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Abstract

Background: Topic models are statistical algorithms which try to discover the structure of a set of documents
according to the abstract topics contained in them. Here we try to apply this approach to the discovery of the
structure of the transcription factor binding sites (TFBS) contained in a set of biological sequences, which is a
fundamental problem in molecular biology research for the understanding of transcriptional regulation. Here we
present two methods that make use of topic models for motif finding. First, we developed an algorithm in which
first a set of biological sequences are treated as text documents, and the k-mers contained in them as words, to
then build a correlated topic model (CTM) and iteratively reduce its perplexity. We also used the perplexity
measurement of CTMs to improve our previous algorithm based on a genetic algorithm and several statistical
coefficients.

Results: The algorithms were tested with 56 data sets from four different species and compared to 14 other
methods by the use of several coefficients both at nucleotide and site level. The results of our first approach
showed a performance comparable to the other methods studied, especially at site level and in sensitivity scores, in
which it scored better than any of the 14 existing tools. In the case of our previous algorithm, the new approach
with the addition of the perplexity measurement clearly outperformed all of the other methods in sensitivity, both
at nucleotide and site level, and in overall performance at site level.

Conclusions: The statistics obtained show that the performance of a motif finding method based on the use of a
CTM is satisfying enough to conclude that the application of topic models is a valid method for developing motif
finding algorithms. Moreover, the addition of topic models to a previously developed method dramatically
increased its performance, suggesting that this combined algorithm can be a useful tool to successfully predict
motifs in different kinds of sets of DNA sequences.

Background
Sequence motifs are short patterns that occur in DNA
with certain frequency and that often have some sort of
biological distinct function. In most cases, that function
is to serve as a binding site for proteins. When these
proteins are transcription factors (TF), the corresponding
motifs are called transcription factor binding sites (TFBS).
Knowing these TFBS gives a better understanding of how
transcriptional regulation works, and therefore the

discovery of TFBS is one of the most fundamental
problems in molecular biology research [1, 2]. Historically,
a wide variety of methods have been applied to this prob-
lem, computational methods being currently the prevail-
ing approach. The computational problem consists of
discovering motifs by searching for overrepresented (and/
or conserved) DNA patterns in sets of functionally related
genes, such as genes with similar functional annotation or
genes with similar expression patterns. The number of dif-
ferent computational approaches to tackle this problem is
constantly growing as computational techniques evolve.
One of the most recent techniques, which, to the best of
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our knowledge, to this date has not yet been applied to
motif discovery, is known as topic models [3].

Topic models
Topic models are statistical algorithms, based on natural
language processing and machine learning, which try to
discover the structure of a set of documents according to
the abstract topics contained in them by hierarchical
Bayesian analysis [4]. These algorithms allow examining a
set of documents and determining the existing topics and
their distribution among the documents based on the stat-
istical properties of the words of a specific vocabulary in
each one of them. where L Application of topic models to
the motif finding problem.
As far as we know, there is no literature about the ap-

plication of topic models to motif finding algorithms.
The first method here proposed tries to fill that gap and
prove that topic models are a suitable method to the
motif finding problem. In order to do so, it represents
genetic sequences as documents and the k-mers con-
tained in them as words, so that the patterns shown
among these k-mers would be considered as motifs.
Figure 1 shows a graphic representation of a topic model
and how our algorithm would adapt to it.
The algorithm, as a topic model, would therefore exam-

ine a set of sequences to determine the hidden structure
of the patterns contained in it. As this is totally consistent
with the motif finding problem, it seems likely that the al-
gorithm should be able to correctly discover motifs.

Addition of topic models to a previously developed
algorithm (Statistical GA)
Previously to this study of topic models applied to the
motif finding problem, we developed another algorithm
with the structure of a GA, which used statistical coeffi-
cients as a fitness measurement [5]. From this point, we
will refer to this algorithm as the Statistical GA algorithm.
The Statistical GA algorithm was proven to effectively find
overrepresented motifs in sets of sequences. However, it
had the main drawback of reporting an excessive number
of false positives. Along with the algorithm based entirely
on topic models, in this study we also research how the
use of topic models can be applied to improve the previ-
ously developed algorithm and reduce the number of false
positives.

