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Abstract An historical overview of the development of traffic flow models is

proposed in the form of a model tree. The model tree shows the genealogy of four

families: the fundamental relation, microscopic, mesoscopic and macroscopic

models. We discuss the families, branches and models. By describing the historical

developments of traffic flow modeling, we take one step further back than con-

ventional literature reviews that focus on the current state-of-the-art. This allows us

to identify the main trends in traffic flow modeling: (1) convergence of many

branches to generalized models, (2) adaptations and extensions of the LWR model

to deal with real phenomena, (3) multi-class versions of many models and, (4) the

development of hybrid models combining the advantages of different types of

models.
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1 Introduction

Traffic flowmodels have been developed and used to understand, describe and predict

traffic flow since the beginning of the twentieth century.We present a review of traffic

flow models following the historical lines of their development. Previous reviews

focus on the, at that moment, current state-of-the-art and review the models on their

current value (Papageorgiou 1998; Brackstone and McDonald 1999; Zhang 2001;

Hoogendoorn and Bovy 2001b; Helbing 2001; Kerner 2009; Treiber and Kesting

2010; Treiber et al. 2010; Orosz et al. 2010; Wilson and Ward 2011; Bellomo and

Dogbe 2011). We aim to take one step further back and give an historical overview of

the highlights in traffic flow modeling. This approach shows better how traffic flow

models have developed, and how different types of models are related to each other.

Furthermore, it forms the basis of our next step in traffic flowmodeling, using a multi-

class approach (vanWageningen-Kessels et al. 2014; vanWageningen-Kessels 2013).

To show the historical development of traffic flow models we introduce a model tree,

see Fig. 1 and the Electronic Supplementary Material accessible via the publishers’

website (see link on the first page of this article).

All models in the tree have one common ancestor: the fundamental relation (or

fundamental diagram). After the introduction of the fundamental relation in the

1930s, microscopic and macroscopic models were introduced simultaneously in the

1950s. The family of mesoscopic models is about a decade younger. The model tree

shows that particularly over the last two decades: all families and branches have

developed further, and many offshoots can be recognized.

The fundamental diagram relates the headways (front-to-front following

distance) to vehicle velocity. How headways and velocities change over time

(traffic dynamics) can be described by micro-, meso- or macroscopic models. On the

one hand, microscopic models distinguish and trace the behavior of each individual

vehicle. On the other hand, macroscopic models aggregate vehicles and traffic are

described as a continuum. Mesoscopic models are categorized in between micro-

and macroscopic models, as their aggregation level is between those of micro- and

macroscopic models. Categorizing traffic flow models can be done according to

other criteria such as whether the variables are continuous or discrete, the level of

detail, stochastic or deterministic process representation, the scale of the applica-

tion, type of model equations [(partial) differential equations, discrete equations] or

the number of phases described by the model (Hoogendoorn and Bovy 2001b;

Treiber and Kesting 2010; Treiber et al. 2010). Since the development of traffic flow

models has followed largely the family lines of micro-, meso- and macrosopic

models, we use this traditional categorization.

The outline of this article is as follows. We first discuss the fundamental relation

in more detail, see Sect. 2. We then discuss each of the other three families: Sect. 3

presents microscopic models, Sect. 4 presents mesoscopic models, and Sect. 5

presents macroscopic models. Section 6 concludes this contribution with a

discussion and future research suggestions. Each of the Sects. 2–5 contains figures

with details of the model tree. We encourage the reader to view the full-scale model

tree in the Electronic Supplementary Material accessible via the publishers’ website

(see link on the first page of this article).
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2 Fundamental diagram

Traffic flow models are based on the assumption that there is some relation between

the distance between vehicles and their velocity, e.g., as in Fig. 3d. This relation

between distance and velocity was first studied by Greenshields (1934) and called

the fundamental relation (or fundamental diagram) later. Therefore, Greenshields is

often regarded as the founder of traffic flow theory. The fundamental diagram

family and its most important relations is shown in Fig. 2.

2.1 Shapes of the fundamental relation

Originally, Greenshields (1934) studied the relation between the variables spacing

(s, average distance between fronts of two consecutive vehicles) and velocity (v).

However, the fundamental relation can also be expressed in other variables such as

density (q, average number of vehicles per unit length of road) and flow (q, average

number of vehicles per time unit), see Fig. 3.

Fig. 2 Details of the genealogical tree of traffic flow models showing the fundamental diagram family
and its most important relations
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Greenshields (1934) proposed a fundamental relation that is linear in the

spacing–velocity plane. However, his name has now been linked to the fundamental

relation that he proposed 1 year later (Greenshields 1935). This fundamental

relation is linear in the density–velocity plane and thus parabolic in the density–flow

plane, see Fig. 4a, e. The model tree shows that since then, many other shapes of

fundamental relations have been proposed. The Daganzo (1994) fundamental

relation is probably the most widespread. It is bi-linear (triangular) in the density–

flow plane, see Fig. 4b, f. Figure 4c, g shows the Smulders fundamental diagram

(Smulders 1990), which is a combination of the previous two: it is parabolic for low

densities and linear for high densities (parabolic–linear). Finally, Fig. 4d, h shows

the Drake fundamental relation (Drake et al. 1967). For a more detailed overview of

different shapes of fundamental relations we refer to Li (2008).

2.2 Scatter in the fundamental relation

Observed density–flow plots usually show wide scatter, see Fig. 5. Zhang (1999)

and Laval (2011) argue that much of the scatter can be explained by non-

equilibrium traffic conditions. Zhang defines traffic to be in equilibrium if over a

sufficiently long time (t) and road length (space x) velocity and density do not

Fig. 3 Fundamental relations in different planes

Fig. 4 Different shapes of fundamental relations. Top fundamental relations in density–flow plane,
bottom the same fundamental relations but in the density–velocity plane
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change: ov=ot ¼ 0, oq=ot ¼ 0, ov=ox ¼ 0 and oq=ox ¼ 0. Only points in the scatter

plot that satisfy these criteria can be used to fit the fundamental relation. This is then

called the equilibrium fundamental relation. However, also in the equilibrium

fundamental relation, scatter may exist. The other branches of the fundamental-

relation family try to explain scatter in different ways.

Edie (1961), Cassidy and Bertini (1999) explain part of the scatter with a capacity

drop: just before the onset of congestion the outflow out of a bottleneck is higher

than in congestion, see Fig. 6a. The capacity drop has been explained by a low

acceleration rate of vehicles leaving congestion, while they decelerate at a high rate

when entering congestion. This theory leads to fundamental relations with hysteresis

(Newell 1965; Treiterer and Myers 1974; Zhang 1999), see Fig. 6b. From a different

perspective, Kerner (2009) argues that observations show too much scatter to derive

a unique fundamental relation from Kerner and Rehborn (1996), Kerner (2004). He

proposes to use a three-phase approach characterized by the existence of three

phases, one of them featuring a wide scatter in the density–flow plane, see Fig. 6c.

