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Abstract

Background: Extensive genetic diversity in viral populations within infected hosts and the divergence of variants
from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus
assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host
variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial
to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly
techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as
viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable
sequence coverage.

Results: We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from
genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and
West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers
designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion
polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly
available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/viral-genomics-
analysis-software.

Conclusions: We developed VICUNA, a publicly available software tool, that enables consensus assembly of
ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral
populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell
population samples may prove beneficial in these fields of research.

Background
Viral borne diseases exert a significant impact on human
health with millions of individuals infected yearly and
diseases such as HIV/AIDS ranking as a leading cause
of death worldwide (http://www.who.int/mediacentre/
factsheets/fs310/en/index.html). Critical to the design of
effective vaccines and therapeutics to combat this bur-
den is a comprehensive map of the genetic composition
of viral populations and the characterization of the selec-
tive pressures that shape these populations. Compiling
such a map is a challenge: in viral infections the low
fidelity of the genome replication process and various evo-
lutionary pressures can result in a single infected host
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harboring a heterogeneous population of genetic vari-
ants [1]. Previous studies [2-9] have shown that many
viruses including Dengue, HCV, HIV, Influenza, Polio and
West Nile all maintain diverse populations within a sin-
gle host. This genetic diversity means that the population
may already contain variants that are advantageous in the
face of challenges such as host immune responses and
drug treatments. As such, understanding the extent and
composition of intra-host population diversity, even at
low frequencies, can be very important in evaluating dis-
ease progression, transmission, and response to changes
in therapy.
However, identifying intra-host variation depends on an

alignment of the sequence data. In cases where the reads
cover identical sequences, multiple alignment can be used
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to solve this problem [10], but this is currently not feasi-
ble for whole genome sequences as no platform exists to
sequence whole genomes as single reads at high through-
put. Alternatively, the sequencing data can be aligned to
a reference, as is commonly done for variant detection in
human and other organisms [11,12]. However, the use of
a reference genome that is too genetically distant from the
sample population will yield inaccurate read alignments
and, as previously reported, substantial data loss; both
factors decrease the ability to detect biological variants
[13,14]. Because viral consensus can vary substantially
between patients it may be difficult to find an existing
reference that allows unbiased and complete alignment
of reads [2,15]. One solution to this problem is to start
the analysis by de novo assembly of each patient sam-
ple, allowing use of the patient consensus as the reference
for variant detection [2]. Since the sample consensus will
be near the centroid of the intra-host variation, it should
be optimal for alignment of all sequence data to a single
reference.
Further, the consensus sequence itself is of value.

Notably, the majority of publicly available genomic
sequences were captured using bulk Sanger sequenc-
ing strategies and as such a single consensus assem-
bly is the only data available to compare against to
derive biological insights. A consensus serves as a single
datum that represents the entire underlying population
or some subset of the population and thereby enables
the identification of dominant genetic mutations that
vary between two populations or subsets of the same
population [2,15,16]. Lastly, for samples infected with
unknown viruses a reference guided mapping strategy will
not be applicable and a de novo approach is required
[2,17,18].
There are two major frameworks for de novo genome

assembly. Overlap-layout-consensus based methods [19-
21] first identify reads that share good suffix-prefix align-
ment. This operation divides the input reads into disjoint
sets, termed contigs. Then, multiple sequence alignment
is performed for each contig to derive the consensus
sequence, an approximation to a target genome fragment.
The relative positions and orientations of these contigs
are estimated by paired reads that land in different con-
tigs. The de Bruijn graph based methods [13,22-27] first
decompose input reads into kmers, denoted as vertices,
then create a directed edge between any pair of vertices if
the last (k − 1) bases of the source vertex is identical to
the first (k − 1) bases of the target vertex. The graph is
then simplified by chain compaction to shorten paths that
have a unique entry and exit, and edited to remove small
tips and bubbles that are likely attributed to sequencing
errors. Finally, contigs are generated and oriented dur-
ing graph traversal, guided by paired reads and coverage
information.

Assembly algorithms devised specifically for the
sequencing of less diverse haploid and diploid genomes
by short reads tend to fare poorly on data derived from
variant populations such as viruses, both because of the
difficulty of separating continuous variation from error,
and because of other process-related challenges [2]. In
addition, sample preps of RNA viral genomes currently
require reverse transcription and usually require amplifi-
cation. These protocols tend to result in highly variable
coverage along the length of the genome and may intro-
duce large amounts of contamination from other RNA
species present in the starting material. These artifacts
of the process tend to further confuse existing assembly
algorithms, which rely on depth of coverage to both indi-
cate copy number of sequences and distinguish errors
from true variants.
Recent work utilizing an overlap-layout-consensus

strategy has shown that it is possible to generate high
quality de novo assemblies from relatively deep cover-
age data produced by massively parallel pyrosequencing
of diverse populations [2]. However, this method adapts
poorly to other platforms such as the Illumina and Ion
Torrent, due to a much larger amount of data produced,
which increases both the computational complexity, and
the difficulty of merging divergent genotypes and han-
dling process error. An alternative strategy was recently
reported by Iqbal et al. [13] These authors demonstrated
de novo assembly of diploid genomes or a population con-
sisting of a small number of eukaryotic genomes using a de
Bruijn graph strategy, but the amount of diversity inher-
ent in viral populations is beyond the target range for this
algorithm.
Here we present VICUNA, a de novo assembler of very