Methods
How topic models work
The main problem, from a computational point of view,
of topic modeling is to infer a concealed topic structure
from the examination of the documents.
A topic is formally defined as a multinomial distribu-

tion over a fixed vocabulary. In other words, topic
models consider that a document could, conceptually, be
generated from a set of topics, each one of them being a
set of words related to that topic. So that, to create a
document, the words would be selected iteratively from
the topics that we desire to appear in it. For example, if
we want a document that is two thirds about stem cells

Fig. 1 Representation of a topic model adapted to the motif finding problem. Representation of a topic model adapted to the motif finding
problem. This figure shows the basic structure of a topic model (in this case, a LDA). The terms specific for the case of the motif finding problem
are stated in red under the original ones in blue, showing that the motif finding problem can be represented by a topic model by describing the
DNA sequences as documents, the instances of each given motif as words in those documents, and the motifs as clusters of words or topics
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and one third about cancer, we would create two topics
(stem cells and cancer) as sets of words typically related
to them, and then construct the document by selecting
two thirds of the words from the stem cells set and one
third from the cancer set.
Topic modeling consists of reversing this conceptual

approach, considering that the topics of a document (or a
set of documents) can be inferred from the proportions of
the words contained in them.
The intuition behind this algorithm is that all of the

documents in the collection share the same set of topics,
but each one of them in a different proportion, which is
reflected in the distribution of the different words
among them.
The inputs of a topic model are a set of N documents

(d1, …, dN) and the number of topics K that are expected
to be contained in the documents. For each one of the
documents di to be analyzed, the most basic algorithm
would process the words in a two-stage process.

1. Choose a random distribution of the document over
the topics (t1, …, tK).

2. For each word wj in the document:
a. Choose a random topic tr from the distribution

over topics previously generated.
b. Once wj is assigned, for each one of the topics tm

in the current set of topics, compute the
proportion of words in the document di that are
currently assigned to the topic tm, P(tm|di), and the
proportion of assignments to the topic tm over all
of the documents that come from the word wj ,
P(wj|tm) and then reassign wj to the topic that gives
the best probability P(tm|di) * P(wj|tm).

A stable set of assignments will be reached after re-
peating the above steps for several iterations.
The benefit of the use of topic models is that they

offer an automated solution to the organization and an-
notation of large text archives. However, this is not their
only utility, and they can be applied to many other fields,
such as the subject in question here, bioinformatics.

Creating a motif finding algorithm based on topic models
from scratch
Algorithm structure
The first problem that arises when adapting a topic
model to the motif finding problem comes from the idea
that, whereas the words in a text document are clearly
separated by spaces, in the case of a genetic sequence a
mechanism to select the k-mers that will form the
vocabulary must be defined.
A typical topic model, as a first step, usually creates a

vocabulary from the words in the documents by discard-
ing meaningless words (in terms of determining a topic),

such as “the” or “of” in documents written in English, as
well as words that are not repeated frequently, since in
both cases they would not help to find the hidden topics
and they would instead add noise to the algorithm.
Again, this is consistent with a motif finding algorithm,
so in this case an initial vocabulary would need to be
created similarly, but in this case by selecting k-mers
that are overrepresented in the set of sequences.
From this a new problem arises, which is the impossi-

bility to select all of the possible overrepresented pat-
terns in a reduced amount of time. In order to deal with
that, a genetic algorithm (GA) [6] structure was chosen
as the basis of the algorithm here presented, being the
topic model the approach for selecting the best possible
solutions in the fitness function.

Algorithm implementation
The method here proposed is a heuristic algorithm, that
is, it gives an approximate (not necessarily optimal) solu-
tion, and it is also stochastic, so that each time it is run
with the same set of sequences it will likely produce dif-
ferent results. It searches only for ungapped motifs, so
that patterns which contain gaps might be predicted
split into several separate motifs. Also, in contrast with
other motif finding algorithms, which usually suppose
that there is at least an instance of the motifs in every
sequence of the data set, it makes no assumptions about
how the motifs are distributed among the sequences.
The algorithm is implemented as a classic GA. In

other words, it starts by creating a population of possible
solutions (individuals) for our problem and then it iter-
ates over them, keeping the best (fittest) solutions of
every iteration, discarding the worst ones, and creating
new solutions based on the fittest ones for the following
iteration, until an optimum solution is found or a given
number of iterations is reached.
Therefore, the only aspects that need to be defined are

how the population is represented, how it is evaluated
(fitness), how the fittest individuals are selected in every
iteration, how new individuals are generated by the
surviving ones (crossover, mutation) and when the
algorithm will stop iterating and report a final solution
(or set of solutions).

