions. The associated

graded decomposition consists in breaking furthermore the sl2 algebra by introducing a

non-compact generator h∗ defined such that its only nonvanishing component is λ = eiα.

The action of this generator follows from (2.33) as

h∗w = e−iαZ , h∗Z = eiαw , h∗Z̄a = e−iαΣa, h∗Σa = eiαZ̄a, (3.20)

and, by its own, it would define the BPS system. The single-centre non-BPS solution is

defined in the positive grade component of the graded decomposition associated to the

generator 1
2(h+ h∗)

2×R
2nv+2 ∼= R

(−2) ⊕ (R⊕R
nv)(−1) ⊕

(

R
nv ⊕R

nv
)(0) ⊕ (R⊕R

nv)(1) ⊕R
(2), (3.21)

where h is the generator that defines the composite system above. One can straightfor-

wardly compute that the solution (3.10) decomposes into [h∗, P
(3)

± ] = ±P (3)

± according to

w(3)

± = ±e−iαN [Ω]w̄(3)

± (3.22)

and these two solutions define the grade 1 and the grade 2 singlets in (3.21). On the other

hand, the grade 1 component of (3.21) in Rnv corresponds to the solution (3.11) satisfying

moreover [h∗, P
(1)

+ ] = P (1)

+ , or explicitly

Z̄a (1)

+ = e−iα
(

cabcΩbZ
(1)

c+ −N [Ω]Ω̄aΩ̄bZ(1)

b+

)

. (3.23)

Summing up the two solutions, one obtain that the single centre non-BPS momenta sat-

isfy (3.12) for Z and Za constrained to satisfy the phase dependent equation

Z̄a −N [Ω]Ω̄aZ̄ = e−iα
(

cabcΩbZc + Ω̄a(Z −N [Ω]Ω̄bZb)
)

, (3.24)

which represents a constraint on the physical degrees of freedom that is necessary to reduce

to single centre solutions.

This is expected for a single centre solution, since the element Ωa is defined by its overall

phase and the angle K4/K5 (K5 being the maximal compact subgroup of G5, and therefore

the stabilizer of Ωa in K5), that is nv real parameters in total. The constraint (3.24) defines

precisely nv real equations, such that one can think of it as determining Ωa in terms of the

central charge Z, its derivatives and the ‘BPS phase’ α.

On the other hand, when viewed as a constraint on the charge vector it is simple to see

that (3.24) reduces its components by half. Defining the combination Ka = Za−N [Ω̄]ΩaZ,

the constraint becomes

K̄a = e−iα
(

cabcΩbKc −N [Ω] Ω̄a Ω̄bKb

)

≡ ι(Ka) . (3.25)

In the right-hand-side we defined the operation ι, which is an anti-involution

ι
(

ι(K̄a)
)

= e−iα
(

cabcΩbι(K̄
c)−N [Ω] Ω̄a Ω̄bι(K̄b)

)

= cabcΩbccdeΩ̄
dK̄e − Ω̄aΩbK̄

b

= K̄a, (3.26)
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where we used (3.8) in the last equation. In what follows we will elaborate on these points

of view of the constraint (3.24), in connection to the various aspects of the solutions.

We close this section by giving the analog of the consistency condition (3.14) for the

generator h∗. In this case, only the sl2 components are important, and using (2.40) one

computes that

ρ(dBh∗) = −2 Im[e−iαZ] , λ(dBh∗) = Deiα +
i

2
e2U ⋆ dω eiα, (3.27)

where the covariant derivative D is the Kähler covariant derivative in (2.9), consistent with

the unit Kähler weight of the phase eiα. Imposing that this is a grade two element of the

sl2 algebra, i.e. that

2 ρ(dBh∗) = i
(

eiαλ̄(dBh∗)− e−iαλ(dBh∗)
)

, 2λ(dBh∗) = 2 i eiαρ(dBh∗) , (3.28)

turns out to be equivalent to the purely imaginary condition

e−iαD(eiα) +
i

2
e2U ⋆ dω = −2 i Im [e−iαZ] , (3.29)

which fixes the phase α in terms of the physical degrees of freedom through

dα+Q+
1

2
e2U ⋆ dω = −2 Im [e−iαZ] . (3.30)

Since we also have the phase N [Ω], it is natural to define the Kähler invariant phase

eiαN [Ω̄]. From (3.19) we find that

d arg[N [Ω̄]]−Q+ Im[N [Ω̄]Ωae
a
i dt

i] = 0 , (3.31)

and using moreover (3.12) one obtains that

d
(

α+ arg[N [Ω̄]]
)

+
1

2
e2U ⋆ dω

+ Im

[

N [Ω̄]Ωae
a
i dt

i + e−iαN [Ω]

(

dU − i

2
e2U ⋆ dω −N [Ω̄]Ωae

a
i dt

i

)]

= 0 . (3.32)

Through (3.12), (3.24) also implies a reality constraint on the scalar field momenta

N [Ω̄]eai dt
i + eiαN [Ω̄]

(

−cabcΩbecı̄dt̄
ı̄ +N [Ω]Ω̄aΩ̄bebı̄dt̄

ı̄
)

= Ω̄a

(

dU − i

2
e2U ⋆ dω + eiαN [Ω̄]

(

dU +
i

2
e2U ⋆ dω

))

(3.33)

and in particular

N [Ω̄]Ωae
a
i dt

i+ eiαΩ̄aeaı̄dt̄
ı̄ = 3

(

dU − i

2
e2U ⋆ dω + eiαN [Ω̄]

