
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2011, Article ID 373509, 20 pages
doi:10.1155/2011/373509

Research Article

A Programmable Video Platform and Its ApplicationMapping
Framework Using the Target Application’s SystemCModels

Daewoong Kim, Kilhyung Cha, Do-Sun Hong, Soonwoo Choi, and Soo-Ik Chae

School of Electrical Engineering and Computer Science, Seoul National University, Seoul 110-794, Republic of Korea

Correspondence should be addressed to Daewoong Kim, dwkim316@sdgroup.snu.ac.kr

Received 10 August 2010; Revised 15 December 2010; Accepted 17 January 2011

Academic Editor: Neil Bergmann

Copyright © 2011 Daewoong Kim et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

HD video applications can be represented with multiple tasks consisting of tightly coupled multiple threads. Each task requires
massive computation, and their communication can be categorized as asynchronous distributed small data and large streaming
data transfers. In this paper, we propose a high performance programmable video platform that consists of four processing
element (PE) clusters. Each PE cluster runs a task in the video application with RISC cores, a hardware operating system kernel
(HOSK), and task-specific accelerators. PE clusters are connected with two separate point-to-point networks: one for asynchronous
distributed controls and the other for heavy streaming data transfers among the tasks. Furthermore, we developed an application
mapping framework, with which parallel executable codes can be obtained from a manually developed SystemC model of the
target application without knowing the detailed architecture of the video platform. To show the effectivity of the platform and
its mapping framework, we also present mapping results for an H.264/AVC 720p decoder/encoder and a VC-1 720p decoder with
30 fps, assuming that the platform operates at 200 MHz.

1. Introduction

Recently, many different video codec formats have been
introduced. For example, three video codec formats,
H.264/AVC, VC-1, and MPEG-2, must be supported by
all Blu-ray players. To access the huge amount of video
contents available on the network, other formats such as
MPEG-4 and H.263 must also be supported. Moreover, many
consumer electronics, like digital video cameras, mobile
handsets, and home entertainment equipments, require huge
computation power to process HD contents in real time.
For example, an H.264/AVC 720p encoder at 30 frames
per second (fps) must process 108,000 macroblocks (MBs)
per second, which corresponds to 3,600 giga-instructions
according to profiling with RISC instructions [1]. With MB
pipelining, video codec applications can be represented with
a set of loosely coupled tasks, each of which is described with
a set of tightly coupled threads while heavy streaming data
and asynchronous distributed controls should be transferred
among the tasks [2, 3].

For high-performance video systems, developing an
application-specific integrated circuits (ASIC) can only be a
short-term solution because new video formats, for example,
high efficiency video coding (HEVC) [4], will be introduced
in the market. A platform with multiple microprocessors
is more preferable, which can easily support a new video
codec format by simply loading its code into the platform
[2]. However, it is not easy to provide enough computation
power for high-performance video applications only with
general-purpose programmable processors. Moreover, it is
not a trivial task for programmers to obtain a good parallel
executable code for the multicore platforms. Therefore,
application mapping should maximally utilize all the avail-
able resource in the platform.

The main objective of this paper is to propose a high-
performance programmable platform for video applications
which can be represented with multiple tasks, each of
which again consists of tightly coupled multiple threads.
The proposed video platform consists of four PE clusters
and their communication networks that can support control

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81826121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EURASIP Journal on Embedded Systems

and data transfers among the PE cluster as shown in
Figure 1. Each PE cluster, which is allocated for a task that
includes multiple tightly coupled threads, consists of one or
more RISC cores, a HOSK, an accelerator for video task-
specific operations, and network interfaces. Furthermore, a
framework for effective mapping applications that utilize
SystemC as shown in Figure 1 will also be described. The
framework can hide the platform complexity and improve
design quality in a shorter time.

First, we propose a high-performance programmable
platform for HD video codec applications. Three program-
mable platforms for multimedia or video codec applications
that have been published [2, 5, 6] will be compared with the
proposed platform. The StepNP platform [5] is composed
of multiple configurable RISC processors, each of which
has multiple register sets to reduce the overhead of context
switching between threads, and reconfigurable hardware
accelerators that are loosely coupled with the RISC proces-
sors. In this platform, it takes about 50 instructions for each
transfer between processing elements which are connected
through network-on-chip (NoC) that includes a central
buffer. The platform targets for multimedia applications
including a VGA MPEG-4 encoder and also provides an
application mapping framework that exploits two high-
level parallel programming models such as distributed
system object component (DSOC) message passing and
symmetrical multiprocessing (SMP) using shared memory.
For application mapping, an application is manually split
into several parallel executable codes by using the communi-
cation primitives of the programming models. However, the
footprint of the runtime for each communication primitive is
roughly 1,000 instructions and its latency is too large for HD
video applications. For example, the average cycle budget per
macroblock should be less than 1,500 cycles in a 1080p 30 fps
video encoder, assuming that the system operating frequency
is 300 MHz. For an HD video application, therefore, it
is necessary to support asynchronous distributed small
data transfers among tasks with low latency and provide
communication primitives with low latency. In other words,
the overhead for context switching, thread scheduling, and
synchronization between tightly coupled threads in a task as
well as communication latency for efficient transfers among
tasks should be reduced as much as possible. To minimize
these overhead and latency, the proposed platform consists of
the PE clusters, each of which includes a hardware operating
system kernel (HOSK) that accelerates context switching of
threads for a task allocated to the PE cluster, and schedules
and synchronizes the threads. The HOSK also manages
communication transfer with another PE cluster through its
network interfaces.

The tightly coupled-thread (TCT) platform [6], which
targets for multimedia applications including a 400 × 300
image JPEG encoder, consists of six customized RISC pro-
cessors. In the platform, the RISC processors are connected
with a FIFO-based point-to-point, full crossbar network
with a simple hand-shake protocol for easy communication
and synchronization among tightly coupled tasks. For the
TCT platform parallel executable code is generated for an
application by composing compiled code for each task,

which is separated with task-partitioning delimiters in the
application source program that is allocated to an RISC
processor. The platform does not support fast context
switching for multithreading and does not include hardware
accelerators to enhance its computing power simply because
its target applications does not require high-performance. Its
communication network, which is suitable for distributed
small data transfer, cannot efficiently transfer large streaming
data between the tasks, which are required for the HD video
codec applications. Therefore, the proposed platform has
two separate point-to-point networks: one for transferring
control data such as syntax elements and the other for
transferring massive streaming data.

The programmable image processing element (PIPE)
platform [2] consists of six PIPE processors, a stream
processor, and six loosely coupled hardware accelerators.
Each PIPE processor is composed of three tightly coupled
processors which concurrently perform loading input data,
processing them, and storing the results. The PIPE pro-
cessor can be configured for a specific task; for example,
calculating the summation of the absolute difference (SAD)
for motion estimation. Similar to the proposed platform,
its target application also focuses on HD video codec
systems. To obtain high-performance for HD applications,
the platform includes several hardware accelerators for intra
prediction mode decision, coarse motion estimation and
motion compensation (ME/MC), and motion vector (MV)
calculation and all these functions have complex conditional
branch operations. The platform’s flexibility is substantially
degraded because its PIPE processor is specialized for
two-dimensional operations. In contrast, in the proposed
platform, each PE cluster includes an accelerator dedicated
for its task, and the accelerator is tightly coupled with the
RISC processors in the PE cluster because it directly gets
commands from the RISC processors that handle conditional
branch operations.

Table 1 compares the proposed platform with the three
platforms described in the above [2, 5, 6]. Note that the
number of PEs and the number of processors in PE are
flexible in the proposed platform.

Second, we provide an application mapping framework
with which parallel executable codes can be obtained from a
manually developed SystemC model of the target application
without knowing the detailed architecture of the video plat-
form. Several frameworks have been presented that exploit
SystemC models to map applications into a programmable
platform [7–10]. The SPACE [7] and other frameworks [8,
9] support SystemC-based software modeling for multicore
platforms. In these approaches, which employ predefined
(or available) SystemC primitives as application program
interfaces (APIs) for communication and synchronization to
encapsulate these RTOS functions, the compiled code of each
SystemC module for a processor is linked with the RTOS
kernel codes, each of which corresponds to each SystemC
primitive for communication and synchronization. In the
framework presented in [10], a sequential C/C++ code is
first partitioned into multiple threads in a SystemC model,
and then transformed into parallel executable code by over-
loading the SystemC class library with OS kernel functions



EURASIP Journal on Embedded Systems 3

Sequential
C/C++ code

Task 1

Task 3 Task 4

Platform

SystemC model

Parallel
executable code

PE cluster 1 PE cluster 2

I-$ D-$ I-$ D-$

P PP P P P P P

HOSK HOSK

Accelerator Accelerator

Network I/F Network I/F

Control network Data network

Network I/F Network I/F

AcceleratorAccelerator

HOSK HOSK

P P P P P P P P

I-$ D-$ I-$ D-$

PE cluster 3 PE cluster 4

FIFO channel
[1, 2]

FIFO channel
[1, 3]

.

