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Abstract

Background: Microglial activation plays an important role in neurodegenerative diseases by producing several
pro-inflammatory enzymes and pro-inflammatory cytokines. Lipopolysaccharide (LPS)-induced inflammation leads
to the activation of microglial cells in the central nervous system (CNS) and is associated with the pathological
mechanisms of neurodegenerative diseases, including PD, AD, and ALS. Ginseng is a natural antioxidant used
in herbal medicine and contains ginsenosides (Rb1, Rg1, Rg3, Re, and Rd), which have anti-neoplastic and
anti-stress properties.
This study demonstrates the involvement of the anti-inflammatory signaling pathway, ginsenoside-Re (G-Re),
which is one of the ginsenosides mediated by LPS-induced neuroinflammation in BV2 microglial cells.

Methods: BV2 microglial cells were pretreated with 2 μg/ml G-Re and stimulated with 1 μg/ml LPS to induce
neuroinflammation. To investigate the effect of G-Re on LPS-induced cell signaling, we performed western blotting
and immunofluorescence using specific antibodies, such as phospho-p38, COX2, and iNOS.

Results: Pretreatment with 2 μg/ml G-Re was neuroprotective against 1 μg/ml LPS-treated microglial cells.
The neuroprotective events induced by G-Re treatment in neuroinflammation occurred via the phospho-p38,
iNOS, and COX2 signaling pathways in BV2 cells.

Conclusion: Taken together, we suggest that G-Re exerts a beneficial effect on neuroinflammatory events in
neurodegenerative diseases.
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Background
Microglial cells, which are the major immune cells in
the brain, play a pivotal role in the innate immune
response in the central nervous system (CNS) [1]. The
activation of microglia releases various neurotrophic
factors that support neuronal cell survival, in addition to
neurotoxic factors and pro-inflammatory cytokines [2].
Acute activation causes several autoimmune responses
to neuronal death and brain injury. The activation of
microglia in the CNS is associated with the pathogenesis
of a variety of neurodegenerative diseases, such as Mul-
tiple Sclerosis (MS), Alzheimer’s disease (AD), Hunting-
ton’s disease (HD), and Parkinson’s disease (PD) [3]. The
overactivation of microglia and the consequent release
of pro-inflammatory and cytotoxic factors, including the
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tumor necrosis factor-(TNF-α), inducible nitric oxide
synthase (iNOS), and cyclooxygenase 2 (COX2), contrib-
ute to neurodegenerative processes [4].
A recent study has reported that the activation of

microglia can trigger neurotoxicity via the production of
pro-inflammatory and cytotoxic factors in neuronal cell
lines treated with lipopolysaccharide (LPS), β-amyloid,
glutamate, and arachidonate [5]. LPS, which is a bacter-
ial endotoxin, induces inflammation, tissue damage,
infection, and inflammatory responses. LPS is widely used
to activate macrophage-like cells and to simulate infection.
LPS-treated BV2 cells express CD14, interleukin-6 (IL-6),
TNF-α, resulting in increased levels of iNOS [6-8]. LPS sti-
mulates nuclear factor-κB (NF-κB), cyclic AMP-responsive
element-binding protein (CREB) and the mitogen-activated
protein kinase (MAPKs) family, including extracellular
signal-regulated kinases (ERKs), c-Jun N-terminal kinase
(JNK), and p38 MAPK [9], which have been implicated in
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the release of immune-related cytotoxic factors such as
iNOS, COX2, and pro-inflammatory cytokines [4,10].
Thus, the control of microglial activation has been sug-
gested as a promising therapeutic target to combat neuro-
degenerative diseases.
Ginseng, one of the most ancient herbs used in trad-