high but variable coverage short read data from a pop-
ulation of diverse but non-repetitive genomes. VICUNA
is an overlap-layout-consensus based assembly algorithm.
Unlike assemblers optimized for large repetitive genomes,
VICUNA aggressively merges similar sequences, and has
the capacity to retain low frequency single nucleotide and
length polymorphisms. We validated VICUNA on 12 viral
population samples. These 12 samples were obtained from
patients infected with Dengue Virus (DENV), Human
Immunodeficiency Virus (HIV) and West Nile Virus
(WNV), which represent a spectrum of intra-host popu-
lation variation. VICUNA recovers the full target regions
with high fidelity in all samples. The algorithm captures
low frequency non-dominant length variants, specified by
a tunable threshold. In a handful of these samples, we
recovered alternate consensus containing large deletions
(≥ 500bp). VICUNA runs on workstations or blades, and
hence is readily accessible to research labs with limited
compute resources. Although our immediate target appli-
cation is the sequencing of RNA viruses from infected
hosts, we anticipate that our method may also have utility
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for a range of applications which pose similar challenges,
including rRNA sequencing and whole genome metage-
nomic analyses.

Results and discussion
VICUNA assembly strategy
We assume a typical viral population consists of an
unknown number of genomic variants that vary in their
frequencies. A subset of these variants dominates the pop-
ulation and minor variants also exist. We assume that the
phylogenetic relatedness within variant clusters is greater
than that between clusters. Notably, the premise of a het-
erogeneous population comprised of closely and distantly
related groups of sequences occurring in varied frequen-
cies is applicable to other biological investigations such
as metagenomics. The goal of generating a set of consen-
sus sequences that represents a viral population is con-
founded by high genomic mutation rates, which results
in frequent single nucleotide and length polymorphisms
between genomes. This paralyzes the key error correc-
tion component of de Bruijn graph based assemblers.
VICUNA applies the basic rule that a contig is produced
to represent a spectrum of genomic fragments such that
their pairwise genetic distances, defined as one hundred
minus the percentage of sequence alignment identity, is
bounded by p, a user specified parameter. When p is
larger than the pairwise distance between dominant vari-
ants in the population, a subset of contigs would represent
these while other contigs would capture the more dis-
tant ones. With this idea in mind, VICUNA outputs a
set of contigs that are represented as a multiple sequence
alignment (MSA) of their constituent reads. Each MSA
contains substitutions and indels, which enable the cap-
ture of polymorphism in the data. Meanwhile, a single
consensus sequence can be readily calculated by taking
the dominant nucleotide base in each alignment column
with ties broken arbitrarily. Notably, the MSAs are con-
structed incrementally starting from single reads to the
final contigs rather than aligning reads back to the con-
sensus post-assembly. When the viral target is known, as
is the case in the examples provided in this study, a final
contig representing the population mean can be built by
merging contigs spanning the target region, selecting the
ones that have the most read support. Nonetheless, when
the target is unknown such as a microbiome sample or
in cases of unknown infections, we can recover a set of
contigs that represents the spectrum of the genomes in
the population. This enables the identification of samples
from patients co-infected with multiple viruses.
VICUNA consists of four key steps: read trimming, con-

tig construction & clustering, contig validation, and contig
extension &merging (Figure 1). In addition, the algorithm
includes two optional modules (see Additional file 1), one
to identify target and non-target reads prior to assembly,
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Figure 1 Schematic of the VICUNA assembly algorithm.

and a second to guide contig merging using a relevant
reference genome if one is available.

Read trimming
Primer sequences or adapters may still be attached to
the fragments pre-sequencing. End of reads that match
any substring of primers are removed. In this step, we
also remove low complexity reads that likely result from
process artifacts [28].
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Contig construction & clustering
Identifying similarities among input reads is the ab initio
step in building contigs. To avoid the compute-expensive
pairwise alignment, existing methods typically identify
common kmers (de Bruijn graph basedmethods) or maxi-
mal substrings (overlap-layout-consensus based methods)
among input reads, achieved using efficient data struc-
tures such as de Bruijn graphs [24,25], suffix tree/array
[29], and Burrows-Wheeler transformation [30]. All use
exact string matching strategy as the first pass to identify
potential reads with good similarities.
To build contigs at the population level, we need to

account for scenarios where diversity varies considerably
from one genomic region to another, and the abundance
of sequencing errors differs considerably due to highly
uneven read coverage. These characteristics of the data
pose the following challenges for existing methods. Exact
string matching strategies may have difficulty balanc-
ing specificity vs. sensitivity in identifying similar reads:
whereas a shorter kmer may considerably reduce speci-
ficity, sensitivity can suffer with a longer kmer. Also, the
degree of vertices in de Bruijn graph increases consider-
ably in both highly diversified and highly covered genomic
regions, increasing the required compute resources.
To address these challenges, we adopt a min hash and an