.

.
FIFO channel

[3, 4]

Memory channel
[1, 2]

Memory channel
[1, 3]

.

.

.
Memory channel

[3, 4]

Figure 1: High-performance programmable video platform utilizing SystemC programming model for its application mapping.

Table 1: Comparison with other platforms.

StepNP [5] TCT [6] PIPE [2] This Work

Target Application
Multimedia
(VGA MPEG-4)

Multimedia
(400 × 300 JPEG)

High-Definition Video
(1920 × 1080)

High-Definition Video
(1280 × 720)

Processing Element
(PE)

Configurable RISC Core,
H/W Accelerator

Customized RISC Core
Tightly coupled Three
Cores, Stream Processor,
H/W Accelerator

Four RISC Cores + Tightly
coupled H/W Accelerator +
HOSK

Number of PE
14 PEs (5 Cores, 9 H/W
Accelerators)

6 PEs (6 Cores)
13 PEs (18 Cores, 1 Stream
Processor, 6 H/W
Accelerators)

4 PEs (16 Cores, 4 H/W
Accelerators)

Accelerator
Connection Type

Loosely coupled — Loosely coupled Tightly coupled

Fast Context
Switching

Support Not Support Not Support Support

Communication
Subsystem

Network-On-Chip
One Point-to-Point
Network

Shift-Register-Based Bus
Network

Two Separate Point-to-Point
Networks

Programming Model DSOC, SMP User-defined C Library User-defined C Library SystemC Constructs

Executable Code
Generation

Manually
Compile with inserting
Directives

Manually Manually

and C++ structures like pthread library functions. All of the
frameworks described above develop a multithreaded model
independent of the architecture of the target platform. It
implies that an architectural gap exists; in other words, a
better parallel code can be obtained by using the architectural
information of the target platform.

We need to reduce this architectural gap between a Sys-
temC model and its mapping to the target platform as
a parallel code. Therefore, we also provide a framework
for mapping a SystemC model to the proposed platform.
In SystemC modeling, the proposed framework facilitates
application mapping by exploiting its basic constructs such
as SC MODULE, SC THREAD, PUT, and GET to expose
the parallelism of the target application and hide its com-
munication details. For example, a task allocated to a PE
cluster is represented with an SC MODULE; each thread in a
task with an SC THREAD; a transfer between the threads in

the same PE cluster with a pair of PUT and GET primitives;
a control transfer between two PE clusters with a pair of
PUT and GET primitives; a data transfer between two PE
clusters with a pair of WRITE and READ primitives. From
a SystemC model, we can obtain a parallel executable code
for the platform by replacing each SystemC construct with
its corresponding hardware operating system kernel (HOSK)
API. Therefore, the platform users should be familiar with
SystemC modeling to efficiently use the proposed SystemC
framework for application mapping.

The rest of this paper is organized as follows. In Section 2
we describe the generic architecture of the platform that
consists of multiple PE clusters and its communication
subsystem together with the subcomponents of the PE
clusters, which are RISC cores, a HOSK, and three different
hardware accelerators for parsing, ME/MC, and filtering. In
Section 3 we briefly describe how we developed the platform



4 EURASIP Journal on Embedded Systems

targeted for 720p video codec. In Section 4 we explain
an application mapping framework that utilizes SystemC
modeling; how we get parallel executable code for an
application from its SystemC model to the target platform. In
Section 5 we present mapping results such as an H.264/AVC
720p decoder/encoder, and a VC-1 720p decoder, which is
followed by the conclusions in Section 6.

2. High-Performance Programmable
Video Platform

In this section we will describe architecture of the proposed
platform that consists of multiple PE clusters and commu-
nication subsystem. The architecture of the proposed video
platform consists of several PE clusters, which are connected
with control and data communication networks as shown
in Figure 1. Notice that the number of PE cluster is tuned
into 4 for 720p video codec as will be explained in Section 3.
Each PE cluster is composed of one or more RISC processors,
a HOSK, one or more task-specific accelerators, and network
interface, respectively. The PE cluster and its components are
also explained in details.

2.1. Processing Element Cluster. Each PE cluster should have
enough computation capability to handle a task allocated
to it. Therefore, each PE cluster should include one or
more accelerators that execute computation- or control-
intensive operations specialized to its task because the task
cannot be handled only with RISC processors for HD video
applications. Their details will be presented in Section 2.3.
To further exploit thread-level parallelism, each task is again
partitioned into multiple threads relatively tightly coupled
together, which justifies employing multiple RISC cores in
the PE cluster. So the task is partitioned into two parts: one
allocated to the accelerators and the other to the RISC cores.
Because most of the computations for the task are offloaded
to the accelerators, the RISC cores are responsible for the rest,
which includes routines for initializing and controlling the
accelerators, and communicating with other PE clusters. The
RISC processors are attractive because each of them generally
supports a readily available integrated design environment
(IDE) including its compiler and debugger [5, 6].

Furthermore, it is very crucial to reduce overheads for
both context switching and synchronization for HD video
applications because the cycle budget is tight. For example,
the average synchronization period is less than 2,500 clock
cycles per macroblock for a 720p video codec application
with 30 frames per second (fps) at 250 MHz. Moreover,
the overhead of a software-only RTOS context switching is
typically over 1,000 cycles [5], which is too large to handle
context switching required for handling a task with multiple
threads for HD video applications. Therefore, each PE cluster
includes a HOSK to accelerate scheduling, context switching,
and synchronization of its threads. In the proposed platform,
each PE cluster consists of one or more RISC cores that shares
instruction and data caches, and also includes a HOSK, a
task-specific accelerator, and network interfaces to other PE
cluster, as shown in Figure 2.

As shown in Figure 2, the HOSK in a PE cluster is tightly
connected with its RISC cores through two local buses: a con-
text bus and a command bus. The HOSK consists of a main
controller, a context manager, and a thread and semaphore
(TAS) manager [11]. A RISC core sends control commands
through the command bus to the HOSK while the HOSK
switches the context of a RISC core through the context bus.
The HOSK commands include OS APIs such as creating and
destroying threads, posting, and waiting semaphores.

The context manager stores the contexts of all threads in
the context memory mapped into an off-chip memory due
to its large size, and has an on-chip context buffer holding a
context of a scheduled thread to be switched in or a context
of a suspended thread to be switched out. Note that the
size of the context memory should be greater than or equal
to the context size of a RISC processor multiplied with the
maximum allowable number of threads in a task.

After the TAS manager schedules a thread to be switched
in, the context manager prefetches its context from the
external context memory in background, and stores it to
the on-chip context buffer. The TAS manager performs
context switching when a thread running in a RISC core
waits for input data or an external event, or when there is
a ready thread with a priority higher than one of the thread
running in the RISC cores. Context switching is started, only
after context pre-fetching is completed, to hide the latency
of accessing the external context memory. Therefore, the
latency of context switching depends on the width of the
context bus, for example, 16 cycles if the context bus is a
duplex 32-bit bus. The TAS manager logs the descriptors for
both threads and semaphores in the TAS control memory by
implementing a queue for ready threads with a bit vector and
a queue for waiting threads with a linked list [11].

The RISC processors in a PE cluster share both an
instruction cache and a data cache. We employed cache
sharing simply because a larger cache is more area-efficient
than a smaller one and cache sharing eliminates the need
for cache coherency support. However, the number of RISC
cores in a PE cluster should be small enough to have a
reasonably small degradation in performance due to cache
sharing. To further reduce the degradation due to cache
sharing, the instruction and data caches have multiple banks
to resolve the conflicts of accessing the cache memory while
the instruction cache supports pre-fetching and each data
access reduces tag matching conflicts by checking before tag
matching a tag history buffer that includes matched tags.

2.2. Communication Subsystem. The PE clusters are con-
nected through the communication subsystem in the video
platform. General transfers in the communication subsystem
can be divided into two types: control transfers and data
transfers [1–3, 12, 13]. After parsing syntax elements in the
video codec applications, the parsing task sends them to
other tasks and each of these transfers is a control transfer
small in data size. In contrast, each data transfer between
two tasks is large, which constitutes streaming data. For
example, a task transfers to another task pixel data that
is 384 bytes or more per macroblock. The average cycle



EURASIP Journal on Embedded Systems 5

Context bus

Context
memory

TAS
memory

Context
buffer

Context
manager

Thread/
semaphore
manager

Main
controller

Context
controller

Register
file Datapath

P P P P

Shared I-cache

Shared D-cache

Accelerator

Network interface

Command bus

Figure 2: HOSK block diagram tightly coupled with RISC cores.

budget per macroblock gets tighter for HD video codec
applications such as H.264/AVC 1080p, assuming that the
operating frequency of the platform is constant. Therefore, it
is very important to provide a programmable platform with
efficient and flexible communication subsystem especially
for HD video codec applications [2, 5, 6].