itional Chinese medicine, exhibits anti-inflammatory
properties. Active constituents with curable features can
be found in most ginseng species, including ginseno-
sides, polysaccharides, peptides, polyacetylenic alcohols,
and fatty acids. There are two major categories of ginse-
nosides; protopanaxadiols (PPD, e.g., Ra, Rb, Rc, Rd,
Rg3, Rh2) and protopanaxatriols (PPT, e.g., Re, Rf, Rg1,
Rg2, Rh1). Ginsenoside Rg1 (Rg1), one of the saponin
components of ginseng, has been widely reported for
its neuroprotective effects on the CNS. Ginsenoside-Re
(G-Re) exhibits anti-oxidative capabilities in addition to
its neuroprotective activities, and it also demonstrates
anti-hyperlipidemic and immunomodulatory therapeutic
properties [11,12], and anti-inflammatory effects [13].
Recent studies have reported that the major active ingre-
dients, including ginsenosides, exert anti-oxidant and
anti-inflammatory effects [13-15]. Wu et al. showed that
G-Re has anti-inflammatory effect by inhibition of nitric
oxide (NO) formation and NF-κB signaling in the LPS-
induced microglial cell [13].
Several studies have reported the neuroprotective

effects of Rg1 or its metabolites, but not of Re. Thus,
we investigated the anti-inflammatory effects of G-Re
on LPS-stimulated microglial BV2 cells, and we provide
insight on its molecular mechanism. We provide further
evidence for the anti-inflammatory potential of G-Re
in vitro and the involvement of the signaling molecules,
phospho-p38, iNOS, and COX2. These results provide
a scientific basis for further investigation of G-Re as
therapeutic agent for the treatment of neuroinflamma-
tory diseases.

Methods
Cell culture
The immortalized BV2 murine microglial cell line was
provided by Dr. Sang-Myun Park (Aju University, Re-
public of Korea) and grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% FBS
(fetal bovine serum), 100 U/ml penicillin, and 100 μg/ml
streptomycin at 37°C in an atmosphere of 5% CO2 in
air. In all of the experiments, BV2 cells were incubated
in the presence or absence of 2 μg/ml of G-Re before
the addition of LPS (Enzo, Farmingdale, NY, USA) to the
culture media.

Cell viability assay
Cell viability was assessed by an MTT (3-[4,5-dimethyl-
thiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction
assay, as described previously [16]. This assay is based
on the ability of active mitochondrial dehydrogenase to
convert dissolved MTT into water-insoluble purple for-
mazan crystals. BV2 cells were plated on 96-well plates
(2 × 104 cells/well). After 24 h of cell seeding, the BV2
cells were treated with the indicated concentrations of
G-Re for 24 h prior to 1 μg/ml of LPS treatment for an
additional 24 h. Briefly, MTT was added to each well
at a final concentration of 0.5 mg/ml, and the plates
were incubated for 1 h at 37°C. After removal of the cul-
ture medium, DMSO was added, and the plates were
shaken for 10 min to solubilize the formazan reaction
product. The absorbance at 570 nm was measured using
a microplate reader (Bio-rad, xMark). The absorbance
at 570 nm was expressed as the percent of the relative
untreated control BV2 cells and reported as the mean.

Western blot
After treatment with or without 1 μg/ml LPS in the
presence of 2 μg/ml G-Re, the cells were washed with
ice-cold PBS and lysed with RIPA lysis buffer containing
50 mM Tris–HCl pH 7.4, 1% NP-40, 0.1% SDS, 150 mM
NaCl, and the Complete Mini Protease Inhibitor Cocktail
(Roche, Basel, Switzerland). The protein concentration
was measured with a BCA Protein Assay Kit (Pierce, IL,
USA). Extracted samples (20 μg total proteins per lane)
were separated by 10% SDS-polyacrylamide gel electro-
phoresis (SDS-PAGE) and then transferred onto nitrocel-
lulose membranes (Whatman, Dassel, Germany). The
membranes were incubated with 5% skim milk to block
nonspecific protein binding and incubated with primary
antibodies for p-p38 (1:1000, Cell Signaling), p-JNK
(1:1000, Cell Signaling), α-tubulin (1:5000, Abcam), iNOS
(1:1000, BD Pharmingen), and COX-2 (1:1000, BD Phar-
mingen) in 5% skim milk overnight. After washing 3
times with TBS-T (1 M Tris–HCl pH 7.5, 1.5 M NaCl,
0.5% tween-20), the membranes were hybridized with
horseradish peroxidase-conjugated secondary antibodies
for 1 h. Then, the membranes were washed with TBS-T,
and the specific immunoreactive protein bands were
detected using the SuperSignal West Femto Chemilu-
minescent Substrate (Pierce, IL, USA) or enhanced
with chemiluminescence reagents (Amersham Pharma-
cia, NJ, USA). α-tubulin was used as an internal control
to normalize for protein loading. Protein bands were
detected and analyzed using a FusionSL4-imaging
system, and quantification of the immunoblotting bands
was performed with the Bioprofil (Bio-1D version 15.01,
viber Lourmart).