(

dU +
i

2
e2U ⋆ dω

))

. (3.34)

Therefore one obtains finally

d
(

α+arg[N [Ω̄]]
)

= e2U ⋆ dω − 2Im

[

eiαN [Ω̄]

(

dU +
i

2
e2U ⋆ dω

)]

=
(

1−cos
(

α+arg[N [Ω̄]]
)

)

(

e2U ⋆ dω − 2

tan
(α+arg[N [Ω̄]]

2

)

dU

)

, (3.35)
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which can be integrated to

⋆ dω = d
−e−2U

tan
(α+arg[N [Ω̄]]

2

)

≡ dM . (3.36)

We conclude that the angular momentum is given in terms of a harmonic function M

dual to the Kaluza-Klein vector, which is a known characteristic feature of single centre

solutions [29]. The phase eiαN [Ω̄] is determined in this way in terms of spacetime fields as

eiαN [Ω̄] =
(−M + ie−2U )2

e−4U+M2
. (3.37)

4 Duality covariant form of the non-BPS black hole solution

In this section we solve explicitly the flow equations in the first order system describing non-

interacting non-BPS black holes discussed in the last section. We will see that in this case

the vector fields w and ω carrying the electromagnetic charges and the angular momentum

are simply sourced by harmonic functions, although the vector fields satisfy a quadratic

constraint such that they only depend on nv + 1 harmonic functions, instead of 2nv + 2 in

the BPS system [5]. Incidentally we exhibit that this first order system reduces to a linear

system of differential equations. This is a necessary step towards the explicit solution of the

non-BPS composite system describing interacting non-BPS black holes. After presenting

the procedure of integrating (3.12) combined with the reality constraint (3.24), we briefly

discuss the physical properties of the solutions.

4.1 Integrating the first order equations

The starting point is the solution of the nilpotency condition (3.12), written explicitly as

a first order system for the scalars and the metric degrees of freedom

dU +
i

2
e2U ⋆ dω = −1

2
eU
(

ΩaZ̄
a(⋆F )−N [Ω]Z̄(⋆F )

)

, (4.1)

−eai dt
i = cabcΩbe

UZc(⋆F ) +
1

2
Ω̄aeU

(

Z(⋆F )−N [Ω]Ω̄bZb(⋆F )
)

, (4.2)

where F is the spatial component of the field strengths defined in (2.26). For later reference,

we give the inverse relations for the field strengths

eUZ(⋆F ) =
1

2
N [Ω]

(

dU − i

2
e2U ⋆ dω

)

− 1

2
Ωidt

i,

eUZa(⋆F ) = −cabcΩ̄
becidt

i +
1

2
N [Ω̄]ΩaΩidt

i − 1

2
Ωa

(

dU − i

2
e2U ⋆ dω

)

, (4.3)

where we used the short-hand notation Ωi = eaiΩa.
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Electromagnetic scalar potentials. In order to solve this system, we combine the

information on the derivative of R given by (3.17) with (4.3) to construct the gauge field

momenta as

dζ ≡ 2 e2URe [Z̄(⋆F )V + Z̄i(⋆F )DiV ]

= d
(

eURe [N [Ω̄]V − Ω̄iDiV ]
)

+
1

2
eU Im [N [Ω̄]Ωidt

i]R+
1

4
e3U ⋆ dω R , (4.4)

where we made extensive use of the special geometry identities (2.10). The first term is

manifestly a total derivative, whereas the others are along the very small vector R, and

must therefore combine into the derivative of a single function. This implies the existence

of a function M such that

eU Im [N [Ω̄] Ωidt
i] +

1

2
e3U ⋆ dω = M e3URe [N [Ω̄]Ωidt

i]− d(M e3U ) . (4.5)

And indeed, in the ‘single centre’ system one shows using (3.37) in (3.34) that M is the

function that determines the angular momentum in (3.36). It follows that the gauge field

momenta take the form

ζ = eURe [N [Ω̄]V − Ω̄iDiV ]−
1

2
e3UMR , (4.6)

with the corresponding central charges given by

Z(ζ) =
i

2
eU (1 + i e2UM)N [Ω] , Za(ζ) =

i

2
eU (1 + i e2UM)Ωa , (4.7)

for later reference.

Using (4.1) and the structure of the (4.6), one shows that one vector is always trivial,

because

〈R̂, ζ〉 = −2eU |Z(R̂)| , (4.8)

whereas, taking the imaginary part of (4.1) one gets

e2U ⋆ dω = − eU

2|Z(R̂)|
〈R̂, ⋆F 〉 , (4.9)

and using (2.26), one gets therefore that

〈R̂, dw〉 = 0 . (4.10)

Note that this property does not require the reality constraint (3.24) and is also valid for

composite non-BPS solutions [44].