inexact string matching based similarity searching meth-
ods. The min hash is space and run-time efficient and
was originally applied to cluster billions of web documents
[31], and it was recently applied to DNA sequences [32].
VICUNA decomposes each read into kmers, each hashed
uniformly to a large integral space (e.g. 264). The min hash
value is used to represent each read. Based on the proof
[31] that the similarity between any two reads, defined as
the Jaccard Index, is equivalent to the probability that they
have the same min hash, similar reads are held to form
the same contig via common min hashes without resort-
ing to pairwise comparison. This strategy is particularly
effective in reducing read redundancy in the data. In prac-
tice, we used a two-phased min hash strategy to increase
specificity (see Methods). However, this method will miss
many overlaps that fail to have a common min hash, so
we combine it with a seed-based approach. Using spaced
seeds is proven to be more sensitive in similarity detec-
tion while maintaining the same specificity compared to
searching by exact strings [33]. To identify good suffix-
prefix overlaps among reads, we utilize a sliding window
approach, where the window size is w. We then compute
the subsequence of k (< w) selected bases, termed spaced-
kmers, in each window. Sequencing errors or nucleotide
polymorphism-incurred differences are neglected if they
appear in the remaining (w − k) bases. Finally, reads that
share any common spaced-kmer are held in the same con-
tig. Unlike previous methods that store the entire spaced
k-spectrum, we developed a strategy that keeps only a

small fraction of it in the memory. Relying on the obser-
vation that a read may concurrently appear in multiple
contigs, we devised an efficient partitioning algorithm to
merge such contigs (see Methods).

Contig validation
Given p, the rate of variation, we would like to capture
in the population, define a contig to be consist of a set of
reads where each read r differs from the consensus of the
contig by at most p × |r| bases where |r| denotes the read
length. Abiding by this definition, we validate each contig
by iteratively aligning each constituent read to the con-
sensus, discard those that do not satisfy the criteria and
update the contig consensus base calls accordingly (see
Methods). This novel strategy effectively separates mis-
placed reads from each contig generated in the previous
step, and creates new contigs when applicable.

Contig extension &merging
VICUNA identifies contigs that share good suffix-prefix
overlaps and iteratively merges them to form longer con-
tigs until no further extension can be made. At each
iteration, VICUNA starts with the longest contig C. The
contig C′ that shares the maximum number of paired
reads with C is examined to identify a good suffix-prefix
alignment. However, such an alignment may not be dis-
covered due to polymorphisms captured in either contig.
We resolve this issue by editing each contig before align-
ment. Specifically we (i) convert any consensus base that
has nucleotide polymorphisms to the smallest alphabetic
base, and (ii) remove non-dominant low frequency inser-
tions. These polymorphisms will be recovered if C and C′
were to be merged. The contig alignment is carried out by
first computing a sequence of non-overlapping common
substrings between the consensuses of C and C′. We then
use the Needleman-Wunsch algorithm for alignment and
require the common substring blocks be directly aligned.
To account for length polymorphisms that maintain the
coding frame and hence represent true biological variants,
any small gap comprising a multiple of three nucleotides
is not penalized. Once all de novomerges have been com-
pleted, contigs can be further merged if mappings to a
previously assembled reference genome can validate the
merge.

Identification of target and non-target reads
Viral samples derived from clinical specimens typically
contain non-target nucleic acids (e.g. host or other
microbe DNAs and RNAs), which can comprise a large
portion of the sequencing output [28]. These “contam-
inants” can be inherent in the sample or be artifacts
that result from a sample prep method. Non-target reads
increase assembly cost, memory and run-time, and can
also negatively impact the quality of the assembly of
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the target genome. To overcome this issue, we devel-
oped an optional component (see Additional file 1) in
VICUNA that identifies and flags such contaminant data
and removes it from the assembly process. The optional
module utilizes a multiple sequence alignment (MSA)
comprised of available reference genomes for the target.
The high degree of polymorphism in some populations
compounded by errors introduced via the sample prepa-
ration process can impact the ability to identify target
reads. As previously reported this situation can result in a
failed alignment as a target read r looks too dissimilar to
any known target genomic sequence [13]. To address this
issue, we employ a profiling method that divides the MSA
into multiple bins, and compares kmer compositions of r
to each bin. If a sufficient number of similar (i.e. within
a limited Hamming distance [34]) kmers spanning a suf-
ficient length of r can be identified, r is considered to be
target-alike. Moreover, we use a less stringent similarity
threshold to place paired reads which could not be placed
otherwise but obey the distance constraint imposed by the
paired read library.