Immunofluorescence
For immunofluorescence staining, the cells were washed
with PBS, and then fixed with 4% paraformaldehyde for
15 min and permeabilized with 0.5% Triton X-100 in
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PBS for 10 min. Fixed cells were then blocked with 5%
BSA in PBS-T (0.1% Triton X-100 in PBS) to reduce
nonspecific immune reactivity, and the cells were incu-
bated with primary antibodies overnight at 4°C. After
washing 3 times with PBS-T, the cells were incubated
with secondary antibodies conjugated to FITC or rhoda-
mine. Stained cells were mounted with fluorescence
mounting medium with DAPI (Vector laboratories, CA,
USA). The fluorescently stained cells were then exam-
ined using a microscope (Olympus, BX51). The number
of fluorescently stained cells was counted in each of
the three randomly chosen fields using the NIH Image J
program (version 1.46j).
Data analysis
Data are expressed as the mean ± S.E.M. Comparisons
were evaluated by one-way analysis of variance
(ANOVA) with Prism software. Values that were signifi-
cantly different from the relative controls are indicated
with an asterisk when p < 0.05.
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** p < 0.01. (B) Effects of G-Re on LPS-induced microglial cell death. BV2 ce
with 1 μg/ml LPS for 24 h in the presence or absence of G-Re. The rates of
shown are the mean ± S.E.M. of data obtained from three independent ex
and then stimulated to 1 μg/ml LPS for 24 h in the presence or absence o
microscopy with antibodies against active caspase-3. The values shown are
experiments. (bars: 50 μm.) * p < 0.05.
Results
Ginsenoside-Re prevents LPS-induced microglial cell
death in BV2 microglial cells
To examine the viability of BV2 microglia after LPS
treatment, we incubated BV2 microglial cells with LPS
(1 μg/ml) at the indicated doses for 24 h. Our results
showed that LPS decreased cell survival in a dose-
dependent manner (Figure 1A). Compared to vehicles, 1
μg/ml LPS treatment of BV2 cells resulted in a decrease
in cell viability by 54%. To investigate whether G-Re
attenuated LPS-induced microglial cell death, BV2
microglial cells were treated with G-Re plus LPS. After
pretreatment of G-Re (0.5, 1 and 2 μg/ml) for 24 h, BV2
cells were treated with LPS for 24 h in the presence or
absence of G-Re. Treatment of LPS alone markedly
decreased cell survival; however, pretreatment with G-Re
reduced this decrease of cell survival by 84% at a
dose of 2 μg/ml G-Re (Figure 1B). In addition, immu-
nocytochemical analysis showed that the levels of active
caspase-3, a key enzyme that regulates cell apoptosis,
were increased at 24 h after LPS treatment. Pretreatment
*
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croglial cells. (A) G-Re inhibits LPS-induced cell death in BV2
.05, 0.1, 0.5 and 1 μg/ml) of LPS for 24 h, and cell viability was
a obtained from three independent experiments. n=15, * p < 0.05,
lls were pretreated for 24 h with 2 μg/ml G-Re, and then stimulated
cell survival were measured by a MTT assay at 570 nm. The values
periments. (C) BV2 cells were pretreated with 2 μg/ml G-Re for 24 h
f 2 μg/ml G-Re. Cells were visualized using immunofluorescence
the mean ± S.E.M. of data obtained from three independent
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with G-Re for 24 h inhibited the upregulation of acti-
vated caspase-3 (Figure 1C). These results indicate that
G-Re exhibits a protective role against LPS-induced
microglial cell death.