The linear system. One can now combine (4.7) and (4.10) to disentangle the term

proportional to ⋆dω in the definition of the scalars, such that (4.2) becomes

−eai dt
i = cabcΩbe

UZc(⋆dw) +
1

2
Ω̄aeU

(

Z(⋆dw)−N [Ω]Ω̄bZb(⋆dw)
)

+
1

2
e4U (−M + ie−2U )N [Ω]Ω̄a ⋆ dω , (4.11)
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which, using the constraint (3.24), can be rewritten as

− eai dt
i = eUeiα

(

Z̄a(⋆dw)−N [Ω]Ω̄aZ̄(⋆dw)
)

−N [Ω] Ω̄a

(

dU − i

2
e2U ⋆ dω

)

. (4.12)

Applying the same procedure on (4.3), one obtains the the inverse relations of (4.12)

for the central charges Z(dw) and Za(dw). The charge vectors dw can then be straightfor-

wardly constructed with the result

dw ≡ 2 Im [−Z̄(dw)V + Z̄a(dw)DaV ]

= −2 e−U Im

[

e−iα

(

− ⋆dU +
i

2
e2Udω

)

V + e−iαdtiDiV +
1

2
µR

]

, (4.13)

where we used the shorthands

R = −N [Ω̄]V + Ω̄iDiV ,

µ = −1

2
e4Ud(e−4U +M2) + e−iαN [Ω]

(

⋆dU − i

2
e2Udω −N [Ω̄]Ωi ⋆ dt

i

)

. (4.14)

At this stage we have exhausted the constraints implied by the existence of the

constant R̂, and it is important to find a constant vector Darboux conjugate to R̂ in

order to be able to decompose conveniently dw. This is indeed possible, using equa-

tions (3.17), (3.33), (3.36), (3.37) and (4.5), which allow one to show that

R̂∗ = |Z(R̂)|−1Re
[

Ȳ 3N [Ω̄]V + |Y |2Ȳ Ω̄iDiV
]

, (4.15)

Y ≡ (1 + i e2UM) , (4.16)

is constant, in the following way

dR̂∗ = −2R̂∗Re[N [Ω̄]Ωidt
i] +

1

|Z(R̂)|
Im
[

3Ȳ 2N [Ω̄]V + Ȳ (2Y − Ȳ )Ω̄iDiV
]

d(e2UM)

+
2

|Z(R̂)|
Re
[

Ȳ 2Ω̄ı̄dt̄
ı̄V + Ȳ

(

ȲN [Ω̄]dti + Y eiac
abcΩbec̄dt̄

̄
)

DiV
]

= −2R̂∗Re[N [Ω̄]Ωidt
i] +

3

|Z(R̂)|
Im
[

Ȳ 2N [Ω̄]V + |Y |2Ω̄iDiV
]

d(e2UM)

+
2

|Z(R̂)|
Re
[(

Ȳ 2N [Ω̄]V + |Y |2Ω̄iDiV
)(

N [Ω̄]Ωidt
i
)]

= 0 . (4.17)

This vector is indeed mutually non-local with R̂, since their inner product, 〈R̂∗, R̂〉 = −4

and is also very small, i.e. its central charges satisfy (3.8), as a consequence of its definition.

One can now project dw along this new vector to find

〈R̂∗, dw〉 = − ⋆ d(e−U |Z(R̂)|−1 |Y |2) ≡ − ⋆ dV, (4.18)

where we defined the distinguished harmonic function V , whose pole will carry the linear

combination 〈R̂∗,Γ〉 of the physical charges. Note that V can equivalently be defined as

V ≡ e−U 3

√

4|Z(R̂∗)|2
|Z(R̂)|

, (4.19)
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and because the central charge of a very small vector is nowhere vanishing in moduli

space, it follows that for a regular extremal solution, the function V is strictly positive and

〈R̂∗,Γ〉 < 0. Combining this with (3.17), (4.5) and (4.12) we can determine the combination

Ωidt
i in terms of V , the metric components and the phase eiα as

Re [N [Ω̄] Ωi dt
i] = −V −1dV − dU + |Y |−2 d|Y |2,

e−iαΩi dt
i = −Ȳ Re [N [Ω̄] Ωi dt

i]− 3

2
e−iαN [Ω] dY . (4.20)

We can now use this information to further simplify the expression for dw by adding

multiples of the two constant vectors with appropriate coefficients. It turns out that the

most suggestive form is obtained by subtracting a multiple of R̂ and arranging that the

sign of the R̂-component is flipped. This clearly reflects the situation one encounters in

the known explicit solution defined through the almost-BPS system [26, 29], and indeed

one finds that

dw − 2
〈R̂∗, dw〉
〈R̂∗, R̂〉

R̂ = −2 Im

[

e−Ue−iα

((

− ⋆dU +
i

2
e2Udω

)

V + dtiDiV
)]

+ 2V eU Im (i e−iαV) ⋆ d
(

M

V

)

+ ⋆d

(

M

V

)

R̂∗

= −2 Im ⋆ D̃(e−Ue−iαV) + ⋆d

(

M

V

)

R̂∗ , (4.21)

where we defined the modified covariant derivative

D̃(e−Ue−iαV) =
[

d+ i

(

Q+ dα+
1

2
e2U ⋆ dω − e2U d

(

M

V

)

V

)]

(e−Ue−iαV) . (4.22)

The form of this covariant derivative is exactly such that the corresponding composite

connection is trivial by use of (3.30), (4.3) and (4.20)

Q+ dα+
1

2
e2U ⋆ dω − e2U d

(

M

V

)

V = 0 . (4.23)

It then follows that (4.21) takes the form

dw − 2
〈R̂∗, dw〉
〈R̂∗, R̂〉

R̂ = − ⋆ d

[

2 Im (e−Ue−iαV)−
(

M

V

)

R̂∗
]

, (4.24)

which implies that the vector fields are defined in terms of harmonic functions as

dw = ⋆dH , (4.25)

such that for instance 〈R̂∗,H〉 = −V . Using this back in (4.24) one finds that the scalars

are given by

2 Im (e−Ue−iαV) = −H+ 2
〈R̂∗,H〉
〈R̂∗, R̂〉

R̂− M

〈R̂∗,H〉
R̂∗. (4.26)

Note that this result only depends on harmonic functions, where the angular momentum

harmonic function only appears through its ratio with V , as in [21], and the harmonic
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functions H control the electric and magnetic charges. However these harmonic functions

are not all independent as in the BPS system, but are subject to algebraic constraints that

reduce them to nv + 1 independent functions, as we show in the next paragraph using the

constraint (3.24). This constraint is rather non-linear because of its dependence on the

scalar fields, and we will now rewrite it as a quadratic constraint in the harmonic functions

themselves.