Sequence data generation & analysis
Using previously described protocols, we amplified four
large overlapping amplicons that captured the complete
coding regions for DENV [35], HIV [2], and WNV
[36]. Amplified products from each sample were acous-
tically sheared (Covaris, Woburn, MA). Indexed Illumina
libraries were prepared as described [37] except that PFU
Ultra II enzyme (Agilent, Santa Clara, CA) was used and
7 cycles of PCR enrichment were employed. We pooled
all the samples, gel purified them (target insert size:
500-700bp), and generated 225bp paired reads using the
Illumina MiSeq platform (see Methods).
The number of Illumina reads generated for each sam-

ple ranged from 0.13M to 0.95M (Additional file 1: Table
S1). To evaluate the general characteristics and coverage
profile of these data prior to assembly we aligned the
reads to a standard reference genome for each virus (see
Methods). In all cases ≥ 87.8% of reads were uniquely
aligned to the chosen reference. As expected, alignments
to the standard references were suboptimal as compared
to de novo assemblies (Table 1 and Additional file 1: Table
S1), with the WNV reference better representing the
sample population than the DENV and HIV references.
The WNV samples in general had a larger percentage of
reads that could be uniquely aligned and a considerably
smaller rate of discrepancy between the bases in the
reference and the ones derived from the read alignment
(Additional file 1: Table S1). The average coverage across
all the samples ranged from 3,210 to 15,456 and in all cases
the region of the genome targeted for sequencing was
fully covered. Coverage varied across the genome within
each sample; sequence coverage within an individual

sample varied between the minimum and maximum by
7 - 620 fold (Figure 2 and Additional file 1: Figure S1). In
general, WNV and DENV samples had greater uniformity
of coverage than HIV samples, likely a result of either the
greater diversity in the HIV samples or the high degree of
secondary structure in the HIV genome [38].
We evaluate assembly results using the following major

metrics [2]: 1) the percentage of the target region captured
(see Methods), 2) the percentage of reads captured by the
consensus, an indicator of how closely the consensus cap-
tures the population, and 3) the non-dominant base call
rate, defined as the percentage of consensus bases that do
not represent the majority base at a given position in the
read data set. In addition, we report the number of contigs
that were used for reference guided merging, which indi-
cates how “fragmented” the assembly results would be if
the patient was infected with unknown viruses.

De novo assembly of viral samples with less genetically
diverse populations – DENV &WNV
Clinical samples derived from WNV and DENV infected
hosts are typically less genetically heterogeneous com-
pared to samples from a host harboring a chronic infec-
tion such as HIV; they are acute diseases and either
provide limited time for viruses to develop mutations or
undergo very rapid selection, quickly removing a majority
of early variants before samples are acquired. Consensus
generation in these samples is similar to haploid genome
assembly, and existing assemblers are expected to work
reasonably well since variants can be treated as sequenc-
ing errors and removed from the data. Nonetheless, even
high quality haploid genome assemblers like SOAPdenovo
work poorly in dealing with such data (Table 1).
VICUNA fully recovered the target region in all samples,

and in 7 out of 8 samples the target region is captured by
a single contig (Table 1) prior to guided contig merging
using a reference. For WNV samples, a comparable num-
ber of reads aligned to the VICUNA consensus and the
standard reference (Table 1 and Additional file 1: Table
S1). However, VICUNA called the correct dominant con-
sensus base in all cases. The VICUNA consensus also
better represented the DENV samples; we observed an
average 0.005% non-dominant call rate, and up to 2.7%
more reads aligned as compared to the standard reference
(Table 1 and Additional file 1: Table S1).

De novo assembly of viral samples with more genetically
diverse populations – HIV
HIV/AIDS is a chronic disease. As such, samples obtained
from HIV infected hosts typically harbor greater genetic
diversity compared to samples from acute diseases as the
virus has had sufficient time to develop mutations. Given
this greater genetic heterogeneity, existing short read
assemblers perform poorly [2], and the use of reference
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Table 1 Assembly Results for VICUNA, SOAPdenovo and AV454

Virus V# Method # output % target region # contigs used for % target region % reads non-dominant # genes / total run time (s) † memory (G) †
contigs covered reference covered by the align to call rate (%) with frame shift