Ginsenosides-Re attenuates LPS-induced activation of
p38MAPK in BV2 microglial cells
Because the MAPK family is known to be a key player in
LPS-induced cell signaling, we examined whether G-Re
decreases the phosphorylation of the MAPK family pro-
teins, JNK and p38MAPK. To do this, BV2 microglial
cells were treated with 1 μg/ml LPS in the presence
or absence of 2 μg/ml G-Re. A significant increase in
JNK and p38 phosphorylation was observed as early as
15 min after LPS treatment (Figure 2). However, pre-
treatment with G-Re attenuated LPS-induced phosphor-
ylation of p38 in the presence of G-Re and not JNK.
Moreover, the total protein levels of JNK and p38 were
unchanged (Figure 2). These results suggest that the G-
Re-mediated attenuation of cell death is associated with
downregulation of the p38MAPK signaling pathway.

Ginsenosides-Re attenuates the protein expression of
LPS-induced pro-inflammatory mediators in BV2
microglial cells
To investigate the effect of G-Re on LPS-induced micro-
glial activation, BV2 microglial cells were treated with
1 μg/ml LPS for 18 h. LPS highly increased the protein
levels of iNOS and COX2 (Figure 3 and 4) in BV2
microglial cells. Western blot analysis showed that
p-p38