Quadratic constraint. For this purpose will make use of the quartic invariant of N = 2

supergravity coupled to a symmetric scalar manifold, which reads [52]

I4(Γ) =
1

4!
tMNPQΓMΓNΓPΓQ

= −(pI qI)
2 + 4 q0N [p]− 4 p0N [q] + cijkp

jpk cilmqlqm , (4.27)

in terms of the cubic norm. Here, tMNPQ is a completely symmetric tensor, and M,N, . . .

are symplectic indices that encompass both the upper and the lower components in (2.2).

The absolute value of this expression is known to determine the entropy of static black

holes for any value of the charges. We also define the lift of symplectic indices through the

symplectic form

ΓM =

(

pI

qI

)

, ΓM =

(

−qI
pI

)

, (4.28)

such that

〈Γ1,Γ2〉 = Γ1MΓM
2 = −Γ2MΓM

1 . (4.29)

We know already from (4.10) that the harmonic functions dH = ⋆dw must be symplec-

tic normal to the vector R̂, and because the integration constant of H along R̂∗ can always

be reabsorbed in a redefinition of the integration constant of the function M in (4.26), we

can assume without loss of generality that

〈H, R̂〉 = 0 . (4.30)

To rewrite the constraint (3.24) we will consider the vector

I
′ M
4 (H, R̂∗) ≡ ∂2I4(H)

∂HM∂HN
R̂∗

N =
1

2
tMNPQHNHP R̂

∗
Q , (4.31)

where R̂∗ is the small vector defined in (4.15) as the magnetic dual to R̂. To compute the

decomposition of this vector in terms of its components linear in HM itself and the small

vectors R̂M and R̂∗M , it will be useful to observe the following consequence of symplectic

invariance

∂I4
∂Z̄

(q, p) = −iZ

(

∂I4
∂p

,−∂I4
∂q

)

,
∂I4
∂Z̄a

= iZa

(

∂I4
∂p

,−∂I4
∂q

)

, (4.32)

which will allow us to compute (4.31) in the complex basis starting from the alternative

expression for the quartic invariant of a vector in terms of its central charges

I4 =
(

ZZ̄ − ZaZ̄
a
)2 − ceabZ̄

aZ̄bcecdZcZd + 4Z̄N [Z] + 4ZN [Z̄] . (4.33)
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Note that, while the scalars appear explicitly in all terms, the complete expression can be

shown to be scalar independent and equal to (4.27). Using the above properties and the

reality constraint (3.24) on dH = ⋆dw, one can compute that

tMNPQ ∂µHN ∂νHP R̂∗
Q = 2 〈R̂∗, ∂(µH〉 ∂ν)HM − 4

〈R̂∗, ∂µH〉〈R̂∗, ∂νH〉
〈R̂∗, R〉

RM . (4.34)

The interested reader can find an outline of the derivation in appendix B. This constraint

can be integrated to the same constraint on the harmonic functions themselves, up to possi-

ble constants which do not a priori need to satisfy the constraint. Nevertheless, using (4.26),

and substituting the expressions (3.37), (4.15), (4.16) and (4.18) one computes that

Z

(

H− 1

2
V R̂

)

= e−U+iα +
M

V
Z(R̂∗) = −e−U Y

Ȳ
N [Ω] +

i

2
MeU

Y 2

Ȳ
N [Ω] ,

Za

(

H− 1

2
V R̂

)

=
M

V
Za(R

∗) = − i

2
MeUY Ωa . (4.35)

It follows that H− 1
2V R̂ satisfies the constraint (3.24), which implies that H does as well.

Since H must satisfy (3.24), it follows that the integration constants in H also satisfy (4.34)

and one obtains that

1

2
I
′ M
4 (H, R̂∗) = 〈R̂∗,H〉HM − 2

〈R̂∗,H〉2
〈R̂∗, R〉

RM . (4.36)

We can now use the fact that both H and its derivative satisfy the above constraint, to

show that they must necessarily lie in a Lagrangian subspace. Indeed, for any two vectors

Γ1,2 satisfying the constraint (3.24), one can show that their inner product (2.15) in the

complex basis can be written as

〈Γ1,Γ2〉 = 2 Im

[

− Z(Γ1)Z̄(Γ2) +
1

3
Ω̄aZa(Γ1) ΩbZ̄

b(Γ2)

]

, (4.37)

which vanishes upon requiring that Γ1,2 are mutually local with R, as expressed by (B.5).

It then follows that

〈H, dH〉 = 0 . (4.38)

We conclude that the poles of H must be mutually local charges, and such solution cannot

describe interacting black holes. Indeed, in appendix A we show an example of this property

in a specific duality frame to obtain the the nv + 1 harmonic functions parametrising the

relevant Lagrangian subspace.