To implement efficient and flexible interconnects, we
employed two separate point-to-point networks: one for
control or small data transfers and the other for large data
transfers. Although a point-to-point network requires more
wires, which limits scalability [14], this is not an issue if
the number of PE clusters is limited to a small number, for
example, four to six in the proposed video platform, which
will be discussed in Section 3.

Architecture of the control network is shown in
Figure 3(a), where a group of FIFOs is allocated for a point-
to-point control link between each pair of PE clusters.
The control network also supports fully programmable
connectivity between the PE clusters. A control link is
established with a pair of identifiers (IDs): a PE cluster ID
(PID) and a FIFO ID (FID). For example, a source PE cluster
decodes a target PID to select a group of FIFOs for a target
PE cluster and a FID to select a specific FIFO. An interface
for the control network can establish a control link by simply
decoding a PID and a FID, which also monitors the status of
the link by checking whether it is full or empty.

In an example of the control network shown in
Figure 3(b), a control data is transferred from PE cluster 1
to PE cluster 2 through the fourth FIFO channel as follows.
A RISC core in PE cluster 1 first finds an available FIFO that
is not full and makes a link by issuing a PUT instruction
with a pair of IDs, (2, 4) through its interface to the control
network. Then, the control data is transferred into the FIFO.
To get this control data, a RISC core in PE cluster 2 monitors
through its network interface data availability of the same
link, which is identified with (1, 4) in the target PE cluster
and then issues a GET instruction to the link if not empty.
In summary, a PUT primitive with (a target PID, a FID) and
a GET primitive with (a source PID, a FID) are used for a
control transfer, as shown in Figure 3(b). Note that a source
PID, a target PID, and a FID should be predefined for each
control link between two tasks in the proposed platform.

As shown in Figure 4(a), a data link is implemented
with a shared memory in the data network which similarly
supports a point-to-point link between each pair of PE

clusters. Each shared memory for a data link is divided into
two regions for double buffering. After completing a data
transfer into a region, a source task forwards an explicit sync
to a target task through its corresponding control link while
performing its data transfer into the other region, if next
data is ready. Receiving the sync, the target task gets the
data from its corresponding region of the shared memory.
Using shared memory as a communication link can reduce
its latency. A shared memory can be identified with its base
address, which is associated with a data link that is identified
with a pair of PIDs, a source PID and a target PID. Therefore,
a WRITE primitive with a base address and a READ primitive
with a base address are used just for data transfer as shown
in Figure 4(b). Note that a control transfer is required for
synchronization of the data transfer with double buffering.

2.3. Task-Specific Accelerators. Assuming that the video plat-
form is implemented with an ASIC approach, its operating
frequency is somewhat limited well under 1 GHz. To run
video codec applications, therefore, the video platform pro-
vides multiple PE clusters to concurrently execute multiple
tasks. In addition to that, it is also important for each PE clus-
ter to include one or more accelerators to effectively satisfy
its computation requirement with its operating frequency,
especially for HD video codec applications.

In the video codec application, the task for syntax parsing
is control-intensive while other tasks require relatively large
computation with large input/output data [2, 13]. The
tasks for transform/quantization, intraframe prediction, and
deblocking filtering commonly require weighted summation
operations [3, 15, 16]. The task for motion estimation in the
video encoder requires huge computation and large memory
bandwidth, whose complexity can vary widely according to
its algorithm [1, 2, 17]. Operations for fraction-pel motion
estimation are very similar to those for the interframe
prediction [3, 15, 16]. Based on these observations, we imple-
mented three kinds of accelerators specialized for parsing,
ME/MC, and filtering for the proposed video platform.

The PE cluster for parsing includes a parsing accelerator
which performs iterative operations in the MB layer or
below, which occupies dominant part of the computation
for parsing. The RISC processors in the PE cluster perform
the operations above the MB layer, which includes the
network abstraction layer (NAL). To provide flexibility
and performance of parsing, consequently, we implemented



6 EURASIP Journal on Embedded Systems

FIFO channel
[2, 3]

FIFO channel
[1, 3]

FIFO channel
[1, 2]

FID Decoder

FID Decoder

FID Decoder

PID Decoder PID DecoderPID Decoder

Control network

32 32 32 32 32 32

Network I/F Network I/F Network I/F

P

32

P P P P P P P P P P P

PE cluster 1 PE cluster 2 PE cluster 3

1
2
3
4

N

...

(a) Control network block diagram

Void PE1 thread1 producer () {
unsigned int value;
unsigned int PID, FID;

.

.
while (1) { while (1) {

.
value = x;
out->put (2, 4, value); //(target PID, FID, value)

}
}

Void PE2 thread1 consumer () {
unsigned int value;
unsigned int PID, FID;

.

.

value = in->get (1, 4); //(source PID, FID)
.
.

}
}

(b) Control transfer code example in producer and consumer tasks

Figure 3: Control network in the communication subsystem.

the accelerator with a VLIW processor with a 64-bit instruc-
tion format including several execution slots. From the
profile results for parsing part of the H.264/AVC code, we
found that 96% of the conditional statements such as if-then-
else constructs include one or two conditions. Based on this
observation, we decided to provide two instruction formats
as shown in Figure 5. One instruction format is composed
of two condition slots of 12 bits and two execution slots
of 18 bits while the other is comprised of one condition
slot of 12 bits and two execution slots of 24 bits. The
leftmost 4 bits are used to encode the type of the instruction
format and represent the relation among the condition and
execution slots, for example, to determine which execution
slot is activated according to the evaluation result of a
condition slot. Therefore, this instruction format can easily
implement many condition-controlled statements including
if-then-else constructs with an instruction. Moreover, it
also supports several customized instructions to acceler-
ate bit operations, leading zero detection, table matching,
and zigzag scanning. With these instructions, we manu-
ally developed an assembly code for a parsing accelerator,
and its code size is about 1.8 KB for H.264/AVC CAVLC MB
parsing.

The filtering accelerator performs weighted summation
operations, which are common for transform/quantization,
intraframe prediction, and deblocking filtering tasks. And
the weighted summation operations occupy more than 80%

of the total workload of each task according to profiling
with RISC instructions. For their operations, we employ an
accelerator that includes multiple copies of the 6-tap filtering
datapath shown in Figure 6(a). For example, with four copies
of it, integer transform for a 4× 4 subblock can be performed
in a clock cycle. In the PE cluster including a filtering
accelerator, one of its RISC cores first configures the weight
coefficients of the filtering accelerator before performing
a specific filtering operation. The filtering accelerator also
supports a customized instruction for reordering pixel-value.

According to profiling with RISC instructions, SAD and
filtering operations occupy about 50% and 20% of the
operation, respectively, in motion estimation. To accelerate
their operations, therefore, we added several video datapaths
for 16 × 16 SAD computation and 6-tap filtering in the
ME/MC accelerator. The datapath for SAD computation,
shown in Figure 6(b), can compute the SAD values for all
41 candidate blocks specified in the H.264/AVC standard by
simply adding the SAD values for smaller blocks with an
adder tree. The ME/MC accelerator also includes internal
buffers for search range, interpolated half-pel and quarter-
pel values, and motion vectors for a row of MBs. In the video
platform, a PE cluster with the ME/MC accelerator should
be provided that can perform motion estimation for a video
encoder. The RISC cores in the PE cluster should perform
all the control operations and data loading from off-chip
memory for the ME algorithm and they should also reduce



EURASIP Journal on Embedded Systems 7

Memory channel
[2, 3]

Memory channel
[1, 3]

Memory channel
[1, 2]

PID DecoderPID DecoderPID Decoder

Data network

32 32 32 32 32 32

Network I/F Network I/F Network I/F

P

Region 0

Region 1

P P P P P P P P P P P

PE cluster 1 PE cluster 2 PE cluster 3

(a) Data network block diagram

Void PE1 thread1 producer () {
unsigned int value;
unsigned int baseAdder;

.

.
While (1) {

.
for (i) {

value = x;
out->write (target PID, baseAdder+i, value);
}

.
}

}

Void PE2 thread1 consumer () {
unsigned int value;
unsigned int baseAdder;

.

.
While (1) {

.
for (i) {

value = in->read (source PID, baseAdder+i);
.
.

}
}

}

(b) Data transfer code example in producer and consumer tasks

Figure 4: Data network in the communication subsystem.