Total p38

p-JNK

Con G-Re LPS

A

Total-JNK

α-tubulinα-tubulin

Figure 2 Ginsenoside-Re inhibits LPS-induced phosphorylation of p38
p38MAPK was highly increased by LPS alone and was diminished by G-Re.
stimulated with 1 μg/ml LPS for 15 min in the presence or absence of 2 μg
including the phosphorylated form of p38 and JNK. Total p38, JNK and α-tu
shown are the mean ± S.E.M. of data obtained from three independent ex
No differences were found with the G-Re alone treatments. * p < 0.05, ** p
treatment with 2 μg/ml G-Re markedly inhibited iNOS
and COX2 protein levels compared with LPS alone
(Figure 3B and 4B). As shown in Figure 3A and 4A, we
confirmed the inhibitory effect of G-Re on LPS-induced
BV2 microglial cells by immunofluorescence staining.
Stimulation of BV2 microglial cells with 1 μg/ml LPS
resulted in a notable increase in the protein expression
levels of iNOS and COX2. Compared with LPS treat-
ment alone, these expression levels were decreased by
G-Re treatment. These findings indicated that G-Re
inhibits LPS-induced pro-inflammatory protein expres-
sion in BV2 microglial cells.
Discussion
The present study demonstrates that G-Re inhibits LPS-
induced pro-inflammatory mediators in BV2 microglial
cells through the blockade of the p38MAPK signaling
pathway. Stimulation of microglial cells with LPS induced
the activation of p38, which subsequently led to the upre-
gulation of iNOS and COX2 expression. G-Re also signifi-
cantly suppressed the LPS-induced expression of iNOS
and COX2 in BV2 microglial cells. Thus, our data sup-
port that p38MAPK is important for microglial cell
death and pro-inflammatory cytokine upregulation in
response to LPS and may be a therapeutic target for
neuroinflammatory diseases, where overproduction of
pro-inflammatory cytokines has been implicated in disease
progression. G-Re is one promising therapeutic approach
for the treatment of neuroinflammatory diseases.
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Figure 3 Ginsenoside-Re attenuates the expression levels of iNOS proteins in LPS-induced BV2 microglial cells. (A) BV2 cells were
pretreated with 2 μg/ml of G-Re for 1 h, and then stimulated with 1 μg/ml LPS for 18 h in the presence or absence of 2 μg/ml G-Re. Cells were
visualized using immunofluorescence microscopy with antibody against iNOS. Quantification of iNOS expression density by Image J is shown on
the right. (n = 5 for each of the four groups.) (bars: 50 μm.) * p < 0.05, ** p < 0.01. (B) Western blots were performed using an antibody against
iNOS. The loading control for the cell lysates was determined by re-probing the membranes with α-tubulin antibody. The values shown are the
mean ± S.E.M. of data obtained from three independent experiments. * p < 0.05, ** p < 0.01.
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Ginseng is a traditional herbal agent that has been
used in traditional Chinese medicine. Ginseng contains a
mixture of 30 heterogeneous glycosidal saponins, which
are also known as ginsenosides. Ginsenosides including
Rb1, Rg1, Rg3, Re, and Rd and their biomodulating and
immunomodulating functions in the immune system
and CNS have been examined in clinical and animal
studies [17,18]. Commonly studied ginsenosides such as
Rb1, Rg1, Rg3, Re, and Rd exhibit vasorelaxation, anti-
oxidation, and anti-cancer functions. In particular, G-Re,
a compound derived from Panax ginseng, improved
anti-diabetic effects by suppression of phospho-JNK and
NF-κB in diabetic animals [19]. In addition, G-Re
treatment improved cognitive impairment and helpless
behaviors by regulation of the noradrenergic system
in animal models [20]. However, the molecular mechan-
isms of G-Re remain unknown.
Microglial cells are generally considered to be the
immune cells of the CNS. Microglial cells respond to
neuronal injury or damage with microglial activation.
Activated microglia produce large amounts of harmful
neurotoxic factors through the excess production of
cytotoxic factors, such as superoxide radicals, nitric
oxide [21], TNF-α and interleukin-1β [22]. p38MAPK is
a serine/threonine MAPK that is activated by a wide
range of environmental stressors and cytokines to induce
inflammation. p38MAPK is an important regulator of
pro-inflammatory cytokines such as iNOS and COX2
[23]. In several studies, phosphorylation/activation of
p38MAPK was increased by LPS treatment and, sub-
sequently, the p38 inhibitor suppressed LPS-induced
pro-inflammatory cytokine upregulation in BV2 micro-
glial cells [23]. This study showed that G-Re reduced
LPS-induced neuroinflammation by inhibition of the
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Figure 4 Ginsenosides-Re attenuates the expression levels of COX2 proteins in LPS-induced BV2 microglial cells. (A) BV2 cells were
pretreated with 2 μg/ml of G-Re for 1 h, and then stimulated with 1 μg/ml LPS for 18 h in the presence or absence of 2 μg/ml G-Re. Cells were
visualized using immunofluorescence microscopy with antibody for COX2. Quantification of COX2 expression density by Image J is shown on
the right (n = 5 for each of the four groups.) (bars: 50 μm.) * p < 0.05, ** p < 0.01. (B) Western blots were performed using an antibody against
COX2. The loading control for the cell lysates was determined by re-probing the membranes with α-tubulin antibody. The values shown are
the mean ± S.E.M. of data obtained from three independent experiments. * p < 0.05, ** p < 0.01.
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p38-activating signaling pathway in BV2 microglial cells
(Figure 2). This result suggests that G-Re has a neuro-
protective role against neuroinflammation in the CNS.
However, our data indicate that LPS-induced JNK acti-
vation was not decreased by G-Re (Figure 2). Several
researchers found that ginsenoside Re, ginsenoside Rb1
and ginsenoside Rg1 has a beneficial effect in LPS-
activated microglial cell through inhibition of nitric
oxide (NO) formation and NF-κB signaling [13,24,25].
Moreover, G-Re has a neuroprotective effect against
LPS-induced cell death (Figure 1).
We treated with 0.5–100 μg/ml of G-Re to determine

cell toxicity and found that G-Re treatment did not
induce cell toxicity in BV2 cells, in accordance with a
previous paper. In addition, we found that treatment
with 2 μg/ml of G-Re inhibited LPS-induced cell death,
as well as the activation of p38MAPK and activated
caspase-3 by LPS treatment in BV2 cells, as shown in
Figure 1C and 2A. However, we expect that a high dose
(more than 2 μg/ml) of G-Re could attenuate LPS-
induced cell death and change the expression of other
proteins to a greater extent than in the present study.
According to Wu et al.’s paper [13], they used 0.1–100
μM of G-Re. However, the effect of high-dose G-Re
seems to have been similar to that of the low dose in ni-
tric oxide or TNF-α production. In addition, the only
high dose of G-Re treatment inhibited the pJNK and
pIκBα expression. Therefore, we suggest that the effect
of G-Re treatment will be increased at a high dose,
depending on the target proteins and cell lines.
Previous studies have reported the development of