As a result, the maximum flow (capacity) of a road may vary over time. An other

approach to varying capacities is described by Chanut and Buisson (2003). They

propose a three-dimensional fundamental relation, see Fig. 6d. This fundamental

relation takes into account heterogeneity among vehicles and drivers. Therefore, the

flow (in vehicles per time unit) is a function of both the density of cars and the

density of trucks. The figure shows that if truck densities are relatively high,

capacity is low.

2.3 Properties and requirements

Figure 7 illustrates some properties and requirements of fundamental relations. del

Castillo (2012) proposes the following properties of a sound fundamental relation:

1. Velocity ranges from zero to a maximum value vmax.

2. Density ranges from zero to a maximum value qjam.
3. Velocities at the extreme density values are vð0Þ ¼ vmax and vðqjamÞ ¼ 0.

Fig. 5 Scatter in an observed
density–flow plot (picture
adapted from Treiber et al.
2006b)
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4. Flows at the extreme density values are qð0Þ ¼ qðqjamÞ ¼ 0.

5. Maximum velocity and congestion wave speed are the slopes of the

fundamental relation at the extreme density values: vmax ¼ dq=dq ð0Þ and

w ¼ dq=dq ðqjamÞ.
6. The fundamental relation is strictly concave: d2q=dq2\0 for almost all

q 2 ½0; qjam�.

(a)

(c) (d)

(b)

Fig. 6 Fundamental ‘relations’ based on scatter in observations

Fig. 7 A sound fundamental relation and its properties, according to del Castillo (2012)
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del Castillo (2012) argues that the sixth property is necessary to define a traffic flow

model with a unique solution. However, there are no reasons to assume that real

traffic cannot behave in a way that would be described by a fundamental relation

that is not strictly concave. In fact, such fundamental relations have been proposed

and used, with a unique solution (Zhang 2001). Furthermore, it is reasonable to

assume that velocity does not increase with increasing density (dv=dq� 0). del

Castillo does not require that directly. However, it is a necessary, but not

sufficient condition for his last property on the strict concavity of the fundamental

relation.1

An other important property of fundamental relations is the existence of a

maximum flow, or capacity: qcap ¼ max0\q\qjam qðqÞ. Assuming that the above

requirements are satisfied, the capacity is related to a single density called critical

density qcrit and a single velocity called critical velocity vcrit, with qcap ¼ qcritvcrit.
The critical density separates the fundamental relation into two parts: (1) a free flow

branch with densities below critical, velocities above critical and increasing flow for

increasing density and (2) a congestion branch with densities above critical,

velocities below critical and a decreasing flow for increasing density.

In Sect. 2.1, four fundamental relations with different shapes were introduced.

The Greenshields fundamental relation is the only one of them that satisfies all of

del Castillo’s criteria. The other ones (the Daganzo, Smulders and Drake

fundamental relation) are not strictly concave, though the first two are weakly

concave and they all have non-increasing velocity (dv=dq� 0). Furthermore, in the

Drake fundamental relation there is no jam density for which velocity and flow are

zero.

In Sect. 2.2, fundamental relations explaining scatter were introduced. None of

them satisfies del Castillo’s strict concavity requirement. Furthermore, fundamental

relations with capacity drop or hysteresis imply a non-unique fundamental relation:

at a certain density [usually just above (outflow) capacity] the flow is not uniquely

determined by the density, but also depends on previous traffic states. The three-

dimensional fundamental relation by Chanut and Buisson (2003) is not strictly

concave, but it can be shown to be weakly concave in both qcar and qtruck and to

have non-increasing velocities.

Fundamental relations, whether equilibrium or non-equilibrium, unique or non-

unique, are crucial in all families of traffic flow models. In any model it is assumed

that traffic is in a state on the fundamental relation, or that it tends towards it. Meso-

and macroscopic models mostly include fundamental relations explicitly. Micro-

scopic models usually have some underlying assumptions on a fundamental relation

which can be revealed by careful analysis of the model or by simulation. The other

components of micro- meso- and macroscopic traffic flow models will be discussed

in the next sections.

1 Application of the chain rule shows that if the qðqÞ is concave then dv=dq� 0. That is: d2q=dq2 ¼
d2ðqvÞ=dq2 ¼ qdv=dqþ v is negative only if dv=dq� 0, because q� 0 and v� 0.
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3 Microscopic models

Microscopic models are the earliest family in the model tree incorporating

dynamics. They are based on the assumption that drivers adjust their behavior to

that of the leading vehicle. Microscopic modeling has shown to be a fruitful line of

thought, which is illustrated by the large part of the model tree taken up by this

family. Microscopic models describe the longitudinal (car-following) and lateral

(lane-changing) behavior of individual vehicles. Only longitudinal behavior is

discussed here, because adding models for lateral behavior would make the model

tree much more complicated, without adding much to our aim of identifying

historical trends in traffic flow modeling for the development of a new multi-class

model. The microscopic model family and its most important relations is shown in

Fig. 8.

In microscopic models, vehicles are numbered to indicate their order: n is the

vehicle under consideration, n� 1 its leader, nþ 1 its follower, etc., see Fig. 9. The

behavior of each individual vehicle is modeled in terms of the position of the front

of the vehicle x, velocity v ¼ dx=dt, acceleration a ¼ dv=dt ¼ d2x=dt2, or a

combination of the three.

Most microscopic models are car-following models. Three branches of car-

following models will be discussed in Sects. 3.1 (safe-distance models), 3.2

(stimulus–response models) and 3.4 (action point models). Section 3.5 discusses

extensions of car-following models. Section 3.6 discusses the most recent branch of

microscopic models, namely cellular automata.

3.1 Safe-distance models

The earliest car-following models include a car-following rule based on safe

following distance. Pipes (1953) proposes to express the position of the leader as a

function of the position of its follower:

xn�1 ¼ xn þ d þ Tvn þ lvehn�1 ð1Þ

with d the distance between two vehicles at standstill and lvehn�1 length of the leading

vehicle, see Fig. 10. Tvn is interpreted by Pipes as the ‘legal distance’ between

vehicle n� 1 and n.

Kometani and Sasaki (1961) derive a car-following model from basic Newtonian

equations of motion. It is assumed that a driver acts such that he can avoid a

collision even if the leader would act ‘unpredictable’. Effectively, they replace the

distance at standstill d in Pipes’s model with a velocity-dependent term.

Furthermore, their formulation includes a time delay s. A positive s represents

that it takes some time between a change in the behavior of a vehicle and the actual

reaction of its follower to this change.