Type Cond 0 Cond 1 Exe 0 Exe 1

4 bits 12 bits 12 bits 18 bits 18 bits

(a) 2 conditions, 2 base executions

Type Cond 0 Exe 0 Exe 1

4 bits 12 bits 18 bits 24 bits

(b) 1 conditions, 2 extended executions

Figure 5: Examples of condition-controlled instruction format in
the parsing accelerator.

the memory bandwidth by reusing the loaded data as much
as possible. Figure 7 shows the job partition between RISC
cores and ME/MC accelerator for the ME algorithm where
the part that is specific to motion vector searching schemes
such as three-step search, directional gradient descent search,
and full-search algorithms are executed in the RISC cores
so that different ME algorithms can easily be imple-
mented by simply changing the programs run on the RISC
cores.

Table 2 lists some commands for task-specific accelera-
tors specialized for parsing, filtering, and ME/MC, respec-
tively, and also includes their execution cycles in the RISC
processor.

In each PE cluster, its accelerator is tightly coupled
with its RISC cores for high-performance, as shown in
Figure 8 [18]. Both the ME/MC accelerator and the filtering
accelerator get coprocessor commands from the RISC cores
as shown in Figure 8(a). In order to decouple the accelerator
from the RISC codes, commands are buffered in a queue
associated to the RISC core which issued it. In contrast,
the parsing accelerator, which is a programmable processor,
fetches its instructions from its code memory as shown in
Figure 8(b). The accelerator reads input operands from its
input memory and writes results to its output memory which
can be the input memory of another PE cluster, as shown in
Figure 8.

3. Platform Targeted for 720p Video Codec

In this section we will explain how we develop a multiformat
video platform targeted for 1280× 720 30 fps codec systems.



8 EURASIP Journal on Embedded Systems

A

K L

N

M
8 bit

8 bit

13 bit

>> >>

>>

8 bit

× × × × × × ×
++

+

×

Output A Output B

Output C

P1 B P2 C P3 D P4 E F P5 G P6 H P7 I P8 J

(a) 6-tap filtering engine in the filtering accelerator

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

13 bit 13 bit 13 bit 13 bit

15 bit

16 bit

14 bit

8× 8

8× 4,
4× 8

8× 16,
16× 8 16× 16

17 bit

13 bit 13 bit13 bit 13 bit 13 bit 13 bit 13 bit 13 bit 13 bit 13 bit 13 bit 13 bit
4× 4 + + + + + + + +

++++

++

+

(b) Variable block size cost adder tree engine in the ME/MC accelerator

Figure 6: Video datapaths in the filtering and ME/MC accelerators.

Table 2: Commands for task-specific accelerators.

Commands Description
Execution cycles

on RISC

Parsing Accelerator

P FBITOP Fixed length bit operation 40

P EXPBITOP Exp Golomb code bit operation 80

P CLZ Count leading zeros 70

P VTMATCH Variable length table matching operation 100

P RLREORDER Reorder run-level register files 40

P T1DEC Decode TrailingOnes of H.264 CAVLC decoding 60

Filtering
Accelerator

F 6TAB 6-tab filtering operation 65

F QUANT Special operation for quantizing operation of multiple register 120

ME/MC
Accelerator

M SAD 4 × 4 Calculate SAD for two pixel register, and store to one pixel registers 66

M CMPCUMV
Compare the costs of all 41 candidate blocks and update best motion
vectors

4

M MVCE Estimate the cost of motion vectors in pixel difference unit 80

M VBSAT Adder trees for calculating all variable block sizes at once 40

M 6TAB 6-tab filtering operation 65

For targeting the platform, we used profiling data for an
H.264/AVC codec and a VC1 decoder using MB pipelining
in the task level shown in Table 3. Note that two tasks for
motion estimation of the encoder in Table 3 are much larger
workload than other tasks. For integer motion estimation,
we used the directional gradient descent search (DGDS)
algorithm [19] with a search range of [−64, +64].

Each task is mapped to a PE cluster, which includes
RISC processors and a task-specific accelerator. Since video
tasks are too huge to be covered only with a small number
of RISC processors, their workloads are partitioned into
two groups: one for the accelerator and the other for the
RISC processors. The size of workload to be mapped into

the accelerator could be much larger than the latter, so that
the latter should be small enough to be executed on the RISC
processors. In the proposed video platform, each PE cluster
is initially allocated for each task, which includes a task-
specific accelerator: a parsing accelerator in the PARSING
cluster, a filtering accelerator in the TQ/ITQ, INTRA, and
DEBLOCK clusters respectively, and an ME/MC accelerator
in the IME, FME, and INTER clusters, respectively. The
workload partition between the accelerator and the RISC
processors for each application is shown in Table 4, where its
workload is represented with the profiled results in million
instructions per sec (MIPS) for compiled code of the task for
the RISC processor.



EURASIP Journal on Embedded Systems 9

Table 3: Workload for each task in the several HD video codec applications.

Tasks
Required MIPS (720p, 30 fps)

H.264/AVC VC-1

Decoding Encoding Decoding

Syntax parsing (PARSING) 2100 1760 3340

Transform and quantization (TQ/ITQ) 2350 8050 5240

Intraframe prediction (INTRA) 1440 13160 —

Interframe prediction (INTER) 9880 1540 8700

Integer motion estimation (IME) — 448620 —

Fractional motion estimation (FME) — 55300 —

Deblocking filtering (DEBLOCK) 3240 4010 6820

Search range

MV prediction

Details on local search

Get reference data

Block matching
(SAD)

No

No

Yes

Yes

N
o

N
o

Go to
next position

Low resolution image
generation (option)

Find local
minimum

Set block size and get
CMB data

Set the start position
and range of search

Compare best MVs
and update

End of this set

Cost<threshold

Mode decision

End

By accelerator
By RISC cors

Go to next set

Figure 7: Job partition between RISC cores and ME/MC accelerator
in ME algorithm.

For each task, we employ a PE cluster that initially in-
cludes four RISC cores, a HOSK, and a task-specific accel-
erator. Therefore, we represent the workload for the RISC
processors with tightly coupled multiple threads to exploit
thread-level parallelism. The number of PE clusters in the
video platform as well as the number of RISC cores in a PE
cluster can be adjusted during optimization process.

As shown in Figure 9, we decided that video decoders are
initially partitioned into five tasks, namely PARSING, ITQ,
INTRA, INTER, and DEBLOCK tasks. Based on averaged
utilization of RISC cores and accelerator in a PE cluster
allocated for each task, we decided to merge ITQ and INTRA
clusters because their utilization are lower than 0.5 as shown

in Figure 9 and because their accelerators are of the same
kind. This merging is also helpful for improving performance
of the decoder because it substantially reduces overhead of
intercluster synchronization for neighboring reconstructed
pixels for 4 × 4 subblock intraframe prediction mode [3, 15,
16]. Utilization after merging tasks is also shown in Figure 9.

We decided that the video encoder is initially partitioned
into seven tasks, which include PARSING, TQ/ITQ, INTRA,
IME, FME, INTER, and DEBLOCK tasks. Similar to the
decoders, the TQ/ITQ and INTRA tasks are first merged
together, which is represented with (a) in Figure 10. Second,
IME and FME tasks are merged, which is followed by an
additional merging of INTER task, represented with (b) in
Figure 10.

Based on these architectural decisions, we decided that
the video codec platform includes one PE cluster that
includes a parsing accelerator, one PE cluster that includes
an ME/MC accelerator, and two instances of the PE clus-
ter that includes a filtering accelerator. To map a video
application onto the platform, it should be properly parti-
tioned into four tasks; for example, PARSING, ITQ+INTRA,
INTER, and DEBLOCK tasks for a decoder while PARSING,
TQ/ITQ+INTRA, IME+FME+INTER, and DEBLOCK tasks
for an encoder.

To tune the platform’s communication networks for
720p video applications, we used the profiling data for an
H.264/AVC encoder. We need to determine the size of FIFOs
for each link in the control network and the size of each
shared memory for each link in the data network. These sizes
can be easily determined based on simple calculations or
communication traces from simulation because patterns of
control and data transfers are relatively regular in the video
codec applications. Due to the MB pipelining, the transfer
size of data between PE clusters can be easily estimated.
Because each pixel in residual, transform, and reconstruction
data is less than 2 bytes, the size of the shared memory
for each data link can be chosen to be equal to 1.5 KB,
which is 8 × 8 × 6 × 2 bytes × 2 for luma and chroma
pixels per macroblock when a double-buffered scheme is
used [3, 15, 16]. We simply allocate a memory of 2 KB for
each data link in the data network to provide about 25%
margins.

Parsed syntax elements, which are outputs of the PARS-
ING task, should be transferred to other tasks. For example,



10 EURASIP Journal on Embedded Systems

Processing element cluster Data network

P PP P

32 32 32 32

Accelerator

Memory channel
Source

Region 0
Region 1

Region 0
Destination

Region 1

CmdQ CmdQ CmdQ CmdQ CmdQ CmdQ CmdQ CmdQ

Manager

Execution unit

Manager
Command

Execution unit
General datapath

Video datapath

General datapath

Video datapath

(a) (b)

Address

Instruction

Thread A
Thread B
Thread C

Code
memory

Figure 8: Task-specific accelerator block diagram tightly coupled with RISC cores. (a) Parsing accelerator. (b) Filtering, ME/MC accelerator.