Scaling factor and moduli. This concludes our analysis. For any very small vector

R̂ one can construct explicit solutions, after first using the asymptotic moduli in order to

determine R̂∗ from (4.15), which by definition will be constant. One must then solve the

algebraic equation (4.36), which determines the allowed harmonic functions H. The scalars

and the metric scale factor can be obtained by solving (4.26) in the standard way [53]. For

instance

e−4U = I4

(

H− 1

2
V R̂− M

V
R̂∗
)

. (4.39)
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Using the property that R̂∗ is very small, it follows that the terms of order three and four

in M vanish and the term of order two simplifies according to [54]

1

2
tMNPQR̂∗

M R̂∗
NΓPΓQ = −〈R̂∗,Γ〉2. (4.40)

Considering moreover that (4.36) is satisfied for H− 1
2 V R̂ and contracting this constraint

with H− 1
2 V R̂, one obtains that the term of order one in R̂∗ vanishes as well. Therefore

e−4U = I4

(

H− 1

2
V R̂

)

− M2

V 2
〈R̂∗,H− 1

2
V R̂〉2 = I4

(

H− 1

2
V R̂

)

−M2. (4.41)

Using again (4.35) one computes that the component H− 1
4V R̂ which mutually commutes

with R̂∗ satisfies

Z

(

H− 1

4
V R̂

)

= −3

4
e−UY 2N [Ω] ,

Za

(

H− 1

4
V R̂

)

=
1

4
e−U

(

2|Y |2 − Y 2
)

Ωa , (4.42)

which permits to compute that

I4

(

H− 1

4
V R̂

)

= 0 . (4.43)

It follows that I4(H − 1
2V R̂) is linear in V , and since the factor −1

2 specifically switches

the sign of the R̂ component one concludes that

e−4U = −I4(H)−M2. (4.44)

One obtains in the same way that the moduli can be expressed as

ti =
−1

2
∂I4
∂Hi

(H) + i
2e

−2UV R̂i + (M + ie−2U )
(

Hi − ie−2U

V
R̂∗i)

−1
2

∂I4
∂H0

(H) + i
2e

−2UV R̂0 + (M + ie−2U )
(

H0 − ie−2U

V
R̂∗0)

, (4.45)

after several simplifications. The metric is then given by (2.24) with ω as in (3.36), whereas

the gauge fields are given by (2.26) with ζ as in (4.6) and dw given by (4.25) above.

4.2 Physical properties

In the preceding subsection, we have treated the constant vector R̂ as defining the system,

and the constraint (3.24) or (4.36) as a restriction on the physical charges for a given R̂.

Physically, it is however more natural to define a solution from the asymptotic moduli

ti∞, the electromagnetic charge Γ and angular momentum J . Considering the asymptotic

central charge Z(Γ)∞ and its Kähler derivative Za(Γ)∞ (which we will refer to as the

‘central charges’ for simplicity), one can indeed define the asymptotic Ωa∞ as the unique

solution of (3.24) for which α∞ is determined such that there is no NUT charge, i.e.

Im
[

ΩaZ̄
a(Γ)−N [Ω]Z̄(Γ)

]

∞ = 0 , (4.46)
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as it is done in [44]. Indeed, it follows from (4.2) that (4.46) defines the NUT charge

and that

W∞ =
1

2

(

ΩaZ̄
a(Γ)−N [Ω]Z̄(Γ)

)
∣

∣

∞ = MADM , (4.47)

is the non-BPS fake superpotential at spatial infinity, i.e. the ADM mass. If one does not

fix the gauge for the U(1) ×K4 gauge invariance, the ‘central charges’ do not depend on

the flat directions in moduli space, and it follows that Ωa∞ then does not depend on the

flat directions either. However, the constant vectors R̂ and R̂∗ which are defined from

Ωa∞ upon action of the asymptotic moduli through (3.19) and (4.15) do.4 Therefore the

asymptotic ‘central charges’ altogether with the constant vector R̂ contain the information

about the flat directions.

To understand this property, let us discuss the stabilizers of R̂ and Γ in G4. It is known

that the stabilizer of a very small vector as R̂ is [55]

G5 ⋉R
nv ⊂ G4 , (4.48)

whereas the stabilizer of the electromagnetic charges with a strictly negative quartic in-

variant I4(Γ) < 0 is G5 ⊂ G4.
5 However, as we exhibit in appendix A, only the compact

subgroup K5 ⊂ G5 of the stabilizer of the charges leaves the very small vector invariant.

It follows that the action of the non-compact generators which generate the flat directions

G5/K5 ⊂ G4/K4 , (4.49)

act faithfully on R̂. Moreover, one can show that the condition that both R̂ and R̂∗ are

very small, altogether with equation (4.36)

1

2
I
′ M
4 (Γ, R̂∗) = 〈R̂∗,Γ〉ΓM − 2

〈R̂∗,Γ〉2
〈R̂∗, R〉

RM , (4.50)

entirely determines these small vectors up to an overall rescaling in terms of the electro-

magnetic charges and nv − 1 parameters parametrizing the flat directions. We prove this

in appendix A in a specific duality frame.