hydrogen peroxide [26,27], glutamate [28], MPP+ [29]
and β-amyloid-induced cell death [30]; however, the
mechanism by which LPS leads to microglial toxicity
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remains obscure. In addition, it is noteworthy that G-Re
has a protective effect with a markedly attenuated
microglial response of caspase 3 activation (Figure 1).
It has been shown that the reduction of pro-

inflammatory mediators produced by microglia may at-
tenuate the severity of neuronal damage. Many studies
have demonstrated that some pro-inflammatory cyto-
kines and their reaction products are involved in chronic
inflammatory disease [31,32]. COX2, an inducible iso-
form of COX, is upregulated in inflammation. Moreover,
inducible nitric oxide synthase (iNOS) is associated with
inflammation, and its reaction product NO is involved in
various diseases, such as AD, PD and ALS [33-35]. Con-
sistent with other researchers’ previous data regarding
the signaling pathways mediated by microglial activation,
our data indicate that G-Re exhibits anti-inflammatory
effects, as shown in Figure 3 and 4.

Conclusions
This study presented that the involvement of the anti-
inflammatory signaling pathway by G-Re which is one
of the ginsenosides mediated by LPS-induced neuroin-
flammation in BV2 microglial cells. Pretreatment with
2 μg/ml G-Re was neuroprotective against 1 μg/ml LPS-
treated microglial cells. The neuroprotective events
induced by G-Re treatment in neuroinflammation
occurred via the phospho-p38, iNOS, and COX2 signal-
ing pathways in BV2 cells. Taken together, the above
in vitro findings suggest that G-Re mitigates neuro-
inflammatory events. Furthermore, there is a need to
evaluate the effect of G-Re on toxin-induced or gen-
etically engineered neuroinflammatory disease animal
models. We therefore believe that inhibition of pro-
inflammatory mediators may provide a new therapeutic
approach for treatment of neuroinflammatory disease.
In conclusion, our data provide evidence that G-Re
attenuates LPS-induced microglial toxicity and pro-
inflammatory activation, and these findings suggest that
G-Re may serve as a potential therapeutic drug to delay
neuroinflammatory progression.

Competing interests
The authors declare no conflicts of interest.

Authors’ contributions
EJY designed the experiments and analyzed the data as well as edited the
manuscript. KWL and SYJ carried out biochemical experiments and
performed statistical analyses. EJY, KWL, and SYJ wrote the manuscript. SMC
provided some comments in writing the manuscript. All authors have read
and approved the final manuscript.

Acknowledgment
This work was supported by grant (K12010) from the Korea Institute of
Oriental Medicine (KIOM), South Korea.

Received: 16 July 2012 Accepted: 22 October 2012
Published: 26 October 2012
References
1. Olson JK, Miller SD: Microglia initiate central nervous system innate and

adaptive immune responses through multiple TLRs. J Immunol 2004,
173:3916–3924.

2. Block ML, Hong JS: Microglia and inflammationmediated
neurodegeneration: multiple triggers with a common mechanism. Prog
Neurobiol 2005, 76:77–98.

3. McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive
for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s
disease brains. Neurology 1988, 38:1285–1291.

4. Choi Y, Lee MK, Lim SY, Sung SH, Kim YC: Inhibition of inducible NO
synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated
by mitogen-activated protein kinases in microglial BV2 cells. Br J
Phamrmacol 2009, 156:933–940.

5. Brown GC, Neher JJ: Inflammatory neurodegeneration and mechanisms
of microglial killing of neurons. Mol Neurobiol 2010, 41:242–247.