Table 4: Job partitioning between the accelerators and the RISC cores.

Total required MIPS MIPS executed by accelerators MIPS executed by RISC cores

H.264 decoding 19010 18460 97.1% 550 2.9%

H.264 encoding 532450 531270 99.8% 1180 0.2%

VC-1 decoding 24100 23220 96.3% 880 3.7%

0

0.5

1

Parsing Inter

RISC cores

DEBLOCK ITQ Intra

Accelerator

0.48
0.58

0.75
0.66

0.27

0.61
0.52

0.24

0.34

0.22

0.66

0.49

ITQ + intra

U
ti

liz
at

io
n

Figure 9: Utilization of RISC cores and accelerator for each task in
the H.264/AVC HD decoder application.

a motion vector is transferred to the ME/INTER task, and
a boundary strength to the DEBLOCK task. The largest
syntax elements in the video codec applications are equal
to 16 × 2 bytes × 2 and 16 × 4 bits × 2, respectively
[3, 15, 16]. For each data link, its source and destination tasks
need to exchange handshake signals for synchronization
and a flag signal specifying a memory region in its shared
memory using a double-buffered scheme. To transfer the
syntax elements and these signals, the size of the group of
FIFO for each control link can be chosen to be 32-bit FIFOs
with a depth of 24 to provide about 50% margins.

Figure 11 shows reduction to the data transfer rates in the
communication subsystem when the number of PE clusters
is changed from five to four in the H.264/AVC decoder and
from seven to four in the H.264/AVC encoder, respectively,
as explained before, where the transfer rate reduction in
the control and data networks are 4.2% and 33.3% for the
decoder, and 26.8% and 51.8% for the encoder, respectively.

The platform includes a direct memory access control
(DMAC) and a double-data-rate (DDR) memory controller
in the 32-bit AMBA AHB bus for a global link to the off-chip
for reference frames. For example, the memory bandwidth
requirement for H.264/AVC 720p 30 fps encoding is up to
700 Mbytes/sec including about 80 Mbytes/sec for TFTLCD
controller. The platform also includes a RISC processor as
the host, a TFTLCD controller, and a UART controller. Each
PE cluster is allocated with 16 KB instruction cache and
4 KB data cache, which are shared by four RISC cores. Note
that a proper cache usage and the number of active RISC
core in each PE cluster are chosen from the experiment
that will be discussed in Section 5. Figure 12 shows the
overall architecture of platform for the HD video codec
applications.

We synthesized all components of the platform with
a target clock frequency of 200 MHz for 65 nm CMOS
technology. The gate complexity and memory size of the
platform are summarized in Table 5, where P, M, and F
represent the parsing, ME/MC, and filtering accelerators,
respectively. Its total equivalent logic gate count and chip
size are estimated approximately 3,820 K and around 9 mm2,
respectively.



EURASIP Journal on Embedded Systems 11

0

0.5

1

Parsing Inter

RISC cores

DEBLOCK TQ/ITQ Intra

Accelerator

0.75
0.66

0.41

0.61
0.52

0.26

0.37

0.58
0.5

0.16

(a)

(b)

0.58

0.16
0.07

0.14

0.82
0.86

IME

0.82

0.94

TQ/ITQ
+ intra

FME IME + FME
+ inter

U
ti

liz
at

io
n

Figure 10: Utilization of RISC cores and accelerator for each task in the H.264/AVC HD encoder application.

0

248.8 165.9

Initial After merging
in Figure 8

20.3

Control network
Data network

19.4
100

200Tr
an

sf
er

ra
te

(M
by

te
s/

s)

300

400

500

600

700

800

(a) H.264/AVC HD decoder

0

567.5

25.7

304.8

Initial After merging
by (a) in Figure 9

After merging
by (b) in Figure 9

633.3

32.2

Control network
Data network

23.6

100

200Tr
an

sf
er

ra
te

(M
by

te
s/

s)

300

400

500

600

700

800

(b) H.264/AVC HD encoder

Figure 11: Transfer rate in the communication subsystem for
H.264/AVC HD decoder/encoder.

To obtain the performance for higher resolution applica-
tions like 1080p, which requires processing 244,800 MBs per
second, the cycle budget per macroblock is only 816 cycles
when the clock frequency is assumed to be 200 MHz. This

Table 5: Area breakdown for the platform.

Platform Design

RISC cores, HOSK, Cache
Controller, Network Interface

250 K × 4

I/D Cache Memory 64 KB/16 KB

Accelerator (Logic)
88 K × 1 (P) + 700 K × 1 (M) +

170 K × 2 (F)

Accelerator (Memory)
8 KB × 1 (P) + 20 KB × 1 (M) +

12 KB × 2 (F)

FIFO Channel 5 K × 6

Memory Channel 2 KB × 6

Others (Host Processor,
DMAC, Memory Controller,
TFTLCD Controller,
Peripheral)

350 K + 20 KB

Total (Estimated) 2508 K gates + 164 KB (7.6 mm2)

performance can be achieved by allocating two accelerators
for each PE cluster, which should work cooperatively for dual
MB-level parallelism. At the same time, the size for each link
should be doubled in the communication network in order
to support dual MB-based pipelines.

4. Mapping Framework Exploiting
SystemCModeling

In this section, we will explain a framework for mapping
an application to the platform. In the application map-
ping framework, a sequential C/C++ code for the target
application should manually be transformed into a SystemC
model while satisfying a coding convention defined for
automatic generation of parallel executable codes, as shown
in Figure 13.

First, we should partition the sequential C/C++ code of
the target application into several tasks, each of which is
again divided into several threads in the transaction level in
SystemC [8, 11, 20–22]. This transaction-level (TL) SystemC
model can be incrementally developed by running a mixed-
level model in the virtual prototype of the video platform.



12 EURASIP Journal on Embedded Systems

Parsing task TQ/ITQ/intra task

Parsing accelerator Filtering accelerator

P P P P P P P PHOSK HOSK

I-$ (16 KB) D-$ (4 KB)D-$ (4 KB) I-$ (16 KB)

Point-to-point control network

I-$ (16 KB)

Point-to-point control network

D-$ (4 KB)D-$ (4 KB) I-$ (16 KB)

Network interface

32-bit AHB bus

Host
processor

TFTLCD
controller

UART
controller

A
H

B
2A

P
B

D
M

A
C

an
d

m
em

or
y

co
n

tr
ol

le
r

DDR

Network interface Network interface

ME/MC accelerator Filtering accelerator

ME/inter task DEBLOCK task

N = 6

N = 6

Memory
channel
(2 KB)

FIFO
channel

(D = 24) Network interface

P P P P P P P PHOSK HOSK

Figure 12: Overall architecture of platform for the HD video codec application.

Sequential
C/C++ code

Parallel
executable code

Mapping framework exploiting systemC

Task 1

Task 4

Task 2
Task 3

SystemC model

Virtual prototype model

PE cluster
simulators

Communication
subsystem model

Figure 13: Mapping framework exploiting SystemC.

In the mixed-level simulation, some tasks of the target
application represented in SystemC are simulated with the
SystemC simulation engine while the others coded in C/C++
are executed with their ISS simulators. To generate parallel
executable codes of the target application for the platform
from the SystemC model, we employ a coding convention to
define tasks and threads as well as an assembly-level library
for communication and HOSK APIs to be replaced with
SystemC primitives. We can estimate the performance of
an application by running its parallel executable codes in
the virtual prototype of the video platform. Based on this
performance estimation, we can also configure the platform
such as the number of RISC cores and the cache sizes for each
of its PE clusters.

4.1. SystemCModel for the Video Platform. We represent con-
currency in the platform by using SystemC constructs such
as SC MODULE and SC THREAD in the SystemC models
of the target application. As summarized in Figure 14(a), the
coding convention is as follows. An SC MODULE construct
defines a task, which encapsulates a set of threads that
are executed concurrently in a PE cluster. An SC THREAD
construct defines a thread, which is scheduled by the
HOSK in the PE cluster. For intercluster communication
transactions between the tasks, four sc interface primitives
such as PUT, GET, WRITE, and READ primitives are used

as shown in Figure 14(b). PUT/GET primitives are used for
control transfers while WRITE/READ primitives for data
transfers.

In each PE cluster for a task, there is at least one
accelerator that performs most of the computation for the
task. The threads in the same PE cluster communicate with
the accelerator by putting PUT and GET primitives into
the command queue as shown in Figures 14(d) and 8. For
intra-cluster communication transactions between a pair of
threads within the same task, we can use either semaphores
or PUT/GET primitives. The semaphores, which are man-
aged by the HOSK, are used for synchronization between
threads, as shown in Figure 14(c) while the PUT/GET
primitives are used for control transfer between threads.
The HOSK provides 11 API calls including communication
primitives, which are summarized in Table 6. For example,
change thread priority and set active core API calls are used
for assigning a priority to the threads in the same task and
specifying the number of active RISC cores in its PE cluster,
respectively.