(≥ 350bp) guidedmerging longest contig consensus

V4526 VICUNA 10 100 1 100 95.31 0 1/11 248 0.42

SOAP 19 34.51 18 4.29 16.31 17.23 -a 79 6.40

AV454 4 100 1 100 94.69 0 5/11 507 1.10

V4528 VICUNA 9 100 1 100 95.01 0 1/11 305 0.44

SOAP 24 39.26 22 3.75 -a -a - 79 6.20

WNV AV454 3 100 1 100 94.52 0 2/11 379 0.12

V5044 VICUNA 8 100 1 100 95.08 0 0/11 441 0.59

SOAP 32 40.23 28 3.16 8.84 17.45 - 117 6.40

AV454 5 100 1 100 94.22 0.01 5/11 387 0.21

V5048 VICUNA 9 100 1 100 95.08 0 0/11 212 0.43

SOAP 17 24.52 15 3.49 5.67 15.90 - 90 6.40

AV454 1 100 1 100 95.08 0 1/11 453 0.14

V4809 VICUNA 6 100 1 100 95.64 0.01 0/11 510 0.92

SOAP 40 59.7 33 3.63 16.05 17.78 - 184 6.50

AV454 7 100 1 100 94.6 0.019 5/11 474 0.27

V4813 VICUNA 12 100 1 100 95.12 0.01 0/11 669 1.02

SOAP 49 64.33 40 3.66 18.21 18.54 - 193 6.50

DENV AV454 2 100 1 100 94.18 0.04 7/11 492 0.55

V4816 VICUNA 9 100 1 100 95.52 0 0/11 677 0.91

SOAP 37 53.85 31 3.76 11.91 16.63 - 167 6.50

AV454 5 100 2 100 94.84 0.20 5/11 471 0.32

V4820 VICUNA 14 100 2 82.45 93.46 0 0/11 1158 1.20

SOAP 56 70.73 46 3.62 13.37 17.20 - 234 6.50

AV454 13 100 2 76.68 91.59 0.18 6/11 462 0.17

V5937 VICUNA 12 100 2 93.58 93.8 0.02 0/9 516 0.86

SOAP 42 48.01 30 3.95 17.72 17.71 - 142 6.40

AV454 16 100 1 100 86.15 0.55 6/9 406 0.15

V5938 VICUNA 18 100 1 100 93.69 0.01 0/9 281 0.62

SOAP 28 40.5 25 4.16 11.33 16.08 - 111 6.40

HIV AV454 15 100 1 100 88.01 0.43 5/9 443 0.21
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Table 1 Assembly Results for VICUNA, SOAPdenovo and AV454 (Continued)

V5943 VICUNA 9 100 1 100 95.58 0.05 1/9 96.5 0.21

SOAP 24 32.03 19 4.1 12.15 18.37 - 40 6.50

AV454 9 97.16 1 97.16 92.52 0.80 4/9 583 0.55

V5945 VICUNA 13 100 2 98.83 94.44 0.09 0/9 576 0.60

SOAP 31 49.02 25 4.21 13.53 16.85 - 110 6.20

AV454 7 100 2 83.32 89.54 1.18 4/9 465 0.17

aSOAPdenovo assembly is highly fragmented, a large number of short contigs were merged using the reference genome, leading to the inclusion of many low frequency variants that considerably increased the percentage
of non-dominant bases found in the assembly. In the case of sample V4528, Mosaik failed to report read alignment to the consensus. The number of genes with frame shift is not measured for SOAPdenovo. For run time and
memory, † Soapdenovo uses 8 threads while the other two use 1 thread. AV454 is run on a subset of the reads (∼ 11k, equivalent to 1% – 8% of input).
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Figure 2 Coverage plot. Fold sequence coverage across the target regions of one representative sample for DENV, WNV, and HIV full-length
genomes. Coverage is measured as the total number of reads uniquely aligning over a given residue; alignments are to standard references (see
Methods).

genomes not derived from the sample population itself
often results in a poor backbone onwhich tomap variants.
VICUNA successfully assembled the full target region

of genetically diverse HIV clinical samples, and captured
the genome in one or two contigs (Table 1) prior to
guided contig merging using a reference. Compared to
the standard reference genome, on average over 4% more
reads can be aligned to VICUNA consensus; we observed
an average 0.043% non-dominant call rate (Table 1 and
Additional file 1: Table S1).

Comparing VICUNA assembly results to other assemblers
We compare the performance of VICUNA with exist-
ing de novo genome assemblers SOAPdenovo [24] and
AV454 [2]; VICUNA outperformed both. We report the
result of SOAPdenovo, which is a representative for de
Bruijn graph based short read assemblers and its result
is comparable to several of other assemblers of the same
kind, such as MetaVelvet [39], used for metagenomic
data sets, and Velvet Columbus [22], used for reference
assisted assembly. AV454 is selected as a representa-
tive for overlap-layout-consensus based assemblers, as it
was designed specifically for viral population consensus
assembly. The AV454 algorithm was originally designed
for 454 read data sets, and for application here we opti-
mized it to assemble paired Illumina reads (see Additional
file 1). Because AV454’s performance deteriorates as the
coverage increases beyond a certain threshold, we down-
sampled each dataset by randomly selecting about 5,500
read pairs for each sample. Cortex [13] was recently devel-
oped for assembling diploid genomes or a mixed pop-
ulation using color-coded de Bruijn graphs. However, it
appears not to be suitable for viral population assembly as
when applied to current samples, it generated an excessive
number of contigs, which cannot be reasonably handled.
SOAPdenovo generated a large number of contigs, but

only a small percentage of them exceed the minimum
length cutoff of 350bp (Table 1). In total, these contigs
account for less than 5% of the target region in each

sample. Since the algorithm is not able to utilize suffi-
cient reads to form contigs, the dominant base call rate
was< 85%. SOAPdenovo’s performance was not markedly
better at assembling acute versus chronic viruses.
AV454 outperformed SOAPdenovo for all viruses, but

was inferior to VICUNA. VICUNA has the capacity to
scale to tens of thousands fold coverage, whereas, AV454
is limited to a few hundred fold coverage. This may signifi-
cantly affect the performance of AV454 in clinical samples
rich in contamination (e.g. > 99% contaminants), where
the down-sampling required by AV454 would result in
insufficient coverage of target genome [28]. In all samples,
VICUNA has a better accuracy in producing intact genes
that have no frame shift (Table 1). For WNV samples,
the dominant base accuracy was similar, but on aver-
age 0.5% fewer reads align to AV454 consensus than to
VICUNA consensus (Table 1). For DENV samples V4816
and V4820, the VICUNA consensus was significantly
more accurate in dominant base calls (p-value< 2×10−5;
χ2 test), and approximately 1-2% more reads aligns to it
as compared to the AV454 consensus. For HIV samples,
where the genetic total diversity is higher, the advantage
of VICUNA is more pronounced. Up to 6% more reads
can be aligned toVICUNA consensus compared toAV454
consensus, and it is over 100 times more accurate (p-value
< 1 × 10−8; χ2 test) in dominant base calling.