Representation
Each individual of the population is a set of m k-mers
which can be contained in any of the sequences of the
data set. The k-mers can be of any length between a
minimum and a maximum passed as a parameter. The
initialization works as follows:
Given a set of sequences, a minimum k-mer length

kmin, a maximum k-mer length kmax, a minimum
number of repetitions for each k-mer in the data set
cmin, a population size N, and a number of words per
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individual in the population n. For each one of the N
individuals, iterate until an initial set of n k-mers is
reached:

1. Choose a random word length k within the range
kmin : kmax.

2. Choose a random sequence from the data set.
3. Choose a random position p in that sequence

between 0 and l - k, being l the sequence length.
4. Select the word w starting in the position p with

length k.
5. Count the number of occurrences c of the word w

in the given sequence, allowing for 25% of
mismatches.

6. Shuffle w into ws and count the number of
occurrences cs of the word ws in the given sequence,
allowing for 25% of mismatches.

7. If c - cs is greater or equal than cmin, add the k-mer
to the set for the given individual.

Evaluation
The fitness calculation is the more crucial step in a GA.
It is at this moment when the topic models must be ap-
plied and provide a way to obtain solutions for the motif
finding problem.
The type of topic model chosen was a correlated topic

model (CTM) [7], since it takes into consideration the
correlation between topics, and, biologically speaking,
motifs also usually show correlation, given that
transcription factors which have correlated biological
functions bind to them. A CTM makes use of a logistic
normal distribution, which, through the transformation
of a multivariate normal random variable, allows for a
general pattern of variability between the components of
the distribution [8]. More specifically, the CTM con-
tained in the R package topicmodels [9] was the method
used for the construction of the CTM in every iteration.
For each one of the individuals of the population, its

set of k-mers, along with the original set of sequences, is
fed to a CTM as the vocabulary and the documents re-
spectively. Then the perplexity of the resulting model is
measured and returned as the fitness of the given
individual.

Perplexity
The perplexity of a probabilistic model is a measure of
the accuracy with which its distribution predicts a
sample. It is the standard used in natural language pro-
cessing to evaluate the accuracy of the model. The lower
the perplexity, the better the model fits the data. The
perplexity is calculated by splitting the dataset into two
parts: one for training and one for testing, and then
measuring the log-likelihood of the unseen documents.
As the perplexity is calculated using the corresponding

function provided by Hornik and Grün for their CTM
implementation, the mathematical formula for perplexity
used in this method follows their same definition [9]:

Perp ωð Þ ¼ exp −
log p ωð Þð Þ

XD

d¼1

XV

j¼1
n jdð Þ

8
<
:

9
=
;

where n(jd) refers to the frequency with which the jth
word appears in the document d.

Selection
The algorithm tries to give an optimum set of solu-
tions by minimizing the perplexity. Therefore, for the
selection of the fittest candidates, an elitist approach
is used. In other words, after all of the fitness mea-
surements have been done for a specific generation of
individuals, these are selected in random pairs, in
which the fittest individual (lower perplexity) survives
and the less fit individual is eliminated from the
population. After this stage, N/2 fit individuals remain
in the population.
So the next step is generating new individuals by the

use of the crossover function to create a new population
of N individuals.

Crossover
The Crossover step is performed after the Evaluation
and Selection step to generate new individuals in the
population for the next generation.
First, two individuals are randomly selected from the

population to act as parents.
The crossover function in this case is a classic one-point

crossover in which two children are generated by swap-
ping the data beyond a randomly selected crossover point
between both parents. In this case, the crossover point is
an index in the array of k-mers of the individuals, which
indicates which k-mers to select from each one of the par-
ents (these k-mers are shuffled before this step).
The two newly formed children are added to the

population and the process is repeated until the popula-
tion contains N individuals again.

Mutation
Mutation happens randomly, according to a parameter
that defines the frequency. It is also applied to random
individuals. The mutated individual will have a random
number of its k-mers slightly shifted from their original
position (the position in the sequence randomly in-
creases or decreases by a number no longer than the
length of the given k-mer).
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Post processing
Once the GA is terminated, the fittest individuals are
sorted by perplexity (from lower to higher) and selected
accordingly as solutions depending on a parameter set
by the user that defines how many motifs are ex-
pected to be found in the data set. For each one of
these solutions, the CTM is generated once again and
each one of the resulting topics is returned as a motif
of the data set.