A SystemC model for the target application exposes
parallelism of its tasks and threads and their communication
on the target platform although the details of the communi-
cation are hidden with communication API. The application
mapping framework generates parallel executable codes for
the platform from the SystemC model.



EURASIP Journal on Embedded Systems 13

Task 4

Thread 3

Thread 1

Thread 2

Accelerator

//concurrency

SC MODULE (Task 4) // task

{
SC THREAD (Thread 1); // thread

SC THREAD (Thread 2);

SC THREAD (Thread 3);
}

(a) Concurrency for task and thread

Task 3

Task 4

Thread 3

Thread 1

Thread 2

Accelerator

// control transfer

out->put ();

Value = in->get (value);

// data transfer

out->write (addr, value);

value = in->read (addr);

(b) Intercluster communication between different tasks

Accelerator

Thread 3

// communication between threads in the same task

semaphore∗ a, b;

SC MODULE (Task4)

{
SC THREAD(Thread1);

SC THREAD(Thread3);
}
void Thread1 () { void Thread3 () {

while (1) { while (1) {
· ·

a->sempost();
· ·

a->semwait();

b->sempost();

} }
} }

b->semwait();

Thread 1

Thread 2

Task 4

(c) intra-cluster communication between threads in the same task

Accelerator

Thread 3

Thread 1

Thread 2

// communication between thread and accelerator
out->put (command);
value = in->get (result);

Task 4

(d) Communication between thread and accelerator in the same task

Figure 14: Programming model using SystemC’s construct.

4.2. Parallel Executable Code Generation. To generate parallel
executable codes from the SystemC model, we replace
SystemC constructs with corresponding inline assembly
codes of the HOSK APIs through a preprocessor before
compilation as shown in Figure 15. Each SC THREAD
construct is replaced with the assembly code for HOSK API,
thread create, which receives a pointer of its entry function
as an argument, allocates a context memory for the thread,
and sets the program counter field in the context memory
with the address of the entry function.

Table 6: SystemC API calls for HOSK and communication.

API calls Description

Thread create, thread kill
Create new thread, Terminate
running thread

Set active core
Notify the number of active RISC
cores

Change thread priority Change the priority of thread

Sem init, sem wait,
Sem post

Synchronization for semaphores

Put/get, write/read Transfer for communication

Each task in the TL SystemC model is separately
compiled, linked together, and finally loaded by using the
platform’s memory map as shown in Figure 16. The assembly
codes for HOSK APIs are linked to the compiled code
for each task, and the size of HOSK API is about 1.5 KB
including the HOSK kernel code. The HOSK for a task
dynamically allocates the threads to the RISC cores in its
PE cluster at run time. For thread scheduling, the HOSK
manages a ready queue from which it selects the thread with
the highest priority.

5. ExperimentalMapping Results

To evaluate and confirm the video platform and its mapping
framework, we implemented an H.264/AVC 720p codec that
can encode 30.4 fps and decode 32.2 fps and a VC-1 720p
decoder that can decode, 33.1 fps respectively, assuming
that the operating frequency for the RISC processors is
200 MHz. In this experiment, we used “Parkrun” sequences
of 1280 × 720 pixels resolution as an input image sequence
[23]. Table 7 summarizes several mapping results into the
platform including the number of active RISC cores, the
number of threads, the number of context switching per
macroblock, code size, and I/D cache usage for each PE
cluster corresponding to a task, respectively. Table 8 lists
thread names for the applications summarized in Table 7,
where each name also implies its function.

The average performance curve of each task in the
H.264/AVC 720p encoder when the number of active RISC
cores in its PE cluster is changed from one to four is depicted
in Figure 17(a). For this evaluation for a different number of
the active RISC cores in each PE cluster, the SystemC model
does not need to be modified except for just configuring the
number of active RISC cores through a HOSK API call of
set active core (N), which means that we can easily obtain
parallel executable codes. Utilization of each active RISC
cores in the video platform is also depicted in Figure 17(b)
for four tasks of the H.264/AVC 720p encoder.

The performance curve of each PE cluster in the
H.264/AVC 720p 30 fps encoder is shown in Figure 18
for various cache configurations, where an encircled node
annotated with its cache miss rate in percent associates the
chosen cache size. After selecting an instruction cache size
assuming a perfect data cache first, we select a data cache size
assuming the chosen instruction cache size. These results are



14 EURASIP Journal on Embedded Systems

Thread create:
str r0, [sp, #−4];
mrc p0, 0, r3, c0, c0, 2;
mrc p0, 0, r1, c0, c2, 0;
mrc p0, 0, r1, c0, c2, 0;

.

.
mrc p0, 0, r1, c0, c2, 0;
mov r0, r3;
mov pc, Ir;

(a) Task (or thread)

Put:
mcr p0, 1, value, c0, PID, FID;

get:
mrc p0, 1, value, c5, PID, FID;

write:
mcr p0, 1, value, c1, PID, index;

read:
mrc p0, 1, value, c6, PID, index;

(b) Control and data transfers

Seminit:
mrc p0, 0, r0, c0, c1, 1;
mov pc, lr ;

Sempost:
mrc p0, 0, r0, c0, c1, 5;
mov pc, lr ;

Semwait:
mrc p0, 0, r0, c0, c1, 5;
mov pc, lr ;

(c) Semaphore

Figure 15: Assembly code examples of the HOSK and communication APIs for an executable code generation.

SC MODULE (Task 4)

{
SC THREAD (T1);

·
SC THREAD (T2);

}

SC MODULE (Task 3)

SC MODULE (Task 2)

SC MODULE (Task 1)

Preprocess
or

C/C++
compiler

SystemC model

Parallel executable code

Base1

Base2

Base3

Base4

0: e59fd85c
4: e59f0040

0: e59fd85c
4: e59f0040

0: e59fd85c
4: e59f0040

0: e59fd85c
4: e59f0040

...

...

...

...

Platform

PE cluster 3 PE cluster 4

PE cluster 1 PE cluster 2

HOSK HOSK

HOSK HOSK

HOSK kernel code

Figure 16: Loading parallel executable code into the platform.

obtained, assuming that the cache miss penalty is about 20
clock cycles. The cache miss rate for various cache sizes of
each task is shown in Figure 19.

The averaged overheads of context switching and thread
scheduling per macroblock are summarized respectively in
Figure 20 where each of them is normalized by the number
of its active RISC cores is shown. The maximum overhead in
the H.264/AVC decoder is 7.6% for ITQ/INTRA task, that in
the H.264/AVC encoder is 6.5% for TQ/ITQ/INTRA task and
that in the VC-1 decoder is 3.3% for DEBLOCK task. Thanks
to the accelerated HOSK, the overhead of context switching
and scheduling is below 10% of the overall execution time.

In Figure 21, the performances for the PARSING,
ITQ/INTRA, and DEBLOCK tasks in the H.264/AVC decoder
are compared for two cases: with HOSK and with software-
only RTOS. With the HOSK, the performance of each task is
substantially improved by reducing the overhead of a context
switching to 20 cycles from about one thousand cycles
[5]. Therefore, the hardware support for context switching
with the HOSK is highly justified for the tasks with tightly
coupled multiple threads just as the video platform for HD
applications. The overall size of HOSK kernel codes for
the H.264/AVC decoder, H.264/AVC encoder, and the VC-1
decoder, which are summarized in Table 7, are approximately

10%, 13%, and 12%, respectively, in the code size while
a copy of the HOSK kernel code is approximately 1.5 KB
including its APIs assembly code.

The utilization of the active RISC cores is depicted in
Figure 22 for each task in the H.264/AVC 720p decoder
and the VC-1 720p decoder. Note that the utilization of
the active RISC cores for the H.264/AVC encoder is shown
in Figure 17(b). The numbers of the active RISC cores for
DEBLOCK task in both H.264/AVC decoder and encoder are
not the same because the boundary strength for deblocking
filtering is calculated in the DEBLOCK task for the encoder
and in the syntax parsing task for the decoder, respectively.
Note that the boundary strength for each 4-pel edge, which
value is inclusively between 0 and 4, is used to select one
of filtering types in deblocking filtering in H.264/AVC [15].
Compared to the DEBLOCK in the H.264/AVC standard,
its task in VC-1 requires more computation because it
performs both overlap smoothing and in-loop filtering
together [3, 16]. Therefore, the utilization of the RISC cores
in DEBLOCK task is relatively high.