VICUNA is able to capture low frequency length
polymorphisms and large deletions in viral samples
Other than nucleotide polymorphisms, length polymor-
phisms are frequently observed in viral samples, exempli-
fied by a small number of nucleotide insertions at certain
genomic loci in a subset (typically a small fraction) of
viral genomes in the population. With the pressure to pre-
serve coding frames, these insertions typically consist of
a multiple of three bases. VICUNA is capable of captur-
ing non-dominant insertions that occur at the frequency
of at least p, a user specified parameter, when compared
to the dominant variant at the same loci. In viral samples,
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we are interested in p ≤ 5%, which are typically treated
as sequencing errors in haploid genome assembly. When
p = 5% , we observed in WNV, DENV, and HIV samples,
0.003%, 0%, and 0.082% low frequency insertions, respec-
tively, which fits the expectation that HIV genomes have a
larger amount of length polymorphisms compared to the
other two viruses.
Large deletions have been observed previously in viral

population studies (e.g. [36,40]). Since there is no clear
definition on the minimum size, we recorded all dele-
tions ≥ 500bp in length (Additional file 1: Table S2). We
observed large deletions in two DENV and all four HIV
samples and, in some of them, we found multiple types
of variants. The majority of these deletions occur in the
Env and Pol genes in HIV and in the NS3 gene in DENV.
These large deletions may be real biological mutants or
they could be amplification or sequencing artifacts (e.g.
chimeras). To eliminate the possibility that our observa-
tions are due to Illumina specific artifacts, we validated
the observed deletions using 454 read data sets from the
same samples. Almost all large deletions in HIV samples
are observed with the exact breakpoints in the 454 data
(Additional file 1: Table S2), while none of the DENV
deletions were observed. These results suggest that de
novo assembly of Illumina reads via VICUNA provides the
ability to observe novel large deletion events.

VICUNA is applicable to other data types
Many existing sequence data sets that characterize viral
populations were generated using the Roche 454 tech-
nology. To demonstrate the applicability of VICUNA to
such data, we used VICUNA to generate a consensus for
WNV, DENV, and HIV clinical samples sequenced by 454.
In all cases, the full target region is recovered with high
fidelity (Additional file 1: Table S3). VICUNA achieves a
100% dominant call rate. Since reads generated by the Life
Sciences Ion Torrent technology share similar error prop-
erties to 454 reads, we anticipate that VICUNA will be
suitable for assembly of these data as well.

Conclusions
We presented VICUNA, a program for de novo consen-
sus assembly of genetically heterogeneous viral popula-
tions. For each read data, VICUNA outputs consensus
sequence(s) and for each consensus sequence, the multi-
ple sequence alignment of its constituent reads. We have
demonstrated that VICUNA recovers consensus genomes
with high fidelity for viral intra-host samples obtained
from patients infected with either acute or chronic dis-
eases and that it outperforms other available assemblers
in both the accuracy and continuity of the consensus
genome. The ability to assemble de novo accurate and con-
tiguous consensus genomes from ultra-deep short read
sequence data derived from the Illumina platform or other

comparable technologies provides the ability to capture
a higher resolution map of viral genetic variants in an
infected host with greater cost efficiency than previously
possible. The availability of a consensus derived from
the sample itself provides greater accuracy with respect
to aligning reads prior to variant detection and as such
VICUNAwill enable improved detection of low frequency
variants and subsequent haplotype identification in genet-
ically heterogeneous populations. While VICUNA was
developed for the analysis of viral populations its appli-
cation to other heterogeneous sequence data sets such as
metagenomic or tumor cell population samples may prove
beneficial in these fields of research.

Methods
Illumina MiSeq platform configuration
To increase the read length on the Illumina MiSeq plat-
form, the configuration files were modified to increase
signal intensity as the read progresses; this helps to ensure
fidelity of clusters. Specifically, Exposure was set to 342
for bases A/C and 165 for bases T/G. Ramp values were
increased to 4.8 for bases A/C and to 2.3 for bases T/G.
LEDSnapCurrentMA value was changed to 1500.

Read alignment to reference genomes
The reference genomes chosen for aligning the input reads
are NC001475 (NCBI accession number) for Dengue,
NC009942 for West Nile, and a modified version of the
HXB2 reference K03455 for HIV. The HIV reference
genome is a subsequence of HXB2 (from 779bp to 9551bp)
and is corrected for a frame-shift and a premature stop
codon (available upon request). The target regions for
analyses consist of the complete CDS of each reference
genome, which corresponds to positions 95-10267 for
Dengue, 97-10398 for West Nile and 12-8638 for HIV.
Read alignment to reference genome or assemblies are

carried out usingMosaik v1.1.0013 (http://bioinformatics.
bc.edu/marthlab/Mosaik), with parameter setting “st =
illumina, hs = 10, act = 15, bw = 29,mmp = 0.25 andminp
= 0.25”.