Considering a single centre solution carrying charges Γ and angular momentum J

H = h +
Γ

r
, M = m+ J

cos θ

r2
, (4.51)

the scalar fields on the horizon take the form

ti∗ =
−1

2
∂I4
∂Γi

(Γ) + 2iS 〈R̂∗,Γ〉R̂i

〈R̂∗,R̂〉 +
(

J cos θ + iS
)

(

Γi + iS R̂∗i

〈R̂∗,Γ〉

)

−1
2
∂I4
∂Γ0

(Γ) + 2iS 〈R̂∗,Γ〉R̂0

〈R̂∗,R̂〉 +
(

J cos θ + iS
)

(

Γ0 + iS R̂∗0

〈R̂∗,Γ〉

) , (4.52)

4Note that Y∞ is determined by the asymptotic ‘central charges’, because α∞ is.
5This can easily be checked for a D6 very small vector which only non-vanishing charge is p0, because the

latter is clearly left invariant by the five-dimensional duality group G5 and the nv T-dualities. In the same

way, a D0-D6 charge with only non-vanishing q0 and p0, is clearly left invariant by G5 only, and admits a

negative quartic invariant.
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where

S ≡
√

−I4(Γ)− J2 cos2 θ . (4.53)

As is clear from (4.52), the attractor values of the moduli are not entirely determined by the

electromagnetic charges Γ and the angular momentum J , but depend on the asymptotic flat

directions through the small vectors R̂ and R̂∗, in general. This formula (4.52) generalises

the rotating attractor formula derived in [28, 44] in specific duality frames.

Although the scalar fields are not entirely determined by the electromagnetic charges

and the angular momentum, it follows from (4.44) that the horizon area only depends on

the electromagnetic charges and the angular momentum as expected [22, 24, 56, 57]

A = 4π
√

−I4(Γ)− J2 . (4.54)

The same formula implies that the ADM mass is determined as

MADM = −1

4

∂I4(h)

∂hM
ΓM , (4.55)

where we assumed that asymptotically

e−4U |∞ = −I4(h)−m2 = 1 . (4.56)

Although this formula may suggest that the ADM mass is linear in the charges, one must

note that its explicit expression in terms the asymptotic ‘central charges’ is generally a non-

rational function of the latter [17], due to the fact that the integrating constants h are not

entirely parametrized by the asymptotic moduli alone. The situation is similar, although

simpler, for BPS black holes, for which the asymptotic moduli are entirely determined in

terms of the integrating constants h of the harmonic functions dual to the electromagnetic

vectors, but the reverse is not true, as the constants h are parametrized by the asymptotic

moduli and the phase of the asymptotic central charge. Indeed, the ADM mass of a BPS

black hole is not a linear function of the central charge

MBPS =
1

4

∂I4(h)

∂hM
ΓM = |Z(Γ)|∞ , (4.57)

due to the presence of precisely this phase. For the non-BPS solutions, the constants h are

also not entirely determined by the asymptotic moduli, since they depend explicitly on the

asymptotic ‘central charges’ through the phase of the central charge as well as the small

vectors R̂ and R̂∗. Moreover, the asymptotic moduli are not entirely determined in terms

of the constants h either in this case, as is clear from the asymptotic value of (4.45)

ti∞ =
−1

2
∂I4
∂hi

(h) + 2i 〈R̂
∗,h〉R̂i

〈R̂∗,R̂〉 +
(

m+ i
)

(

hi + i R̂∗i

〈R̂∗,h〉

)

−1
2
∂I4
∂h0

(h) + 2i 〈R̂
∗,h〉R̂0

〈R̂∗,R̂〉 +
(

m+ i
)

(

h0 + i R̂∗0

〈R̂∗,h〉

) . (4.58)

This expression includes explicitly the small vectors that depend on the flat directions,

and therefore do not affect the mass formula, but includes also the constant m which

parametrizes the phase of e−iαN [Ω]|∞, and therefore depends explicitly on the asymptotic

‘central charges’.
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The regularity of the solution requires that e−2U is everywhere strictly positive, and

the absence of closed time-like curves outside the horizon moreover requires that e−4U >
(

J sin θ
r2

)2
. The latter condition implies the former, and it reads

− I4(H) >

(

m+
|J |
r2

)2

. (4.59)

This condition is clearly satisfied at spatial infinity because of (4.56), and at the horizon

this requires the usual regularity condition

− I4(Γ) > J2, (4.60)

which is necessary for the horizon area (4.54) to be well defined.

5 Conclusion

In this paper we have given a detailed exposition of the first order systems underlying

the composite non-BPS system of multi-centre black holes in N = 2 supergravity in four

dimensions with a symmetric very special Kähler geometry. Upon imposing a reality con-

straint on the system of equations, we restricted to the single centre class, which includes

all extremal under rotating solutions with one centre and multi-centre generalisations with

mutually local charges. Making use of this constraint we were able to explicitly integrate

the flow equations for the single centre class for the vector multiplet scalars in a manifestly

duality covariant way. Here, we discuss some of the implications of our results.

The solution we obtain for the single centre class, being manifestly duality covariant,

allows for general moduli at infinity and arbitrary charge vectors, without the need of

dualising a specific seed solution. We stress the presence of an additional (constant) very

small vector R̂ and its magnetic dual R̂∗ in the solution for the moduli, in addition to the

standard vector of harmonic functions describing the charges. This vector arises in the

definition of the flow equations for the full composite non-BPS class and therefore plays a

central role in our considerations. This is quite different from the squaring of the action

in the standard fake superpotential approach for single centre solutions [10, 12, 15, 17–

19, 58], which is based on a function of scalars and physical charges only. In view of the

fact that our explicit solution (4.26) allows to construct a function driving the flow that

contains R̂, R̂∗ along with the charges and scalars, it remains an interesting open problem

to understand the relation between the two formulations.