Figure 23 shows the estimated power consumption for
the H.264/AVC 720p encoder in Table 7. These values are
measured through the RTL simulation using Synopsys Power
Compiler [24]. In the power estimation, we used “Parkrun”



EURASIP Journal on Embedded Systems 15

20

25

30

35

40

4 cores 3 cores

Parsing

2 cores 1 cores

TQ/ITQ/intra
Me/inter
DEBLOCK

Pe
rf

or
m

an
ce

(f
ps

)

(a) Performance curve of each PE cluster for different active RISC
cores

0

0.5

1

Parsing
(2 RISC cores)

TQ/ITQ/intra
(3 RISC cores)

ME/inter
(3 RISC cores)

DEBLOCK
(2 RISC cores)

0.54
0.48

0.63
0.51

0.62
0.560.53

0.58

0.71

0.58

U
ti

liz
at

io
n

(b) Utilization of active RISC cores for each task

Figure 17: Performance curve of each PE cluster for different active RISC cores and utilization of active RISC cores for each task in the
H.264/AVC 720p encoder.

25

30

35

2 KB 4 KB

Parsing

8 KB

0.1%
2.1%

1.6%

0.1%

Instruction cache usage

TQ/ITQ/intra
Me/inter
DEBLOCK

Pe
rf

or
m

an
ce

(f
ps

)

(a)

25

30

35

1 KB 2 KB

Parsing

4 KB

0.2%

0.1%

1.7%

0.1%

Data cache usage

TQ/ITQ/intra
Me/inter
DEBLOCK

Pe
rf

or
m

an
ce

(f
ps

)

(b)

Figure 18: Performance curve of each PE cluster for different cache usage in the H.264/AVC 720p encoder.

0
2 KB 4 KB 8 KB

Parsing
TQ/ITQ/intra

Me/inter
DEBLOCK

2

4

6

M
is

s
ra

te
(%

)

(a) Instruction Cache Usage (KB)

0
1 KB 2 KB 4 KB

Parsing
TQ/ITQ/intra

Me/inter
DEBLOCK

2

4

6

M
is

s
ra

te
(%

)

(b) Data Cache Usage (KB)

Figure 19: Cache miss rate for various cache sizes of each task in the H.264/AVC 720p encoder.



16 EURASIP Journal on Embedded Systems

Context switching
Thread scheduling

0

100

200

300

400

Parsing ITQ/intra

H.264 decoder

Inter DEBLOCK

12
32

28

112

C
yc

le
s

(M
B

)

36

96

No context switching,
no thread scheduling

(a)

0

100

200

300

400

Parsing TQ//ITQ/
intra

ME/inter DEBLOCK

Context switching
Thread scheduling

40

6412
32

156

208C
yc

le
s

(M
B

)

48

96

H.264 decoder

(b)

0

100

200

300

400

Parsing ITQ

VC-1 decoder

Inter DEBLOCK

Context switching
Thread scheduling

16
32

C
yc

le
s

(M
B

)

40

60

No context switching,
no thread scheduling

(c)

Figure 20: Context switching and thread scheduling cycle of each task for each application in Table 7.

Table 7: Mapping results for several applications.

Task
Number of active

RISC cores
Number of

threads
Number of

context switching
Code size (KB)

(I, D) Cache
usage (KB)

H.264 Decoder

PARSING 2 4 2 26 (4, 2)

ITQ/INTRA 1 3 7 11 (4, 1)

INTER 1 1 0 15 (2, 1)

DEBLOCK 1 2 6 7 (4, 1)

H.264 Encoder

PARSING 2 3 2 26 (4, 2)

TQ/ITQ/INTRA 3 6 13 7 (8, 2)

ME/INTER 3 5 4 6 (4, 2)

DEBLOCK 2 3 6 7 (4, 1)

VC-1 Decoder

PARSING 2 3 2 18 (4, 2)

ITQ 2 2 0 6 (2, 1)

INTER 1 1 0 16 (1, 1)

DEBLOCK 2 4 5 10 (8, 1)



EURASIP Journal on Embedded Systems 17

Table 8: Threads in each task for several applications in Table 7.

H.264 Decoder H.264 Encoder VC-1 Decoder

PARSING Control PARSING Control PARSING Control

MVD calculation MVD calculation MVD calculation

NAL decoding NAL encoding NAL decoding

bS calculation

ITQ/INTRA ITQ TQ/ITQ/INTRA Luma TQ/ITQ ITQ ITQ

INTRA Chroma TQ/ITQ AC/DC prediction

Reconstruction
Cost compare and
prediction decision

Luma INTRA

Chroma INTRA

Reconstruction

INTER INTER ME/INTER Control INTER INTER

IME I

IME II

FME

INTER

DEBLOCK Luma DF DEBLOCK bS calculation DEBLOCK In-loop Luma DF

Chroma DF Luma DF
In-loop Chroma

DF

Chroma DF Overlap Luma DF

Overlap Chroma
DF

0 2000 4000 6000 8000 10000 12000

Cycles (MB)

Software-only RTOS
HOSK

12350

1787
4850

10250

1812

1766

D
E

B
LO

C
K

IT
Q

/I
N

T
R

A
Pa

rs
in

g

14000

Figure 21: Performance comparison with HOSK and software-only
RTOS in the H.264/AVC 720p decoder.

sequence of 1280 × 720 pixels resolution as an input image
sequence to the encoder [23] and employed the DGDS
motion estimation algorithm [19] for a search range of [−64,
+64] to find integer motion vectors and the quarter-pixel
fractional motion vectors. When the number of PE clusters
is reduced from seven to four, as explained in Section 3,
the total power consumption is reduced 14.4% as shown
in Figure 23(a). On the average, the platform consumes
about 32.7 mW for RISC processors, 9.1 mW for HOSKs,
40.5 mW for accelerators, 60.3 mW for instruction caches,
7.1 mW for data caches, and 26.0 mW for communication

network, respectively, as shown in Figure 23(b). Its total
power consumption is about 175.8 mW when estimated
before placement and routing in 65 nm CMOS technology.
Deduced from the previous figures, each task consumes
about 35.5 mW for PARSING, 30.7 mW for TQ/ITQ/INTRA,
79.0 mW for ME/INTER, and 30.6 mW for DEBLOCK,
respectively. We found that the instruction caches occupy
about 35% of the total power consumption of the encoder
implementation. Instead of the instruction cache, therefore,
we should try to scratch pad memories to further reduce
the power consumption because the video codec applica-
tions typically have regular memory access patterns that
can be statically analyzed and predicted at compile time
[25].

The performance of the parsing accelerator is evaluated
as shown in Table 9. An H.264/AVC reference software
code and its optimized C code are profiled on the RISC
processor, excluding NAL decoding part for fair performance
comparison. The parsing accelerator can parse the bitstream
in less than 4.8 cycles per bit on the average, which is
about 16 times faster than the optimized C code executed in
the RISC processor. This result implies that an H.264/AVC
CAVLC bitstream of 40 Mbps can be parsed with the parsing
accelerator at 192 MHz.

The utilization of the active RISC cores and the accelera-
tor is depicted in Figure 24 for different motion estimation
algorithms with a search range of [−64, +64]: four-step
search (4SS) [26], block-based gradient descent search
(BBGDS) [27], and directional gradient descent search
(DGDS) [19] where they employ two, two, and three RISC



18 EURASIP Journal on Embedded Systems

0
Parsing

(2 RISC cores)
ITQ/INTRA

(1 RISC cores)
Inter

(1 RISC cores)
DEBLOCK

(1 RISC cores)

0.62
0.58

0.48

0.61

0.5
0.52

1
U

ti
liz

at
io

n

(a) H.264/AVC 720p decoder

0
Parsing

(2 RISC cores)
ITQ

(2 RISC cores)
Inter

(1 RISC cores)
DEBLOCK

(2 RISC cores)

0.78
0.81

0.58

0.41

0.58
0.55

0.5

0.63

1

U
ti

liz
at

io
n

(b) VC-1 720p decoder

Figure 22: Utilization of active RISC cores for each task in the H.264/AVC decoder and VC-1 720p decoder.

32.7

9.1

26

40.560.3

7.1
47.5

8.8

62.4

36.5
5.8

44.3

Total power: 205.4 mW (initial) Total power: 175.8 mW (merged)

RISC cores
HOSKs

Accelerators

I-caches
D-caches

Network

(a) Comparison between initial and merged in Figure 9

0

30

10

20

RISC cores HOSKs Accelerators I-caches D-caches

Parsing

TQ/ITQ/intra

ME/inter

DEBLOCK

Network

32.7 mW

9.1 mW

40.5 mW

60.3 mW

7.1 mW

26 mW

Po
w

er
(m

W
)

(b) Power breakdown after merging in Figure 9

Figure 23: Estimated power consumption for an H.264/AVC 720p encoder.

Table 9: Parsing accelerator performance for several test sequences
of 30 frames.