General definitions, notations, and techniques
Given two set of integers S1 and S2, the similarity mea-
sure Jaccard Index between them is given by |S1∩S2||S1∪S2| .
The k-spectrum (all possible kmers) of a DNA sequence
r, including both forward and reverse complementary
strands, is denoted as rk . Let hd(r1, r2) denote the
Hamming distance between DNA sequences r1 and r2
(|r1| = |r2|), then the d-neighbors of r1 in S is given by
{r′|(hd(r1, r′) ≤ d) ∧ (|r| = |r′|) ∧ (r′ ∈ S)}. The substring
from position i to j of r is denoted as r[ i, j].
We index each read by a 2-tuple 〈id(file), offset〉, where

the offset is the start position of the read in the file. A read
can be retrieved from hard drive using its index. Reads are
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loaded into memory from hard drive in batches, where the
batch size is a user specified parameter.
Define a function id(x) to return a unique identifier of x,

let it be a file, a read, or a contig. We represent each con-
tig C in the form of a multiple sequence alignment of its
constituent reads. The alignment encoding of ri is given
by a 5-tuple ai = 〈id(ri), |ri|, di, Ii, g〉, where di is the start
position of ri on C, Ii indicates if ri belongs to the forward
(Ii = 1) or reverse complementary (Ii = 0) strand of C,
and g specifies insertions in ri. Each insertion is denoted
as a 2-tuple, specifying its start position on ri and the size
of insertion. Using this representation, the dominant base
in each alignment column is considered as the consensus
base. Further, we define the layout of C to be an ordering
of reads (r1, r2, . . . , ri, . . .) such that di ≤ di+1. A low fre-
quency non-dominant fragment of C is a subsequence of
C with significantly lower coverage (a pre-specified value)
compared to flanking regions. A polymorphic site in C is
a position where more than one valid type of nucleotides
occur in the alignment.

VICUNA algorithm
Contig construction
Initially, two min hash values are generated for each read,
one for the forward, and the other for the reverse com-
plementary strand. The min hash of the forward strand
of read r is calculated as follows. First, compute the hash
value of each kmer in the forward strand. After sort-
ing, we obtain an integer sequence (h1, h2, . . . , h|r|−k+1),
where hi ≤ hi+1. In this order, his are converted to string
representation and concatenated to form a new string S.
Apply the same procedures to S as to the forward strand
of r: decompose S to k-substrings, hash, then sort. The
min hash is the first integer in the sorted sequence. The
same strategy is applied to the reverse complementary
strand of r. This way, two hash values (integers) are gener-
ated to represent every read in the input data. Two reads
sharing any min hash value have a high probability to
be near identical, albeit a small edit distance. Clustering
reads based on common min hash values avoids expen-
sive pairwise comparison. Next, we transform each read
cluster to a contig by first identifying a kmer that is shared
among all reads, then generate alignment of these reads
by directly matching this kmer. Min hash technique may
not necessarily lead to the discovery of all good suffix-
prefix overlaps among reads. We further employ spaced
seed based similarity search strategy to initialize new con-
tigs or add homologous reads to existing contigs. The
concept of a kmer can be generalized to denote a concate-
nation of k selected bases from a substring with length
w for w ≥ k. In the following, we require w > k. rki
is generated by sliding a window of length w across ri
and its reverse complementary strand, and k fixed posi-
tions are selected and concatenated to form a kmer. The

template that specifies which positions to be selected is
termed a spaced seed. We use common kmers as the seeds
to identify good read similarity. Rather than recording
all possible kmers present in the dataset, which is mem-
ory demanding when k is large, we maintain a database
D, initialized to be empty. An entry in D is a 2-tuple
〈x, (id(r), p)〉, where the key x denotes a kmer and the
value is a pair with p denoting the start position of x on
r. D is populated by including rki if none of the kmers
in rki is already included in D. If there exists a read r′
that shares a common kmer with ri, then we add ri to
contig C′ where r′ resides. Since the kmer positions in
both ri and r′ are known as well as the relative posi-
tion of r′ in C′, the addition of ri to C′ takes constant
time.
The above strategies are outlined in Additional file 1:

Algorithm 1 and a simplified example is given in
Additional file 1: Figure S2.