Improving the statistical GA algorithm by the use of the
perplexity measurement
The Statistical GA algorithm [5] works as a GA in which
the fitness function takes three steps to discard unfit
solutions based on three different coefficients [10, 11], in
which the main method to select the final candidates is
the Mann-Whitney U-Test [12]. Each candidate is a k-
mer of a fixed length defined as a parameter represented
as a position in a supersequence, which is a concaten-
ation in a random order of all the genetic sequences
received as an input. To simplify the calculations, this
supersequence is divided in a set of subsequences so that
in each iteration the fitness is calculated for a given sub-
sequence and the candidates which show no overrepre-
sentation in the given segment are swiftly discarded
without further computations.

Adding the use of topic models
The main drawback of the Statistical GA algorithm is
that it reported a big amount of false positives, and one
of the main reasons for this was that it had no way to
measure the confidence of the results reported. Thus, it
reported at least one motif for every data set, ballasting
that way the overall performance of the algorithm. The
solution here proposed for that problem consists of tak-
ing the final set of instances provided by the algorithm,
creating a CTM with them, and measuring the perplex-
ity. Then, only in the cases in which the perplexity is
lower than certain threshold the motifs returned by the
algorithm are reported (Fig. 2). The impact of this was
that now the Statistical GA algorithm only reports

motifs for those data sets in which there is a CTM that
fits well the solutions found. That way, the algorithm is
able to measure the confidence of the solutions obtained
by the main GA. The threshold was set at 100 for ex-
perimental reasons, given that in the tests performed the
motifs reported with a perplexity higher than 100 tended
to be false positives.

Assessment
Several studies [1, 2] concluded that evaluating the per-
formance of a motif finding tool has been proven to be a
difficult task, and there is no method to compare tools
that can give a definitive conclusion about which one is
the best and which one is the worst. Keeping this idea in
mind, both of the two methods here presented were
tested making use of the assessment proposed by Tompa
et al. [1] in their study to evaluate the performance of
several motif finding tools by the scores obtained in
eight different statistical coefficients. It is worth men-
tioning that only the accuracy of the tools predicting
binding sites is evaluated, and other aspects such as the
running time of each method, are not measured. The
benchmark provided by the assessment, which is the
same one used in this study, is formed by 52 data sets,
which belong to four different species (fly, human,
mouse and yeast) and also 4 negative controls to sum a
total of 56 data sets. These 56 data sets are also divided
into three different categories: data sets of Type Real,
which correspond to the real promoter sequences that
contain the original sites that the different tools will try
to locate; data sets of Type Generic, which correspond
to promoter sequences generated randomly from the
same genome, and data sets of Type Markov, which cor-
respond to synthetic sequences generated by a Markov
chain. The original assessment compared the efficiency
of 14 different tools (Additional file 1: Table S1) [13–26].
Each one of those tools was allowed to report only one
(or none) motif per data set. The format in which this
motif was reported was as a list of instances and their
corresponding positions in the sequences of the data set.
Then, the accuracy of how well these instances match

Fig. 2 Statistical GA algorithm workflow after including the use of topic models. This figure describes the updated flow of the Statistical GA algorithm after
adding the perplexity measurement for the selection of solutions. There are four steps in this flow: the first one, in which the candidate instances are selected
by the original Statistical GA; the second one, in which these instances are clustered attending to their similarity calculated by their hamming distance; the
third one, which consists of building the CTM and measuring its perplexity, and the last step, which consists of reporting the motif if the perplexity calculated
in the previous step is lower than 100
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the real instances of the motif is studied both at nucleo-
tide and site level. At site level, a predicted site is con-
sidered to match the known site if it overlaps at least
one quarter of it. With this information, the following
eight statistics are used to measure the accuracy of each
one of the methods:

� nSn (Sensitivity, nucleotide level):

nSn ¼ nTP
nTP þ nFN

� nPPV (Positive Predicted Value, nucleotide level):

nPPV ¼ nTP
nTP þ nFP

� nSp (Specificity):

nSp ¼ nTN
nTN þ nFP

� nPC (Performance Coefficient, nucleotide level) [27]:

nPC ¼ nTP
nTP þ nFN þ nFP

� nCC (Correlation Coefficient) [28]:

nCC ¼ nTP � nTN þ nFN � nFPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTP þ nFNð Þ nTN þ nFPð Þ nTP þ nFPð Þ nTN þ nFNð Þp

� sSn (Sensitivity, site level):

sSn ¼ sTP
sTP þ sFN

� sPPV (Positive Predicted Value, site level):

sPPV ¼ sTP
sTP þ sFP

� sASP (Average Site Performance) [28]:

sASP ¼ sSnþ sPPV
2

The coefficients starting by n are statistics at nucleo-
tide level, and the coefficients starting by s are statistics
at site level. TP, FP, TN and FN refer to the number of
true positives, false positives, true negatives and false
negatives respectively.
Both of the two methods here described were tested

using the methodology presented in this assessment and
compared to the 14 methods with which it was originally
carried out.

Results
The CTM algorithm was run with the following parameters:

� Motif width between 6 and 30
� Population size: 50
� Number of generations: 90
� Number of instances per individual: 1000
� Maximum number of solutions: 10
� Mutation rate: 0.1

As for the statistical GA algorithm, it was run with the
same parameters as in the original study [5]. After add-
ing the perplexity measurement in the post processing
stage, a new restriction was included: Only the motifs re-
ported with a perplexity lower than 100 were considered
as solutions.
All of the tests were run in a laptop computer with a

2.6 GHz Intel Core i5 processor and an 8 GB 1600 MHz
DDR3 memory.
Figure 3 summarizes the average values of the

statistics previously defined for each one of the 14 tools
originally analyzed in the assessment and for both of our
proposed tools. Figure 4 shows the average values
grouped by organisms.
To calculate the average values, we followed the same

process as in the original assessment. In a first step, the
values of nTP, nFP, nFN, nTN, sTP, sFP and sFN obtained
for each one of the data sets are summed. Then, each
one of these summed values is considered as the given
score of a large data set, and the eight statistics are cal-
culated for that large data set , obtaining that way the
average scores.

Discussion
As previously stated, none of the statistics analyzed
should ever be taken as an absolute measurement of the
quality of the methods. The authors of the assessment
[1] themselves indicate several factors that affect the
results and might give a wrong impression about the
performance of the different algorithms:

� This assessment, as any other possible method, can
never be considered a standard method to measure
the biological significance of the studied tools, since
it is still unknown how the subjacent biology works.

� As each one of the algorithms was required to
predict only one (or none) motif for each data set,
there might be an arbitrary component in the
candidate selected by each tool.

� The assessment requires each tool to report only one
(or none) motif for each data set. However, it is known
that, especially in the case of the data sets of Type Real,
they are likely to contain more than one motif.

� Many of the known binding sites are longer than 30
bp. Our tools, as well as most of the others, were
run for motifs no longer than 30 bp in the case of
the CTM algorithm and 12 bp in the case of the

The Author(s) BMC Bioinformatics 2016, (Suppl 19):502 Page 134 of 295



Fig. 3 Average statistical values for all 56 data sets. This figure shows the average scores obtained by each one of the tools studied for each one
of seven different statistics for all the 56 data sets of the benchmark. The Statistical GA method is shown as GA approach, and the CTM method
as CTM approach

Fig. 4 Average statistical values for each organism. This figure shows the average scores obtained by each one of the tools studied for each one
of seven different statistics grouped by the four different species contained in the data sets. The Statistical GA method is shown as GA approach,
and the CTM method as CTM approach
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statistical GA algorithm. This affects the
performance at nucleotide level even if the
performance at site level is high.

� The assessment relies on TRANSFAC [29] as its only
source of known binding sites. As the information
obtained fromTRANSFAC is not contrasted with
other sources, it might as well contain errors.

� The above explained method used to compute the
average scores of every tool tends to penalize those
tools that make wrong predictions more than those
that make no predictions at all, as 0 is the default
value for the cases in which no motifs are reported.