From a physical point of view both R̂ and R̂∗ are integration constants for the scalar

equations of motion once the charges are fixed. Indeed, for a single centre solution with

given charges it is known that not all scalars take part in the flow from infinity to the

near horizon region, but particular combinations are frozen to arbitrary constant values

throughout spacetime, the so called flat directions [13, 27, 55, 59, 60]. We have shown that

the ambiguity in defining R̂ from the electromagnetic charges is precisely parametrized by

the flat directions in moduli space, as expected in order to describe single centre solutions

explicitly. Addition of more centres with charges such that the constraint (4.36) is satisfied

lifts the flat directions, since a unique R̂ is fixed in terms of the charges in the generic case.
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The possible microscopic interpretation of the general single centre under-rotating

solution remains unclear at the moment. A number of approaches have been proposed for

the microscopic construction of extremal non-supersymmetric black holes, see e.g. [61–63].

From this point of view, the flat directions appear as geometric moduli or background

fluxes that can take arbitrary values, see e.g. [13, 63].

A natural future direction is the construction of the generic solution in the composite

non-BPS class. Since the flow equations are again characterised by the very small vector R̂,

it is clear that some of the structures found here will remain relevant in the more general

case. The almost BPS class should also admit a similar description.

Finally, the recent results in [64, 65] indicate that a non-extremal deformation or a lift

of our flow equations to five and/or six dimensional supergravity would be very interesting

to explore, in connection to the over rotating branch.
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A Under rotating seed solution

In this appendix we present the known rotating seed solution in a specific duality frame [29],

as a convenient pivot to draw intuition for the general solution. In this case the electro-

magnetic vector fields satisfy

⋆ dw̃0 = − 1√
2
dV, ⋆dwi =

1√
2
dLi, dw̃i = dw0 = 0 . (A.1)

The scalar fields take the form

ti =
−M + ie−2U

N [L]
Li, (A.2)

and the metric

e−4U = VN [L]−M2, ⋆dω = dM . (A.3)

In this duality frame the constant small vectors are

R̂ =
(

0 , 0 ; 2
√
2 , 0

)T
, R̂∗ =

(
√
2 , 0 ; 0 , 0

)T
, (A.4)

which satisfy indeed

Z(R̂∗) = i Y 3 Z(R̂) , DiZ(R̂∗) = −i |Y |2 Y DiZ(R̂) , (A.5)
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where we used the definition (4.16) and M is the harmonic function in (A.3). One can

straightforwardly solve (4.36) in terms of these vectors using that

1

2

∂2I4
∂q0∂p0

+ q0p
0 = −q0p

0 − qip
i,

1

2

∂2I4
∂qi∂p0

+ q0p
i = −cijkqjqk ,

1

2

∂2I4
∂pi∂p0

− q0qi = −2 q0qi ,

1

2

∂2I4
∂p0∂p0

− q0q0 + 2q 2
0 = 0 . (A.6)

Because H0 = − 1√
2
V by definition, the third line implies that Hi = 0, and then H0 = 0,

which was already implied by (4.30). Therefore we find the consistent solution

H =
1√
2

(

0 , Li ; −V, 0
)T

. (A.7)

It is then straightforward to check that e−4U is indeed equal to (4.44) and that the moduli

are equal to (4.45)

ti =
(M + ie−2U ) 1√

2
Li

− 1√
2
N [L]− ie−2U

V
(M + ie−2U )

√
2

= −V
Li

M + ie−2U
=

−M + ie−2U

N [L]
Li. (A.8)

Let us now consider the general solution of (4.50) for given charges

Γ =
(

0 , pi ; q0 , 0
)T

, (A.9)

associated to such a solution. For this purpose, we will parametrize the two small vectors

in terms of nv + 1 parameters as

R̂ = c

(

−N [f ] , −1

2
cijkfjfk ; 1 , −fi

)T

, R̂∗ = c∗

(

1 , ei ; −N [e] ,
1

2
cijke

jek
)T

,

(A.10)

which can in general be infinite, as long as R̂ and R̂∗ are themselves finite in the limit. Let

us solve (4.50) as an equation for these two small vectors. The component along R̂0 of this

equation implies that

(

q0 − 1
2cijkp

iejek
)2

1− eifi +
1
4cijpc

klpeiejfkfl −N [e]N [f ]
= q 2

0 , (A.11)

and substituting this into the R̂i component, one obtains

fi =
1

q0
cijkp

jek − N [e]

2q 2
0

cijkp
jpk. (A.12)
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Substituting these equations and the R̂i component of (4.50) inside its R̂0 component one

finally obtains
1

2
cijkp

ipjek =
1

q0
N [e]N [p] , (A.13)

which altogether imply that (4.50) is satisfied identically.

One observes that the small vectors (A.10) can then be obtained from the ones in (A.4)

by a duality transformation that acts on the scalar fields as

ti(e) = ti + ei +
1

2q0
cijkcjlpckqre

lpptqtr − 1

q0
titjcjkle

kpl +O(e2) , (A.14)

at first order (if one fixes the irrelevant constants c = 2
√
2 and c∗ =

√
2). One straight-

forwardly computes that such transformations leave the charges Γ invariant. In order for

the moduli to be well defined, the stabilizer of the charges pi in G5 must be its maximal

compact subgroup K5. Therefore it follows that the nv − 1 ei’s which parametrize the

solution of (4.50), also parametrize the moduli space of flat directions G5/K5 ⊂ G4/K4,

and alternatively, that equation (4.36) uniquely determines the very small vectors in terms

of the electromagnetic charges, up to nv − 1 parameters associated to the flat directions.