Contig clustering
Thus far, a read can occur in multiple contigs, which are
to be merged. In the context of graph theory, let each
contig be a vertex and two vertices are connected by an
edge if they share some common read. The goal is to
then identify connected components of this graph, each
representing a new contig after merging. Union-find algo-
rithm is typically used for such a purpose. When applied
to current application, we can obtain a solution in O(n2)
time, where n is the number of input reads and assum-
ing to merge two contigs takes constant time. As in the
worst scenario, the total number of vertices in the graph
is O(n2). Instead, we devise a graph partitioning strategy,
presented in Additional file 1: Algorithm 2, which reduces
run time to O(n log n). Initially, contigs are sorted in a
decreasing order with respect to the number of reads they
contain. The graph is iteratively partitioned to be non-
overlapping stars. The center of each star is chosen to
be the contig that was not yet contained by other stars
but has the largest number of reads, and all its neighbors
become leaves of the star. After partitioning, all contigs
in each star are merged to form a new contig. These
newly formed contigs will participate in the next round
of merging until the partition of contigs also corresponds
to a partition of input reads. The number of iterations
for graph partitioning is bounded by O(log n) since each
iteration at least halves the number of vertices. Given a
star, each leaf contig shares a common read with the cen-
ter contig. During the merging, the common read guides
a direct alignment of different contigs, which takes lin-
ear time in the total number of reads involved in the star.
At a given iteration, since no stars share common reads,
the time complexity to generate merged contigs for all
stars is O(n). Therefore, the overall clustering step takes
O(n log n) time.
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Contig validation
Reads sampled from different genomic locations may
be misplaced in the same contig either due to hash
collisions (contig construction stage) that enable dis-
similar reads to share the same min hash value; or
because of the graph partitioning strategy (contig clus-
tering stage) employed to merge contigs via common
reads. We set the following two goals for validating
a contig: 1) Put an explicit distance constraint maxd
between the consensus of each contig and each of its
constituent read. maxd corresponds to an upper bound
of the diversity (or polymorphisms) we would like to
capture in the sample. 2) Split potential chimeric con-
tigs. As illustrated in Additional file 1: Figure S3, a
chimeric contig may be formed either due to the presence
of short homologous regions on the reference genome
(a), or due to chimeric reads resulted as sequencing
artifact (b).
Contig validation procedure is presented in Additional

file 1: Algorithm 3. First, for each contig C, a consensus is
generated and is compared against every constituent read
r. r is retained only if the edit distance between r and the
consensus is within d. Otherwise, it is set aside in Crem
for further consideration. The consensus of C is updated
whenever a read is removed, which may result in a re-
comparison between the updated consensus with each of
the constituent read. Updates stop when no changes were
made. The same procedure is applied to Crem. To achieve
the second goal, the two types of chimeric contigs are
resolved differently. The first type is resolved by requiring
adjacent reads in the layout of the contig to have a min-
imum overlap of minol. For the second type, we use the
observation that chimeric reads typically occur less fre-
quently compared to the number of non-chimeric reads
sampled from the two corresponding genomic regions.
This corresponds to observing a much smaller number
of reads colored both red and blue than the number of
reads colored red or blue alone (Additional file 1: Figure
S3 (b)). Formally, for each read r, consider only the reads
that have sufficient overlap (≥ minol) with r in the lay-
out of the contig, and let nb and na be the number of
reads before and after r, respectively. Break the contig
after any read, where nb

na (≥ maxrt) is a local maximal.
The input parameter maxrt specifies the ratio in cover-
age change that is likely due to a chimeric formation.
Although the attempt to break chimeric contigs may also
lead to the split of valid contigs, they will be considered
later.

Contig extension
Validated contigs are extended to form longer ones when
good suffix-prefix overlaps can be identified among them
(Additional file 1: Algorithm 4). These contigs are sorted
in the order of decreasing length and considered in that

order. For the current longest contig Cl, all its neigh-
boring contigs, defined as ones that are linked to Cl by
paired reads, are identified and stored in N. Then, N
is sorted in an increasing order of the number of links
shared with Cl. Define a delegate of contig C to be a
sequence derived from the consensus of C by 1) removing
low frequency non-dominant fragments, and 2) convert-
ing the consensus base in each polymorphic site to be the
alphabetically smallest one. We then compute the dele-
gates for Cl and each contig in N. The delegate of Cl is
compared with each delegate of contig in N to identify
good suffix-prefix overlap (Additional file 1: Figure S4 and
Additional file 1: Algorithm 5): Given two sequences s0
and s1, first, identify a sequence of non-overlapping com-
mon substrings between them relying on common kmers,
stored in a hash table. The coordinates of all substrings
so identified are stored in a vector V. Needleman-Wunsch
algorithm is then applied to align s0 and s1 by forcing
the common substring blocks to be directly aligned. To
capture length polymorphisms, a gap in the alignment is
not penalized if its length is less or equal than a user
specified threshold and is divisible by three (to avoid
penalizing length polymorphisms that preserve coding
frame). A valid alignment satisfies the following crite-
ria: 1) the similarity between aligned region is ≥ mins,
2) the length of the aligned region is ≥ minol, and 3)
the overhang of the alignment is ≤ maxoh. The first
two parameters constrain the quality of alignment while
the third parameter loosens the constraint to account
for insufficient trimming or bad quality bases in the end
of contigs, which are likely sequencing errors. Note that
there may exist multiple valid alignments between two
sequences, where we take the first one that is found to be
valid.
When a valid alignment exists between Cl and a con-

tig Cr ∈ N, they are merged to form a longer contig.
Since a contig is represented as the MSA of its con-
stituent reads (recall from section “General definitions,
notations, and techniques”), the merged contig consists
of all reads belonging to Cl and Cr . The start position
of each read in the new contig is adjusted to its distance
with respect to the beginning of the resulting alignment;
any indel that was introduced in the consensus of Cl or
Cr as the result of alignment was included in the cor-
responding reads that overlap with the indel. The time
complexity of merging two contigs post-alignment, i.e. to
merge two existing MSAs, is linear to the number of reads
involved.
Previously assembled viral genomes of the same type

provide valuable information to further improve the
assembly if we have not yet generated any single consensus
that represent the full length genome. By aligning contigs
to the selected reference, we can further merge any pair of
them if they overlap on the reference.
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