Kandathil et al. Retrovirology (2017) 14:11 DOI 10.1186/s12977-017-0333-x

# ERRATUM

Retrovirology

ided by Springer - Pub

brought to you by

CORE



# CrossMark

# Erratum to: Are T cells the only HIV-1 reservoir?

Abraham Joseph Kandathil, Sho Sugawara and Ashwin Balagopal<sup>\*</sup>

## Erratum to: Retrovirology (2016) 13:86 DOI 10.1186/s12977-016-0323-4

Unfortunately, the original version of this article [1] contained an error. Table 1 has errors with the references. The correct Table 1 is found below.

### Table 1 Summary data on HIV-1 reservoirs and assays in various cell populations

|                                                                                      | Memory CD4+T cells                | Myeloid cells |                                    | Dendritic cells |           | FDCs                          | Epithelial   |
|--------------------------------------------------------------------------------------|-----------------------------------|---------------|------------------------------------|-----------------|-----------|-------------------------------|--------------|
|                                                                                      |                                   | Monocytes     | Macrophages                        | pDCs            | mDCs      |                               | cells        |
| Available VOA?                                                                       | Yes (gold standard) [112]         | Yes [24]      | Yes [25]                           | No              | No        | Yes [87]                      | No           |
| Has VOA been applied to PLWH taking long-term ART?                                   | Yes (gold standard) [18]          | No [24]       | Yes [25]                           | NA              | NA        | Yes [87]                      | No           |
| Has HIV-1 been demonstrated in the indicated cell type in PLWH taking long-term ART? | Yes (gold standard) [18]          | No [24]       | Yes [25]                           | NA              | NA        | Yes [87]                      | Yes [98, 99] |
| Is HIV in this reservoir replication competent?                                      | Yes (gold standard) [18]          | NA            | No                                 | NA              | NA        | Yes [87]                      | NA           |
| Available animal models?                                                             | Yes [124]                         | Yes [24, 58]  | Yes [24, 58]                       | Yes [130]       | Yes [130] | Yes [85]                      | No           |
| Have animal models been studied during long-term ART?                                | Yes [138]                         | No            | No                                 | No              | No        | No                            | No           |
| Do animal models with suppressed viremia contain replication competent HIV-1?        | Yes [138]                         | NA            | NA                                 | NA              | NA        | NA                            | NA           |
| Longevity or T½ of uninfected cells                                                  | 1–12 months [29, 30] <sup>a</sup> | 2-3 days [31] | ≥24-36 months<br>[32] <sup>b</sup> | ?               | ?         | ?                             | ?            |
| Longevity or $T_{2}$ of reservoir in this cell type                                  | 44 months [18] <sup>a</sup>       | NA            | ?                                  | ?               | ?         | 9 months<br>[85] <sup>c</sup> | ?            |

? Not known, NA not applicable

<sup>a</sup> There are discrepant data on the longevity of uninfected memory CD4+T cells and latent HIV-1 reservoirs therein. However, it is difficult to accurately estimate the T<sub>1/2</sub> of HIV-1 infected T cells due to possible clonal proliferation: i.e., the listed T<sub>1/2</sub> describes the duration of the HIV-1 reservoir itself, but does not directly address the T<sub>1/2</sub>

of the cell that harbors the reservoir

<sup>b</sup> In the described experiments, donor alveolar macrophages were found 2–3 years after lung transplantation in human subjects: while we assume that these TRM persisted for this duration, it is possible that they underwent proliferation and replacement locally

<sup>c</sup> The indicated longevity is for the infectious virions that were found on FDC dendrites, although it is controversial whether this cell type was actually infected <sup>138</sup> Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, Siliciano RF, Zink MC, Clements JE. A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol. 2009;83(18):9247–57

The online version of the original article can be found under doi:10.1186/s12977-016-0323-4.

#### Published online: 08 February 2017

\*Correspondence: abalago1@jhmi.edu Department of Medicine, Johns Hopkins University Baltimore, 855 N. Wolfe Street, Rm. 535, Baltimore, MD 21025, USA

#### Reference

Kandathil AJ, Sugawara S, Balagopal A. Are T cells the only HIV-1 reservoir? Retrovirology. 2016;13:86. doi:10.1186/s12977-016-0323-4.



© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.