Gipps (1981) refines safe-distance car-following models by assuming that ‘the

driver travels as fast as safety and the limitations of the vehicle permit’:
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vnðt þ sÞ ¼ min

(
vnðtÞ þ 2:5amaxs 1� vnðtÞ

vmax

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� vnðtÞ

vmax

s
;

aminsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2mins

2 � amin 2
�
xn�1ðtÞ � xnðtÞ � sjam

�
� vnðtÞs� vn�1ðtÞ2

b

� �r ) ð2Þ

with amax maximum acceleration, amin maximum deceleration (minimum acceler-

ation), vmax the desired (maximum) velocity and sjam jam spacing. Jam spacing is the

Fig. 8 Details of the genealogical tree of traffic flow models showing the microscopic model family and
its most important relations
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Fig. 8 continued
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front-to-front distance between two vehicles at standstill. Effectively, Gipps’

approach introduces two regimes: one in which the vehicle itself limits its velocity

[the top part in Eq. (2)], and one in which the safe distance to the leader limits

velocity (the bottom part in the equation).

The model tree shows one more development in safe-distance models. In the

early years of car-following models, Newell (1961) proposed a simple safe-distance

model with delay:

vn ¼ vn
�
xn�1ðt � sÞ � xnðt � sÞ

�
ð3Þ

with the function vn at the right-hand side a fundamental relation, and s the delay

time. Later, he simplified the model further (Newell 2002):

xnðt þ snÞ ¼ xn�1ðtÞ � sjam;n ð4Þ

It is assumed that a vehicle follows the trajectory of its leader, translated by sn and
sjam;n. Leclercq et al. (2007) show that the model (4) is equivalent to a discretized

macroscopic model if the Daganzo fundamental relation is applied in the macro-

scopic model. To show this equivalence, the macroscopic LWR model is formulated

in the Lagrangian (moving) coordinate system. The formulation is also applied to

develop a hybrid model that couples the microscopic Newell car-following model

with the macroscopic LWR model (Leclercq 2007a). However, already Bourrel and

Lesort (2003) proposed an other hybrid model combining Newell ’s earlier safe-

distance model (3) with the LWR model. Finally, Laval and Leclercq (2010) pro-

pose a car-following model similar to (4) and extend it to include differences

between ‘timid’ and ‘aggressive’ drivers.

3.2 Stimulus–response models

The second branch of car-following models consists of stimulus–response models. It

is assumed that drivers accelerate (or decelerate) as a reaction to three stimuli:

Fig. 9 Vehicle numbering in microscopic traffic flow models (and macroscopic models in Lagrangian
formulation)

Fig. 10 Parameters of Pipes’
safe-distance model
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1. Own current velocity vn ¼ dxn
dt
.

2. Spacing with respect to leader sn ¼ xn�1 � xn.

3. Relative velocity with respect to leader (receding rate) _sn ¼ dsn
dt

¼ vn�1 � vn.

It can be seen from the model tree that in the late 1950s and early 1960s there was a

rapid development of these models (Chandler et al. 1958; Herman et al. 1959; Helly

1961). The efforts consolidated in the now famous GHR-model, named after Gazis

et al. (1961):

anðtÞ ¼ c

�
vn�1ðtÞ

�c1�
snðt � sÞ

�c2 _snðt � sÞ ð5Þ

c ðvn�1ðtÞÞc1
ðsnðt�sÞÞc2 is considered as the sensitivity of vehicle/driver n. c is the sensitivity

parameter and c1 and c2 are parameters that are used to fit the model to data. The

receding rate _snðt � sÞ is considered as the stimulus, the acceleration anðtÞ as the

response, hence the name ‘stimulus–response’ model.

Since those early developments, a lot of work has been done in calibrating and

validating these and other similar models. However, Brackstone and McDonald

(1999) concluded that stimulus–response models are being used less frequently,

mainly because of contradictory findings on parameter values. Nevertheless, the

model tree shows that since the mid-1990s many new models have been developed

and it seems that stimulus–response models have become popular again. Some of

the most popular more recent stimulus–response models are discussed below.

3.3 More recent stimulus–response models

Bando et al. (1995) introduce the optimal velocity model assuming that drivers

accelerate (or decelerate) to their optimal velocity, which is a function of the

headway:

anðtÞ ¼ c v�
�
snðtÞ

�
� vnðtÞ

� �
ð6Þ

v�ðsÞ ¼ vmax

�
tanhðs� c1Þ þ c2

�
ð7Þ

with c the sensitivity parameter and c1 and c2 parameters of the optimal velocity

function v�ðsÞ. Bando et al. (1998) extend their model by introducing delay s: on the
right-hand side of (6) t is replaced by t � s.

In the intelligent driver model by Treiber et al. (2000), the acceleration is

described by:

a ¼ amax 1� v

vmax

� �d

� s�ðv; _sÞ
s

� �2
 !

ð8Þ

with amax the maximum acceleration, vmax the maximum velocity and d the accel-

eration exponent. Similar to Gipps’ model, the IDM includes two regimes in the

desired space gap function (Treiber and Kesting 2010):
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s�ðv; _sÞ ¼ sjam þmax 0;Tvþ v _s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amaxamin

p
� �

ð9Þ

with amin the maximum deceleration (minimum acceleration), sjam the jam spacing

and T the minimum time headway.

The latest offshoots in the branch of stimulus–response models are based on

three-phase theory. The acceleration delay model by Kerner and Klenov (2006) and

a stochastic car-following model by the Kerner and Klenov (2002) take into account

the three traffic regimes proposed in three-phase traffic theory (Kerner and Rehborn

1996; Kerner 2009).

3.3.1 Generic stimulus–response model

Already in the earliest days of stimulus–response models Chandler et al. (1958)

introduced a generic formulation:

aðtÞ ¼ f
�
vðtÞ; sðt � sÞ; _sðt � sÞ

�
ð10Þ

It is interesting to note that, after reformulation, most safe-distance models also fit in

this framework. Therefore, the distinction between safe-distance and car-following

models is not as clear as suggested by e.g., Brackstone and McDonald (1999),

Hoogendoorn and Bovy (2001b). From our perspective, safe-distance models can be

classified as car-following models in which the assumption that drivers keep a safe

distance plays a large role. Therefore, the distinction rather lies in the assumptions

than in the model equations themselves.

Currently, Wilson (2008), Wilson and Ward (2011) use the generic formulation

(10) to qualitatively asses stimulus–response models. They perform stability

analyses and put forward constraints on the function f and its parameters. Assuming

no time delay (s ¼ 0), the requirements are:

– An equilibrium fundamental relation can be derived using the steady-state

solution of f : 8 s[ 0; 9 v ¼ VðsÞ[ 0 such that f ðv; s; 0Þ ¼ 0.