Foreman Earth Birds

Image size CIF D1 720p

Bit rate (Mbps) 1.27 7.25 15.70

Reference SW on RISC (Mcycles) 411.1 2099.2 4302.0

Optimzed Code on RISC (Mcycles) 100.6 515.8 1059.7

Proposed parsing accelerator (Mcycles) 6.1 32.6 67.5

Cycles/bit 4.8 4.5 4.3

Speed up [Proposed/Optimized code] 16.5 15.8 15.7

cores, respectively, and most of the computation for the
motion estimation task is offloaded to the accelerators such
as SAD and filtering operations. Therefore, we can easily
implement a different ME algorithm by simply changing
RISC codes which correspond to part of the ME algorithm
that are specific to motion vector searching scheme. In this
experiment, we used “Park run” sequences of 1280 × 720
pixel resolution as an input image sequence [23].

6. Conclusions

We proposed a high-performance programmable video
platform that utilizes SystemC programming model for its
application mapping. The platform has four PE clusters,
which are connected with two separate point-to-point
control and data networks together with a DMAC and DDR
controller. With the application mapping framework that
exposes the architectural details of the target platform, we
can get a good executable code utilizing all the resources
easily at earlier time.

From several mapping results, we found that the platform
with its mapping framework is easy and suitable for imple-
menting the HD video codec applications at a reasonable
operating frequency. In the 65 nm CMOS technology, the
complexity of the platform is around 3,820 K equivalent
gates in total. With the platform running at the operating
frequency of 200 MHz, we have implemented an H.264/AVC
720p codec that encodes 30.4 fps and decodes 32.2 fps and
a VC-1 720p decoder that decodes 33.1 fps, respective-
ly.



EURASIP Journal on Embedded Systems 19

0

1

0.5

4SS
(2 RISC cores)

BBGDS
(2 RISC cores)

DGDS
(2 RISC cores)

RISC cores
Accelerator

0.48
0.47

0.71

0.41
0.37

0.69

0.54
0.48

0.51

0.74

U
ti

liz
at

io
n

Figure 24: Utilization of active RISC cores and accelerator for
different motion estimation algorithm implementations.

For the future works, we plan to map MPEG-4 and
other video standards into our platform, and to improve the
platform to achieve the performance for higher resolution
applications like 1080p after adjusting the number of PE
clusters in the platform and newly allocating a task-specific
accelerator to each PE cluster. Moreover, we will compare
the power consumption of the platform after replacing
the instruction caches in each PE cluster with scratch pad
memories to find out how much the power consumption can
be reduced. Furthermore, we need to try different topologies
for interconnect networks to find an efficient solution when
the number of PE clusters gets larger in the video platform
for higher resolution video codecs. We will also develop a
tool for the timed transaction-level simulation to estimate
the performance in the earlier time.

References

[1] T. C. Chen, S. Y. Chien, Y. W. Huang et al., “Analysis and
architecture design of an HDTV720p 30 frames/s H.264/AVC
encoder,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 6, pp. 673–688, 2006.

[2] K. Iwata, S. Mochizuki, M. Kimura et al., “A 256 mW
40 Mbps full-HD H.264 high-profile codec featuring a dual-
macroblock pipeline architecture in 65 nm CMOS,” IEEE
Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1184–1191,
2009.

[3] Y. S. Tung, S. W. Wang, C. W. Tsai, Y. T. Yang, and J.
L. Wu, “DSP-based multi-format video decoding engine for
media adapter applications,” IEEE Transactions on Consumer
Electronics, vol. 51, no. 1, pp. 273–280, 2005.

[4] Joint Collaborative Team of ITU-T VCEG, ISO/IEC JTC 1/SC
29/WG 11, Joint call for proposals for next-generation video
coding standardization, 2010.

[5] P. G. Paulin, C. Pilkington, M. Langevin et al., “Parallel
programming models for a multiprocessor SoC platform
applied to networking and multimedia,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 14, no. 7, pp.
667–679, 2006.

[6] M. Z. Urfianto, T. Isshiki, A. U. Khan, D. Li, and H.
Kunieda, “A multiprocessor SoC architecture with efficient

communication infrastructure and advanced compiler sup-
port for easy application development,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, vol. 91, no. 4, pp. 1185–1196, 2008.

[7] J. Chevalier, O. Benny, M. Rondonneau, G. Bois, E. Aboul-
hamid, and F. Boyer, “SPACE: a hardware/software systemC
modeling platform including an RTOS,” in Proceedings of the
International Forum on Specification and Design Languages
(FDL ’03), Frankfurt, Germany, September 2003.

[8] F. Herrera, H. Posadas, P. Sanchez, and E. Villar, “Systematic
embedded software generation from SystemC,,” in Proceedings
of the Design, Automation, and Test in Europe, 2003.

[9] M. Besana and M. Borgatti, “Application mapping to a hard-
ware platform through automated code generation targeting a
RTOS,” in Proceedings of the Design, Automation, and Test in
Europe, pp. 41–44, 2003.

[10] N. Pazos, P. Ienne, Y. Leblebici, and A. Maxiaguine, “Parallel
modeling paradigm in multimedia applications: mapping and
scheduling onto a multi-processor system-on-chip platform,”
in Proceedings of the International Global Signal Processing
Conference, 2004.

[11] S. Park, D. S. Hong, and S. I. Chae, “A hardware operating
system kernel for multi-processor systems,” IEICE Electronics
Express, vol. 5, no. 9, pp. 296–302, 2008.

[12] J. Cho, D. Lee, S. Yoon, S. Park, and S. I. Chae, “VLSI
implementation of a VC-1 main profile decoder for HD
video applications,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol. 92,
no. 1, pp. 279–290, 2009.

[13] Y. Yi and B. C. Song, “A novel CAVLC architecture for H.264
video encoding at high bit-rate,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS ’08),
pp. 484–487, May 2008.

[14] S. V. Tota, M. R. Casu, M. R. Roch, L. MacChiarulo, and
M. Zamboni, “A case study for NoC-based homogeneous
MPSoC architectures,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 3, pp. 384–388, 2009.

[15] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-
T VCEG, Draft ITU-T Recommendation and Final Draft
International Standard Joint Video Specification ITU-T Rec.
H.264—ISO/IEC, 14496-10 AVC JVT G050, 2003.

[16] “VC-1 Compressed Video Bitstream Format and Decoding
Process (SMPTE 421M-2006),” SMPTE Standard, 2006.

[17] L. K. Liu and E. Feig, “A block-based gradient descent search
algorithm for block motion estimation in video coding,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
6, no. 4, pp. 419–422, 1996.

[18] I. Gelado, J. H. Kelm, S. Ryoo, S. S. Lumetta, N. Navarro, and
W. M. W. Hwu, “CUBA: an architecture for efficient CPU/Co-
processor data communication,” in Proceedings of the 22nd
ACM International Conference on Supercomputing (ICS ’08),
pp. 299–308, June 2008.

[19] L. M. Po, K. H. Ng, K. W. Cheung, K. M. Wong, Y. M. Salah
Uddin, and C. W. Ting, “Novel directional gradient descent
searches for fast block motion estimation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 19, no. 8, pp.
1189–1195, 2009.

[20] T. Grötker, S. Liao, G. Martin, and S. Swan, SystemDesign with
SystemC, Kluwer Academic Publishers, Norwell, Mass, USA,
2002.

[21] F. Herrera and E. Villar, “A framework for embedded system
specification under different models of computation in Sys-
temC,” in Proceedings of the Design Automation Conference, pp.
911–914, 2006.



20 EURASIP Journal on Embedded Systems

[22] S. Park, S. Yoon, and S. I. Chae, “A mixed-level virtual proto-
typing environment for SystemC-based design methodology,”
Microelectronics Journal, vol. 40, no. 7, pp. 1082–1093, 2009.

[23] ftp://ftp.ldv.e-technik.tu-muenchen.de/ .
[24] Synopsys Power Compiler User Guide, Release V, 2004, http://

www.synopsys.com/.
[25] I. Issenin, E. Brockmeyer, B. Durinck, and N. Dutt, “Mul-

tiprocessor system-on-chip data reuse analysis for exploring
customized memory hierarchies,” in Proceedings of the Design
Automation Conference, pp. 49–52, 2006.

[26] L. M. Po and W. C. Ma, “A novel four-step search algorithm for
fast block motion estimation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 6, no. 3, pp. 313–317,
1996.

[27] L. K. Liu and E. Feig, “A block-based gradient descent search
algorithm for block motion estimation in video coding,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
6, no. 4, pp. 419–422, 1996.


	1. Introduction
	2. High-Performance Programmable Video Platform
	2.1. Processing Element Cluster
	2.2. Communication Subsystem
	2.3. Task-Specific Accelerators

	3. Platform Targeted for 720p Video Codec
	4.Mapping Framework Exploiting SystemC Modeling
	4.1. SystemC Model for the Video Platform
	4.2. Parallel Executable Code Generation

	5. Experimental Mapping Results
	6. Conclusions
	References