6. Paolo M, Massimiliano R, Elena D, Eleonora R, Giangiacomo B, Roberto MF:
Parthenolide inhibits the LPS-induced secretion of IL-6 and TNF-a and
NF-kB nuclear translocation in BV-2 microglia. Phytother Res 2012,
26:1405–1409.

7. Christina S, Sandra ZF, Kristin P, Katarina R, Tiit L: LPS-induced iNOS
expression in Bv-2 cells is suppressed by an oxidative mechanism acting
on the JNK pathway—a potential role for neuroprotection. Brain Res
2010, 1322:1–7.

8. Godbout JP, Berg BM, Kelley KW, Johnson RW: Alpha- Tocopherol reduces
lipopolysaccharide-induced peroxide radical formation and interleukin-6
secretion in primary murine microglia and in brain. J Neuroimmunol 2004,
149:101–109.

9. Martindale JL, Holbrook NJ: Cellular response to oxidative stress: signaling
for suicide and survival. J Cell Physiol 2002, 192:1–15.

10. Ajmone-Cat MA, De Simone R, Nicolini A, Minghetti L: Effects of
phosphatidylserine on p38 mitogen activated protein kinase, cyclic AMP
responding element binding protein and nuclear factor-kappaB
activation in resting and activated microglial cells. J Neurochem 2003,
84:413–416.

11. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA,
Polonsky KS, Yuan CS: Antidiabetic effects of Panax ginseng berry
extract and the identification of an effective component. Diabetes 2002,
51:1851–1858.

12. Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ,
Hsu CW, Becker LB, Yin JJ, Yuan CS: Antioxidant effects of ginsenoside Re
in cardiomyocytes. Eur J Pharmacol 2006, 532:201–207.

13. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X:
Differential effects of ginsenosides on NO and TNF-alpha production by
LPS-activated N9 microglia. Int Immunophamacol 2007, 7:313–320.

14. Bae EA, Trinh HT, Yoon HK, Kim DH: Compound K, a metabolite of
ginsenoside Rb1, inhibits passive cutaneous anaphylaxis reaction in
mice. J Ginseng Res 2009, 33:93–98.

15. Ro JY, Ahn YS, Kim KH: Inhibitory effect of ginsenoside on the mediator
release in the guinea pig lung mast cells activated by specific
antigen-antibody reactions. Int J Immunopharmacol 1998, 20:625–641.

16. Lee SM, Yang EJ, Choi SM, Kim SH, Baek MG, Jiang JH: Effects of bee
venom on glutamate-induced toxicity in neuronal and glial cells.
Evid Based Complement Alternat Med 2012, 2012:368196–368205.

17. Vogler BK, Pittler MH, Ernst E: The efficacy of ginseng. A systematic review
of randomised clinical trials. Eur J Clin Pharmacol 1999, 55:567–575.

18. Kennedy DO, Scholey AB: Ginseng: potential for the enhancement of
cognitive performance and mood. Pharmacol Biochem Behav 2003,
75:687–700.

19. Zhang Z, Li X, Lv W, Yang Y, Gao H, Yang J, Shen Y, Ning G: Ginsenoside
Re reduces insulin resistance through inhibition of c-Jun NH2-terminal
kinase and nuclear factor-kappaB. Mol Endocrinol 2008, 22:186–195.

20. Lee B, Shim I, Lee H, Hahm DH: Effect of ginsenoside re on depression-
and anxiety-like behaviors and cognition memory deficit induced
by repeated immobilization in rats. J Microbiol Biotechnol 2012,
22:708–720.

21. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM:
Nitric oxide in the central nervous system: neuroprotection versus
neurotoxicity. Nat Rev Neurosci 2007, 8:766–775.

22. Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, Ai QL, Liu YD, Sun J,
Lu D: Gastrodin inhibits expression of inducible NO synthase,



Lee et al. BMC Complementary and Alternative Medicine 2012, 12:196 Page 8 of 8
http://www.biomedcentral.com/1472-6882/12/196
cyclooxygenase-2 and proinflammatory cytokines in cultured
LPS-stimulated microglia via MAPK pathways. PLoS One 2011, 6:e21891.

23. Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van
Eldik LJ: Microglial p38α MAPK is a key regulator of proinflammatory
cytokine up-regulation induced by toll-like receptor (TLR) ligands or
beta-amyloid (Aβ). J Neuroinflammation 2011, 8:79.

24. Joh EH, Lee IA, Jung IH, Kim DH: Ginsenoside Rb1 and its metabolite
compound K inhibit IRAK-1 activation–the key step of inflammation.
Biochem Pharmacol 2011, 82:278–286.

25. Hu JF, Song XY, Chu SF, Chen J, Ji HJ, Chen XY, Yuan YH, Han N, Zhang JT,
Chen NH: Inhibitory effect of ginsenoside Rg1 on lipopolysaccharide-
induced microglial activation in mice. Brain Res 2011, 1374:8–14.

26. Kwok HH, Ng WY, Yang MS, Mak NK, Wong RN, Yue PY: The ginsenoside
protopanaxatriol protects endothelial cells from hydrogen peroxide-
induced cell injury and cell death by modulating intracellular redox
status. Free Radic Biol Med 2010, 48:437–445.

27. Liu Q, Kou JP, Yu BY: Ginsenoside Rg1 protects against hydrogen
peroxide-induced cell death in PC12 cells via inhibiting NF-κB activation.
Neurochem Int 2011, 58:119–125.

28. Li N, Liu B, Dluzen DE, Jin Y: Protective effects of ginsenoside Rg2 against
glutamate-induced neurotoxicity in PC12 cells. J Ethnopharmacol 2007,
111:458–463.

29. Chen XC, Fang F, Zhu YG, Chen LM, Zhou YC, Chen Y: Protective effect of
ginsenoside Rg1 on MPP+−induced apoptosis in SHSY5Y cells. J Neural
Transm 2003, 110:835–845.

30. Xie X, Wang HT, Li CL, Gao XH, Ding JL, Zhao HH, Lu YL: Ginsenoside Rb1
protects PC12 cells against β-amyloid-induced cell injury. Mol Med Report
2010, 3:635–639.

31. Pizza V, Agresta A, D'Acunto CW, Festa M, Capasso A: Neuroinflamm-aging
and neurodegenerative diseases: an overview. CNS Neurol Disord Drug
Targets 2011, 10:621–634.

32. Spitzbarth I, Baumgärtner W, Beineke A: The role of pro- and
anti-inflammatory cytokines in the pathogenesis of spontaneous
canine CNS diseases. Vet Immunol Immunopathol 2012, 147:6–24.

33. Almer G, Vukosavic S, Romero N, Przedborski S: Inducible nitric oxide
synthase up-regulation in a transgenic mouse model of familial
amyotrophic lateral sclerosis. J Neurochem 1999, 72:2415–2425.

34. Echeverria V, Burgess S, Gamble-George J, Zeitlin R, Lin X, Cao C,
Arendash GW: Sorafenib inhibits nuclear factor kappa B, decreases
inducible nitric oxide synthase and cyclooxygenase-2 expression,
and restores working memory in APPswe mice. Neuroscience 2009,
162:1220–1231.

35. Hoang T, Choi DK, Nagai M, Wu DC, Nagata T, Prou D, Wilson GL, Vila M,
Jackson-Lewis V, Dawson VL, Dawson TM, Chesselet MF, Przedborski S:
Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in
a mouse model of Parkinson disease. Free Radic Biol Med 2009,
47:1049–1056.

doi:10.1186/1472-6882-12-196
Cite this article as: Lee et al.: Effects of ginsenoside Re on LPS-induced
inflammatory mediators in BV2 microglial cells. BMC Complementary and
Alternative Medicine 2012 12:196.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	Cell culture
	Cell viability assay
	Western blot
	Immunofluorescence
	Data analysis

	Results
	Ginsenoside-Re prevents LPS-induced microglial cell death in BV2 microglial cells
	Ginsenosides-Re attenuates LPS-induced activation of p38MAPK in BV2 microglial cells
	Ginsenosides-Re attenuates the protein expression of LPS-induced pro-inflammatory mediators in BV2 microglial cells

	Discussion
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgment
	References