– Driving behavior is ‘rational’, leading to some constraints on the derivatives:

– If the velocity increases, the vehicle accelerates less (or decelerates more):

df=dv\0.

– If the headway increases, the vehicle accelerates more (or decelerates less):

df=ds� 0.

– If the relative velocity increases, the vehicle accelerates more (or decelerates

less): df=d _s� 0.

3.4 Action point models

The third, and last, branch of car-following models consists of action point models,

first introduced by Wiedemann (1974), Brackstone and McDonald (1999). However,

a decade earlier, Michaels (1965) discussed the underlying concept that drivers

would only react if they perceive that they approach a vehicle. Therefore, the

458 F. van Wageningen-Kessels et al.

123



approach rate or the headway must reach some perception threshold before a driver

reacts. The main advantage of action point models is that they incorporate, in

contrast to other car-following models, that: (1) at large headways driving behavior

is not influenced by that of other vehicles; and (2) at small headways driving

behavior is only influenced by that of other vehicles, if changes in relative velocity

and headway are large enough to be perceived.

If driving behavior is influenced by that of others, any of the previously

introduced safe-distance or stimulus–response models can be used to describe the

influence quantitatively.

3.5 Multi-class and multi-anticipation car-following models

Most car-following models described and analyzed in the literature assume

homogeneous vehicle–driver units, that is: vehicles and drivers all behave

identically. However, since each vehicle is modeled and simulated individually, it

is relatively straightforward to take into account the heterogeneity. In that case,

model parameters such as desired (maximum) velocity, sensitivity and reaction time

may vary over vehicles and drivers. In fact, most simulation tools based on car-

following models are multi-class, i.e., they do take into account heterogeneity.

Multi-anticipation is another way to extend car-following models. In this case,

more than one leading vehicle influences the behavior of a driver. The concept was

already used in the car-following model by Helly (1961) and Brackstone and

McDonald (1999). However, it has become widespread since Bexelius (1968)

developed a multi-anticipation version of the GHR model. More recently, multi-

anticipation was incorporated in the optimal velocity model (Lenz et al. 1999) and

the intelligent driver model (Treiber et al. 2006a). Finally, multi-anticipation and

multi-class have been combined to take into account that some drivers look further

ahead than others (Ossen and Hoogendoorn 2006).

3.6 Cellular-automata models

Cellular-automata models are usually categorized as microscopic models, even

though they are a different, and much younger, branch in the model tree. This is

because the movement of individual vehicles is modeled. The main difference with

car-following models is that space is discretized. The road is partitioned into cells of

usually 7.5 m long. In a cell either a vehicle might be present or not. The model

consists of a set of rules that determine when the vehicle will move to the next

(downstream) cell. The first cellular-automata traffic flow models was introduced by

Cremer and Ludwig (1986). The model by Nagel and Schreckenberg (1992) is

regarded as the prototype cellular-automata model (Knospe et al. 2004).

More recent developments combine cellular-automata models with the optimal

velocity car-following model Helbing and Schreckenberg (1999) or three-phase

theory Kerner et al. (2002). Some of the most popular cellular-automata models are

compared by Knospe et al. (2004).
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4 Mesoscopic models

Mesoscopic traffic flow models were developed to fill the gap between the family of

microscopic models that describe the behavior of individual vehicles, and the family

of macroscopic models that describe traffic as a continuum flow. Mesoscopic

models describe vehicle behavior in aggregate terms such as in probability

distributions. However, behavioral rules are defined for individual vehicles. The

family includes headway distribution models (Buckley 1968; Branston 1976) and

cluster models (Mahnke and Kühne 2007). We discuss the most popular branches,

namely, gas-kinetic models (Sect. 4.1) and macroscopic models derived from them

(Sect. 4.2). The mesoscopic model family and its most important relations is shown

in Fig. 11.

4.1 Gas-kinetic models

Gas-kinetic models were developed in analogy to models describing the motion of

large numbers of small particles (atoms or molecules) in a gas. When applied to

traffic flow, these models describe the dynamics of velocity distribution functions of

vehicles. Prigogine and Andrews (1960), Prigogine (1961) first introduce gas-

kinetic models describing traffic flow by the following partial differential equation:

o~q
ot

þ v
o~q
ox

¼ o~q
ot

� �
acceleration

þ o~q
ot

� �
interaction

ð11Þ

with ~q the reduced phase-space density, which can be interpreted as follows. At time

t, the expected number of vehicles between location x and xþ dx that drive with a

velocity between v and vþ dv is the integral of the reduced phase-space density

over this two-dimensional area:

expected#of veh’s in½x; xþ dxÞwith velocity in½v; vþ dvÞ

¼
Zxþdx

x

Zvþdv

v

~qðx; v; tÞ dx dv � ~qðx; v; tÞ dx dv
ð12Þ

where the approximation holds in the limit for an infinitesimal area with dx ! 0 and

dv ! 0. The left-hand side of (11) consists of a time derivative and an advection

term describing the propagation of the phase-space density with the vehicle

velocity. At the right-hand side, there is an acceleration term describing the

acceleration towards the equilibrium velocity. The other term at the right-hand side

is an interaction term, or collision term, describing the interaction between nearby

vehicles.

Paveri-Fontana (1975) improves this gas-kinetic model by relaxing the assump-

tion that the behavior of nearby vehicles is uncorrelated, which results in an adapted

interaction term. In the mid-1990s, a revival of gas-kinetic models occurred with the

development of a multi-lane version of Paveri-Fontana’s model, Helbing (1997).

Hoogendoorn and Bovy (2001a) propose a generic gas-kinetic traffic flow model
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including the previously mentioned models (Prigogine and Andrews 1960; Paveri-

Fontana 1975; Helbing 1997) as special cases.

4.2 Continuum gas-kinetic models

Gas-kinetic models are usually not applied in simulations as such, but a continuum

traffic flow model is derived and simulations are based on this continuum model.

Examples are the models by Phillips (1979), Treiber et al. (1999) and Helbing et al.

(2001). Hoogendoorn (1999) derives a multi-class multi-lane continuum traffic flow

model from a gas-kinetic model. Finally, Tampère et al. (2003) propose a

continuum gas-kinetic model that explicitly includes a simple car-following model.

5 Macroscopic models

Macroscopic traffic flow models form the fourth, and last, family in the model tree.