As long as all these factors are not forgotten, some im-
portant conclusions regarding the performance of the
different methods can still be inferred from the use of
the benchmark proposed in the assessment.
First of all, the CTM method shows levels in Sensitivity

(both at nucleotide level, nSn, and at site level, sSn) only
outperformed by our other method, the Statistical GA
(Figs. 3 and 4). It also shows a remarkable Average Site
Performance (sASP) and, regarding the rest of statistics,
even though the numbers obtained are not especially sat-
isfying, they are comparable to most of the other methods.
Thus, we can already reach the conclusion that topic

models are a perfectly valid method to design motif find-
ing algorithms.
As for the Statistical GA method, Fig. 5 shows the im-

provement in all of the average statistics after narrowing
down the results reported according to the perplexity
shown in the CTM. All of the scores for the different
statistics are practically doubled after filtering out the

motifs for which the perplexity of the corresponding
CTM is higher than 100.
This tool now clearly outperforms most of the other

methods, showing levels of nSn, sSn, and sASP to which
any of the other tools can hardly be compared (Figs. 3
and 4). This further proves the usefulness of topic
models for motif discovery tools.
Given the nature of both methods, and the high number

of true positives shown (especially at site level), it seems
clear that both succeed in predicting many of the sites but
lack of a mechanism to detect false positives. In other
words, as the high scores in Sensitivity and Average Site
Performance show, both methods can correctly report
most of the known motifs, but they locate too many in-
stances of them in the input sequences, so that the num-
ber of false positives reported in the assessment, especially
at nucleotide level, appears too large, in spite of the cor-
rectness of the consensus or the score matrix given by the
algorithms as a result. We therefore believe that the high
number of false positives is due, to a large extent, to the
nature of the assessment. This drawback was considerably
reduced in the new version of the statistical GA algorithm,
thanks to the use of the perplexity measurement to avoid
predicting wrong motifs, but we believe the number of
false positives in the assessment could still be shortened if
some sort of method was used in the post processing step
to obtain only the correct instances of the known site by
the use of a weight matrix based on the consensus se-
quence, instead of simply reporting all of the candidate in-
stances found as both tools currently do. For the CTM
method, a way to filter out the results which are not re-
ported with high confidence is required as well.

Fig. 5 Comparison of statistics for the Statistical GA method before and after filtering by perplexity. Here it is shown the improvement in the
average scores of the Statistical GA method for seven different statistics obtained by the addition of the filtering of the results by their perplexity
in the corresponding CTM
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The method that gives the best overall statistics after
the Statistical GA method is Weeder. As the authors of
the assessment clarify [1], one of the main reasons for
that is the way in which it was run. The author of the
tests decided to pick a cautious mode, that is, to predict
a motif only if there is a high confidence of its existence.
That explains, therefore, the great improvement in the
statistics for our Statistical GA tool, and that it is mostly
due to the way to calculate the average statistics pro-
posed in the assessment.
As for the running time, as stated before, it is not an

object of the assessment, which is focused on the accur-
acy of the sites predicted. However, it is worth mention-
ing that the CTM method slows down considerably
when the number of input sequences is bigger than
three. Therefore, some solution for this problem, such as
dividing the data sets into subgroups of three or fewer
sequences, will be required. The Statistical GA method,
on the other hand, is able to report the results of data
sets of any size in a matter of minutes.

Conclusions
DNA motif finding still remains as one of the most
challenging tasks for researchers, and so it is the task
of comparing the performance of the different
existing tools, given that each one of them has been
designed using very heterogeneous algorithms and
models, and that there is still little known about the
subjacent biology. Therefore, we must insist on the
fact that nowadays it is impossible to define a stand-
ard quality measurement to evaluate the performance
of the different tools.
Most of the studies on the performance of motif find-

ing algorithms [2] conclude
that the best option for biologists to try to predict sites

in a set of sequences is never to rely on a single tool, but
better to use a few complementary tools and combine
the top predicted results of each one of them.
In line with this, we believe that the methods here

described, despite their drawbacks, can perfectly be
part of those tools that biologists use in combination
with others to predict de novo binding sites in sets of
biological sequences. Especially in the case of the
CTM method, there are still many improvements to
be done. However, given the results, it can already be
used as a ground for future tools based on the use of
topic models as a reliable method for motif finding.

Additional file

Additional file 1: This table shows the tools that were studied in the
original assessment by Tompa et al. [1] and the two methods presented
in this study, each one with a short description of their underlying
methodologies. (DOCX 15 kb)
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