B Duality invariant constraint

In this appendix we give an outline of the derivation of (4.36) from the reality condi-

tion (3.24) for a vector J that is mutually local with the vector R, i.e. 〈J,R〉 = 0. To this

end, we compute the vector in (4.31)

I
′ M
4 (J, J, R̂∗) =

1

2
tMNPQJNJP R̂

∗
Q , (B.1)

where R̂∗ the small vector symplectic dual to R defined in (4.15). Note however that, since

the computation is homogeneous with respect to all vectors, we will rather use

Z(R∗) = e
3iα
2 N 1

2 [Ω̄] Za[R
∗] = e

iα

2 N 1
2 [Ω̄]Ωa , (B.2)

here, or in other words we replace R̂∗ by its associated vector of mass one. We now proceed

to compute the components of the derivative (4.31) in the complex basis, as in (4.32),

starting from the expression (4.33). Writing Z, Za for Z(J), Za(J), one obtains that

1

2

∂I4
∂Z̄a

(J, J,R∗) = e
3iα
2 N 1

2 [Ω̄]cabcZ̄
bZ̄c + 2e−

iα

2 N 1
2 [Ω]ZcabcΩ̄

bZ̄c

− e−
iα

2 N 1
2 [Ω]cabcΩ̄

bccdeZdZe − 2e
iα

2 N 1
2 [Ω̄]cabcZ̄

bccdeΩdZe

− e
iα

2 N 1
2 [Ω̄]Ωa

(

ZZ̄−ZbZ̄
b
)

− 2ZaRe
[

Z̄e
3iα
2 N 1

2 [Ω̄]− e
iα

2 N 1
2 [Ω̄]ΩaZ̄

a
]

.

(B.3)

Using the reality constraint (3.24) one eliminates all the terms in cabcΩ̄
bccdeZdZe, and using

it again on the resulting expression one eliminates the terms in cabcZ̄
bccdeΩdZe. The final
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expression is then

1

2

∂I4
∂Z̄a

(J, J,R∗) = −2iZaIm
[

Z̄e
3iα
2 N 1

2 [Ω̄]− e
iα

2 N 1
2 [Ω̄]ΩaZ̄

a
]

−Ωa

(

e
iα

2 N 1
2 [Ω̄]ZZ̄

+
(

e
iα

2 N 1
2 [Ω]Z̄−e

iα

2 N 1
2 [Ω̄]ΩaZ̄

a+e−
iα

2 N 1
2 [Ω̄]Z

)(

N [Ω̄]Z−Ω̄aZa+eiαZ̄+2e−iαZ
)

)

.

(B.4)

In order to simplify the second term we need to use the property that 〈J,R〉 = 0. This

permits to solve for

Ω̄aZa =
3e

−iα

2 N 1
2 [Ω̄]Z + e

iα

2 N 1
2 [Ω̄]

(

N [Ω̄]Z + 2N [Ω]Z̄
)

e
iα

2 N 1
2 [Ω̄] + e−

iα

2 N 1
2 [Ω]

, (B.5)

which, when used in (B.4) leads to

1

2

∂I4
∂Z̄a

(J, J,R∗) = −2iZaIm
[

Z̄e
3iα
2 N 1

2 [Ω̄]− e
iα

2 N 1
2 [Ω̄]ΩaZ̄

a
]

+ 4ΩaIm[e−iαZ]2
iIm
[

e−
iα

2 N 1
2 [Ω]

]

Re
[

e
iα

2 N 1
2 [Ω̄]

]2
. (B.6)

In the same way, one computes the Z component of the derivative

1

2

∂I4
∂Z̄

(J, J,R∗) = 2iZIm
[

Z̄e
3iα
2 N 1

2 [Ω̄]− e
iα

2 N 1
2 [Ω̄]ΩaZ̄

a
]

− 4N [Ω]Im[e−iαZ]2
iIm
[

e−
iα

2 N 1
2 [Ω]

]

Re
[

e
iα

2 N 1
2 [Ω̄]

]2
. (B.7)

In order to interpret these two equations, let us compute that

〈R∗, J〉 = 2Im
[

e−
3iα
2 N 1

2 [Ω]Z − e−
iα

2 N 1
2 [Ω]Ω̄aZa

]

= −4Im[e−iαZ]
Im
[

e−
iα

2 N 1
2 [Ω]

]2

Re
[

e
iα

2 N 1
2 [Ω̄]

]2
, (B.8)

and

〈R∗, R〉 = 2Im
[

e−
3iα
2 N 1

2 [Ω]N [Ω]− e−
iα

2 N 1
2 [Ω]Ω̄aΩa

]

= −8Im
[

e−
iα

2 N 1
2 [Ω]

]3
. (B.9)

Using these identities we conclude that (B.6) and (B.7) combine into

1

2

∂I4
∂JM

(J, J,R∗) = 〈R∗, J〉JM − 2
〈R∗, J〉2
〈R∗, R〉 R

M . (B.10)

Using the homogeneity of this equation in R and R∗, one can write it for the constant

vectors R̂ and R̂∗ such that this equation defines a quadratic algebraic equation in J , as

claimed in section 4.2.
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