They describe traffic flow as if it were a continuum flow and are often compared to,

or derived in analogy with, continuum models for fluids. Individual vehicles are not

Fig. 11 Details of the genealogical tree of traffic flow models showing the mesoscopic model family and
its most important relations
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modeled, however aggregated variables such as (average) density and (average)

flow are used. In this section, we discuss the major branches of macroscopic models,

namely, kinematic wave models (Sect. 5.1), their multi-class extensions (Sect. 5.2)

and higher-order models (Sect. 5.3). The macroscopic model family and its most

important relations is shown in Fig. 12.

5.1 Kinematic wave models

Macrosopic traffic flow models were first introduced by Lighthill and Whitham

(1955b) and, independently, Richards (1956). Their model is the prototype

kinematic wave model, and was named the LWR model later. The dynamics of

traffic is described by a partial differential equation, which models the conservation

of vehicles:

oq
ot

þ o

ox

�
qðqÞ

�
¼ 0 ð13Þ

and a fundamental relation q ¼ qðqÞ.
Because of its simplicity, the LWR model has received both much attention and

critique. The model tree shows that this resulted in many offshoots. The main

drawback is that vehicles are assumed to attain the new equilibrium velocity

immediately after a change in the traffic state, which implies infinite acceleration.

This problem is addressed by higher-order models (see Sect. 5.3), and also by

variants of the LWR model. For example, Lebacque (2002), Leclercq (2007b)

introduce bounded-acceleration. An other drawback of the LWR model is that

breakdown (the transition from the free flow regime to the congestion regime)

always occurs at the same density and without capacity drop or hysteresis. This is

addressed by Daganzo et al. (1997), Laval and Daganzo (2006) and Jin (2010) by

introducing lane changing in a discretized version of the LWR model (Daganzo

1994; Lebacque 1996). The stochastic kinematic wave model proposed by

Hoogendoorn et al. (2009) uses breakdown probabilities to reflect that breakdown

might occur at different densities. Scattered fundamental diagrams are also

reproduced by other stochastic kinematic wave models such as the one introduced

in Jabari and Liu (2012, 2013).

5.2 Multi-class kinematic wave models

In the last decade, the branch of multi-class kinematic wave models has developed

quickly. This follows the earlier development of other types of multi-class models

(micro- and mesoscopic, higher-order macroscopic).

Daganzo (2002) proposes a multi-class multi-lane model based on the LWR

model. It is assumed that there are two types of drivers: ‘slugs’ who drive slow and

have little incentive to overtake, and ‘rabbits’ who attempt to drive fast and overtake

more often. Other multi-class kinematic wave models are single-pipe. This implies

that there might be multiple lanes, however they are not distinguished in the model

and overtakings or differences between the lanes are not taken into account

explicitly.
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The model tree shows that Wong and Wong (2002) were the first to introduce

such a single-pipe multi-class kinematic wave model. They propose to use a class-

specific version of the conservation equation for each of the U classes (13):

oqu
ot

þ oqu

ox
¼ 0 ð14Þ

with qu the class-specific density of class u, qu ¼ quvu the class-specific flow, and vu
the class-specific velocity. The class-specific velocity depends on the total vehicle

density. Effectively, the vertical axes of the density–velocity fundamental relations

are scaled differently for each class, see Fig. 13a, b. It has been found that multi-

class models are able to reproduce phenomena related to scatter in the fundamental

diagram better than mixed-class models (Treiber and Helbing 1999; Daganzo 2002;

Wong and Wong 2002; Ngoduy 2011; Bellomo and Dogbe 2011) and references

therein.

Fig. 12 Details of the genealogical tree of traffic flow models showing the macroscopic model family
and its most important relations
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Benzoni-Gavage and Colombo (2003), Chanut and Buisson (2003) include the

difference in length between the classes in the fundamental relation. Effectively,

they scale both axes of the fundamental relation differently for each class. Chanut

and Buisson show that, in the case of two classes, this leads to a three-dimensional

fundamental relation, see Fig. 6d.

Ngoduy and Liu (2007) use a similar approach for the fundamental relation with

state-dependent parameters. The parameters include the passenger car equivalent

(pce) value, which expresses how much a vehicle adds to the flow relatively to a

passenger car. For example, a light truck may count as 1.5 passenger cars, whereas a

Fig. 12 continued
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heavy truck may count as three passenger cars. This model was later extended to

include a discontinuous fundamental relation (Ngoduy 2010) and a stochastic term

was included (Ngoduy 2011).

The two-class model by Logghe and Immers (2008) includes a three-state

fundamental relation, see Fig. 13c. It consists of a free flow, a congestion and a

semi-congestion state. In semi-congestion one class (cars) behaves as if it is in a

congested regime (for increasing density, car flow decreases), while the other class

(trucks) behaves as if it is in free flow (for increasing density, truck flow increases).

Fastlane is a recent offshoot in the branch of multi-class kinematic wave models

(van Lint et al. 2008; van Wageningen-Kessels et al. 2014). It takes a different

approach without rescaling the fundamental relation. Instead, an effective density is

computed and this is used as input for the fundamental relation. The fundamental

relation now expresses the class specific velocity as a function of the effective

density, see Fig. 13d. The effective density is a weighted summation of the class-

specific densities:

q ¼
X
u

guðqÞqu ð15Þ

with gu the pce value:

guðqÞ ¼
xu

x1

¼ Lu þ TuvuðqÞ
L1 þ T1v1ðqÞ

ð16Þ

with xu the ‘space occupancy’ of one vehicle of class u. The space occupancy is

based on Pipes’ safe-distance car following model with Lu ¼ lþ d ¼ sjam;u the

vehicle spacing at standstill if there would only be vehicles of class u. Tu denotes the

minimum time headway of vehicles of class u.

The most recent multi-class kinematic wave model is the porous flow model by

Nair et al. (2012). It considers heterogeneous traffic on a two-dimensional roadway.

Small vehicles can drive through ‘pores’: openings between other vehicles. It is

developed to model disordered traffic flow with different types of vehicles such as

cars, scooters and bikes and without lanes.

Finally (in van Wageningen-Kessels et al. 2013, 2014), we show that a slight

generalization of Fastlane leads to a generic single-pipe multi-class kinematic wave

model, including all such models known from the literature and introduced before.

Fig. 13 Different shapes of two-class fundamental relations in. Solid lines indicate car velocity and
broken lines truck velocity (two-class fundamental relations.)
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5.3 Higher-order models

Higher-order models form the last branch of macroscopic traffic flow models. They

include an equation describing the acceleration (‘velocity dynamics’) towards the

equilibrium velocity described by a fundamental relation. Payne (1971) derived a

macroscopic traffic flow model from a simple stimulus–response car-following

model. It yielded a model consisting of the fundamental relation and two-coupled

partial differential equations, hence the name higher-order model. The partial

differential equations are the conservation of vehicles Eq. (13) and an equation

describing the velocity dynamics:

ov

ot
þ v

ov

ox
¼ v�ðqÞ � v

trelax
� c2

q
oq
ox

ð17Þ

with v�ðqÞ the equilibrium velocity described by the fundamental relation. The

parameters in the model are interpreted differently by different authors. For

example, Zhang (2001) interprets trelax as the relaxation time and c2 ¼ l=trelax is the
‘sound speed’ with l the anticipation coefficient.

Daganzo (1995) has argued that higher-order models are flawed because they are

not anisotropic, implying that in these models vehicles may drive backward. In

general, anisotropy means that characteristic waves are not faster than vehicles. In

the time Daganzo’s article was written, existing higher-order models were indeed

not anisotropic. The publication has lead to rapid developments of new higher order

models that resolve the problems. Probably the most well known of them is

the model by Aw and Rascle (2000). They propose, instead of Payne’s velocity

Eq. (17), the following one:

o

ot
vþ pðqÞð Þ þ v

o

ox
vþ pðqÞð Þ ¼ 0 ð18Þ

with pðqÞ a ‘pressure term’. The (increasing) function pðqÞ can have different

forms, but pðqÞ ¼ qc with some constant c[ 0 is considered as the prototype. In

this model, when parameters have been chosen correctly, characteristic waves

cannot be faster than vehicles. This is also the case in the model by Zhang (1999),

which is an adaptation of Payne’s model which includes hysteresis. A multi-class

version of Aw and Rascle’s model has been proposed later (Bagnerini and Rascle

2003). Furthermore, Lebacque et al. (2007) develop a generalized higher-order

model that includes the models by Aw and Rascle (2000), Zhang (1999) as special

cases.

Finally, Aw et al. (2002), Moutari and Rascle (2007) develop a hybrid model that

couples the model by Aw and Rascle with a microscopic version of it. Similarly to

Leclercq (2007a) (see Sect. 3.1) they simplify the coupling by applying the

Lagrangian formulation of the macroscopic model. There has been more recent

work on Lagrangian reformulations of both kinematic wave and higher order

models (Aw et al. 2002; Leclercq et al. 2007; van Wageningen-Kessels et al. 2010),

but they are not included in the model tree because they are only reformulations of

existing models and not new models.
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6 Discussion and conclusions

In the previous sections, many traffic flow models and their position in the model

tree have been discussed. In the model tree, several trends can be identified:

– Certain branches converge towards a generalized model. The generalized model

can be used to analyze qualitative properties of all models within that branch

(Wilson 2008; Hoogendoorn and Bovy 2001a; del Castillo 2012; van

Wageningen-Kessels et al. 2013, 2014).

– The LWR model is extended and adapted to better reproduce key phenomena

such as capacity drop, hysteresis and scattered fundamental diagrams (Zhang

1999; Lebacque 2002; Wong and Wong 2002).

– Multi-class versions of previously developed models are introduced (Hoogen-

doorn 1999; Bagnerini and Rascle 2003; Ossen and Hoogendoorn 2006), and

especially multi-class kinematic wave models (Wong and Wong 2002; Benzoni-

Gavage and Colombo 2003; Chanut and Buisson 2003; Zhang et al. 2006; Laval

and Daganzo 2006; Ngoduy and Liu 2007; Logghe and Immers 2008; van Lint

et al. 2008; van Wageningen-Kessels et al. 2014; Nair et al. 2012).

– Hybrid models combine microscopic and macroscopic models (Bourrel and

Lesort 2003; Leclercq 2007a; Moutari and Rascle 2007).

From the available literature we also observe that there is a tension between, on the

one hand, highly detailed models which are complex and supposed to describe

reality very accurately and, on the other hand, simple and traceable models that are

applicable in real-time applications such as proactive traffic management. We now

look into this in more detail, and will conclude with our own choices in traffic flow

models and suggestions for future research.

6.1 Macroscopic modeling and the continuum assumption

The first macroscopic traffic flow model was derived in analogy with a model for

river flow (Lighthill and Whitham 1955a, b). It has been argued that the differences

between fluid flow (including that of gasses) and traffic flow are too large to justify a

continuum approach. For example, Darbha et al. (2008), Tyagi et al. (2008), and

Bellomo and Dogbe (2011) argue that there are very few vehicles in the area of

interest (at most a few 100/km), unlike in for example many applications in

thermodynamics with around 1023 particles/cm3. However, Papageorgiou (1998)

uses the limited number of vehicles only as an argument that the descriptive

accuracy of macroscopic traffic flow models will never reach the same level as in

other domains such as Newtonian physics or thermodynamics. Furthermore, he

argues that the descriptive accuracy of macroscopic models remains low when

compared to models in other domains because vehicles and drivers all behave

differently, and change their behavior over time, unlike molecules which follow

(usually simple and constant) physical laws. Additionally, we argue that because

drivers all have similar goals (same direction, similar desired velocity) and usually

prefer not to accelerate or decelerate often, their behavior may be more alike than
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that of particles in a fluid. This implies that the continuum assumption is reasonable

for traffic flow, if one does not seek too much descriptive detail.

6.2 Microscopic models and parameters

Traffic flow models are often criticized for having many parameters, whose values

are difficult to estimate because of the dynamics of the system (Orosz et al. 2010).

This especially holds for microscopic models (Brackstone and McDonald 1999;

Bellomo and Dogbe 2011). An extreme example is the deterministic acceleration

time delay three-phase traffic flow model based on three-phase theory with 19

parameters (Kerner 2009). Microscopic models which include heterogeneity or

stochasticity may include even more parameters. Moreover, traffic flow models

often include parameters that are not easily observable or even have no physical

interpretation at all. For example, the constants c1 and c2 in the GHR model and the

acceleration exponent d in the IDM have no physical interpretation and are only

used to fit the simulation results to data. Other parameters such as maximum and

minimum acceleration amax and amin do have a physical interpretation, but are not

easily observable. To observe those parameters, one would need detailed trajectory

data including observations where this maximum (or minimum) acceleration is

realized. Similar arguments hold for models including a fundamental diagram. The

critical and jam density can only be observed if the data includes moments where

traffic is in such as state. Furthermore, traffic flow models are sometimes criticized

for having unrealistic parameter values. For example, Brackstone and McDonald

(1999) concluded that contradictory findings on parameter values c1 and c2 in the

GHR model are the main reason why it is being used less frequently. In general,

macroscopic models have less parameters which are more easily observable than

microscopic models.

6.3 Model applications

Finally, one has to consider the application of traffic flow models. Therefore,

descriptive and predictive accuracy have to be weighted against the need for fast

simulations. For example, proactive traffic management uses models to estimate,

predict and control traffic states. Therefore, models need to allow for fast

simulations. If optimal control is applied, it is furthermore desirable that the model

has a simple mathematical formulation. A continuum model with a simple

fundamental relation would be the most obvious choice. Moreover, though new

computers will be faster than current ones, the need for fast simulations will remain,

e.g., for the comparison of many scenario’s on large networks.

An other example of a model application is long-term planning and design of

roads. In such cases, fast simulations are of minor importance and it is much more

important that models give accurate predictions on future traffic states, allow the

evaluation of different scenarios, and may even take into account stochasticity. A

more accurate model, possibly a stochastic car-following model or a model with a

stochastic fundamental diagram would be a more obvious choice in these

applications.
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Wilson (2008) has argued that ‘we can expect over the next few years to

definitively resolve the conflict between the various traffic modeling schools’, using

novel, more detailed data. However, in each application the weights of the various

criteria may be different. That is why the model tree shows divergence and many

different branches have developed. Furthermore, this has lead to the development of

hybrid models. Even within one application it may be necessary to have detailed

simulation results in certain regions (e.g., the main roads of an urban area that needs

to be controlled) and a less detailed, but fast, result is sufficient in the rest of the

network (e.g., the roads surrounding the urban area that are not controlled).

6.4 Future research

The model tree can help in identifying future research and model development

directions. For example, most branches include multi-class models. However, the

development of multi-class models seems to lag behind for the branch of cellular-

automata models and for hybrid models. Future research is not limited to extending

each of the families and their branches further. More valuable results may be

obtained by combining ideas from different branches. For example, hybrid models

have been proposed but can be developed much further. They are able to combine

the advantages of different types of models. It would be interesting to combine, for

example, mesoscopic models with microscopic or macroscopic models. Further-

more, a new branch of hybrid models can combine mixed-class and multi-class

models. Finally, current generalized models include many models, but not all.

Further generalizations can be developed and used to efficiently compare existing

and new models.

In our research, we combine the trends in the model tree and develop a multi-

class kinematic wave traffic flow model (van Lint et al. 2008; van Wageningen-

Kessels et al. 2014; van Wageningen-Kessels 2013). Furthermore, we generalize the

model such that it allows for a qualitative analysis of the properties of this and

similar models (van Wageningen-Kessels et al. 2013; van Wageningen-Kessels

2013). Finally, we propose a reformulation in Lagrangian coordinates which

simplifies hybridization of the model (van Wageningen-Kessels et al. 2010; van

Wageningen-Kessels 2013).

Acknowledgments This research was conducted as part of the Ph.D research of the first author at

TRAIL research school and ITS Edulab.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and

the source are credited.

References

Aw A, Rascle M (2000) Resurrection of ‘‘second order models’’ of traffic flow? SIAM J Appl Math

60(3):916–938

Aw A, Klar A, Rascle M, Materne T (2002) Derivation of continuum traffic flow models from

microscopic follow-the-leader models. SIAM J Appl Math 63(1):259–278

Genealogy of traffic flow models 469

123



Bagnerini P, Rascle M (2003) A multiclass homogenized hyperbolic model of traffic flow. SIAM J Math

Anal 35(4):949–973

Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion

and numerical simulation. Phys Rev E Stat Nonlinear Soft Matter Phys 51:1035–1042

Bando M, Hasebe K, Nakanishi K, Nakayama A (1998) Analysis of optimal velocity model with explicit

delay. Phys Rev E Stat Nonlinear Soft Matter Phys 58(5):5429–5435

Bellomo N, Dogbe C (2011) On the modeling of traffic and crowds: a survey of models, speculations, and

perspectives. SIAM Rev 53:409–463

Benzoni-Gavage S, Colombo RM (2003) An n-populations model for traffic flow. Eur J Appl Math

14(05):587–612

Bexelius S (1968) An extended model for car-following. Transp Res 2(1):13–21

Bourrel E, Lesort JB (2003) Mixing microscopic and macroscopic representations of traffic flow hybrid

model based on Lighthill–Whitham–Richards theory. Transp Res Rec J Transp Res Board

1852:193–200

Brackstone M, McDonald M (1999) Car-following: a historical review. Transp Res Part F Traffic Psychol

Behav 2(4):181–196

Branston D (1976) Models of single lane time headway distributions. Transp Sci 10(2):125–148

Buckley DJ (1968) A semi-Poisson model of traffic flow. Transp Sci 2(2):107–133

Cassidy MJ, Bertini RL (1999) Some traffic features at freeway bottlenecks. Transp Res Part B Methodol

33(1):25–42

del Castillo J (2012) Three new models for the flow–density relationship: derivation and testing for

freeway and urban data. Transportmetrica 8(6):443–465

Chandler R, Herman R, Montroll E (1958) Traffic dynamics: studies in car following. Oper Res

6(2):165–184

Chanut S, Buisson C (2003) Macroscopic model and its numerical solution for two-flow mixed traffic

with different speeds and lengths. Transp Res Rec J Transp Res Board 1852:209–219

Cremer M, Ludwig J (1986) A fast simulation model for traffic flow on the basis of boolean operations.

Math Comput Simul 28(4):297–303

Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent

with the hydrodynamic theory. Transp Res Part B Methodol 28(4):269–287

Daganzo CF (1995) Requiem for second-order fluid approximations of traffic flow. Transp Res Part B

Methodol 29(4):277–286

Daganzo CF (2002) A behavioral theory of multi-lane traffic flow. Part I: long homogeneous freeway

sections. Transp Res Part B Methodol 36(2):131–158

Daganzo CF, Lin WH, del Castillo J (1997) A simple physical principle for the simulation of freeways

with special lanes and priority vehicles. Transp Res Part B Methodol 31(2):103–125

Darbha S, Rajagopal KR, Tyagi V (2008) A review of mathematical models for the flow of traffic and

some recent results. Nonlinear Anal Theory Methods Appl 69(3):950–970 (trends in Nonlinear

Analysis: in Honour of Professor V.Lakshmikantham)

Drake JS, Schofer JL, May AD (1967) A statistical analysis of speed–density hypotheses. Highw Res Rec

154:53–87

Edie L (1961) Car-following and steady-state theory for noncongested traffic. Oper Res 9(1):66–76

Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res

9(4):545–567

Gipps PG (1981) A behavioural car-following model for computer simulation. Transp Res Part B

Methodol 15(2):105–111

Greenshields BD (1934) The photographic method of studying traffic behavior. In: Proceedings of the

13th annual meeting of the highway research board, pp 382–399

Greenshields BD (1935) A study of traffic capacity. In: Proceedings of the 14th annual meeting of the

highway research board, pp 448–477

Helbing D (1997) Modeling multi-lane traffic flow with queuing effects. Phys A Stat Theor Phys

242(1–2):175–194

Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:1067–1141

Helbing D, Schreckenberg M (1999) Cellular automata simulating experimental properties of traffic flow.

Phys Rev E Stat Nonlinear Soft Matter Phys 59(3)

Helbing D, Hennecke A, Shvetsov V, Treiber M (2001) Master: macroscopic traffic simulation based on a

gas-kinetic, non-local traffic model. Transp Res Part B Methodol 35(2):183–211

470 F. van Wageningen-Kessels et al.

123



Helly W (1961) Simulation of bottlenecks in single lane traffic flow. In: Herman R (ed) Theory of traffic

flow 1959, proceedings. Elsevier, Amsterdam, pp 207–238

Herman R, Montroll EW, Potts RB, Rothery RW (1959) Traffic dynamics: analysis of stability in car

following. Oper Res 7(1):86–106

Hoogendoorn SP (1999) Multiclass continuum modelling of multilane traffic flow. PhD thesis, Delft

University of Technology/TRAIL Research school, Delft

Hoogendoorn SP, Bovy PHL (2001a) Generic gas-kinetic traffic systems modeling with applications to

vehicular traffic flow. Transp Res Part B Methodol 35(4):317–336

Hoogendoorn SP, Bovy PHL (2001b) State-of-the-art of vehicular traffic flow modeling. Proc Inst Mech

Eng Part I J Syst Control Eng 215:283–303

Hoogendoorn SP, van Lint JWC, Knoop VL (2009) Dynamic first-order modeling of phase-transition

probabilities. In: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque JP, Schreckenberg

M (eds) Traffic Granul Flow 07. Springer, Berlin, pp 85–92

Jabari SE, Liu HX (2012) A stochastic model of traffic flow: theoretical foundations. Transp Res Part B

Methodol 46(1):156–174

Jabari SE, Liu HX (2013) A stochastic model of traffic flow: Gaussian approximation and estimation.

Transp Res Part B Methodol 47:15–41

Jin WL (2010) A kinematic wave theory of lane-changing traffic flow. Transp Res Part B Methodol

44:1001–1021

Kerner BS (2004) Three-phase traffic theory and highway capacity. Phys A Stat Theor Phys 333:379–440

Kerner BS (2009) Introduction to modern traffic flow theory and control: the long road to three-phase

traffic theory. Springer, New York

Kerner BS, Klenov SL (2002) A microscopic model for phase transitions in traffic flow. J Phys A Math

Gen 35(3). doi:10.1088/0305-4470/35/3/102

Kerner BS, Klenov SL (2006) Deterministic microscopic three-phase traffic flow models. J Phys A Math

Gen 39(8). doi:10.1088/0305-4470/39/8/002

Kerner BS, Rehborn H (1996) Experimental features and characteristics of traffic jams. Phys Rev E Stat

Nonlinear Soft Matter Phys 53:1297–1300

Kerner BS, Klenov SL, Wolf DE (2002) Cellular automata approach to three-phase traffic theory. J Phys

A Math Gen 35(47). doi:10.1088/0305-4470/35/47/303

Knospe W, Santen L, Schadschneider A, Schreckenberg M (2004) Empirical test for cellular automaton

models of traffic flow. Phys Rev E Stat Nonlinear Soft Matter Phys 70(1 Pt 2):016115

Kometani E, Sasaki T (1961) Dynamic behaviour of traffic with a nonlinear spacing–speed relationship.

In: Herman R (ed) Theory of traffic flow 1959, proceedings. Elsevier, Amsterdam, pp 105–119

Laval JA (2011) Hysteresis in traffic flow revisited: an improved measurement method. Transp Res Part B

Methodol 45(2):385–391

Laval JA, Daganzo CF (2006) Lane-changing in traffic streams. Transp Res Part B Methodol

40(3):251–264

Laval JA, Leclercq L (2010) A mechanism to describe the formation and propagation of stop-and-go

waves in congested freeway traffic. Philos Trans R Soc A Math Phys Eng Sci 368(1928):4519–4541

Lebacque JP (1996) The Godunov scheme and what it means for first order traffic flow models. In: Lesort

JB (ed) Transportation and traffic theory. Proceedings of the 13th international symposium on

transportation and traffic theory, Pergamon, pp 647–677

Lebacque JP (2002) A two phase extension of the LWR model based on the boundedness of traffic

acceleration. In: Taylor M (ed) Transportation and traffic theory in the 21st century. Proceedings of

the 15th international symposium on transportation and traffic theory, pp 697–718

Lebacque JP, Mammar S (2007) Generic second order traffic flow modelling. In: Allsop RE, Bell MGH,

Heydecker BG (eds) Transportation and traffic theory 2007. Elsevier, Oxford, pp 755–776

Leclercq L (2007a) Hybrid approaches to the solutions of the ‘‘Lighthill–Whitham–Richards’’ models.

Transp Res Part B Methodol 41(7):701–709

Leclercq L (2007b) A new numerical scheme for bounding acceleration in the LWR model. In:

Heydecker BG (ed) Mathematics in transport. selected. Proceedings of the 4th IMA international

conference on mathematics in transport, Elsevier, Amsterdam, pp 279–292

Leclercq L, Laval J, Chevallier E (2007) The Lagrangian coordinates and what it means for first order

traffic flow models. In: Allsop RE, Bell MGH, Heydecker BG (eds) Transportation and traffic theory

2007. Elsevier, Oxford, pp 735–753

Lenz H, Wagner CK, Sollacher R (1999) Multi-anticipative car-following model. Eur Phys J B Condens

Matter Complex Syst 7:331–335

Genealogy of traffic flow models 471

123

http://dx.doi.org/10.1088/0305-4470/35/3/102
http://dx.doi.org/10.1088/0305-4470/39/8/002
http://dx.doi.org/10.1088/0305-4470/35/47/303


Li MZF (2008) A generic characterization of equilibrium speed–flow curves. Transp Sci 42(2):220–235

Lighthill MJ, Whitham GB (1955a) On kinematic waves I: flood movement in long rivers. Proc R Soc

Lond Ser A Math Phys Sci 229(1178):281–316

Lighthill MJ, Whitham GB (1955b) On kinematic waves II: a theory of traffic flow on long crowded

roads. Proc R Soc Lond Ser A Math Phys Sci 229(1178):317–345

van Lint JWC, Hoogendoorn SP, Schreuder M (2008) Fastlane: a new multi-class first order traffic flow

model. Transp Res Rec J Transp Res Board 2088:177–187

Logghe S, Immers LH (2008) Multi-class kinematic wave theory of traffic flow. Transp Res Part B

Methodol 42(6):523–541

Mahnke R, Kühne R (2007) Probabilistic description of traffic breakdown. In: Schadschneider A, Pöschel
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