
Ladner et al. BMC Evolutionary Biology 2012, 12:217
http://www.biomedcentral.com/1471-2148/12/217

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
RESEARCH ARTICLE Open Access
Protein evolution in two co-occurring types
of Symbiodinium: an exploration into the
genetic basis of thermal tolerance in
Symbiodinium clade D
Jason T Ladner*, Daniel J Barshis and Stephen R Palumbi
Abstract

Background: The symbiosis between reef-building corals and photosynthetic dinoflagellates (Symbiodinium) is an
integral part of the coral reef ecosystem, as corals are dependent on Symbiodinium for the majority of their energy
needs. However, this partnership is increasingly at risk due to changing climatic conditions. It is thought that
functional diversity within Symbiodinium may allow some corals to rapidly adapt to different environments by
changing the type of Symbiodinium with which they partner; however, very little is known about the molecular
basis of the functional differences among symbiont groups. One group of Symbiodinium that is hypothesized to be
important for the future of reefs is clade D, which, in general, seems to provide the coral holobiont (i.e., coral host
and associated symbiont community) with elevated thermal tolerance. Using high-throughput sequencing data
from field-collected corals we assembled, de novo, draft transcriptomes for Symbiodinium clades C and D. We then
explore the functional basis of thermal tolerance in clade D by comparing rates of coding sequence evolution
among the four clades of Symbiodinium most commonly found in reef-building corals (A-D).

Results: We are able to highlight a number of genes and functional categories as candidates for involvement in
the increased thermal tolerance of clade D. These include a fatty acid desaturase, molecular chaperones and
proteins involved in photosynthesis and the thylakoid membrane. We also demonstrate that clades C and D
co-occur within most of the sampled colonies of Acropora hyacinthus, suggesting widespread potential for this
coral species to acclimatize to changing thermal conditions via ‘shuffling’ the proportions of these two clades from
within their current symbiont communities.

Conclusions: Transcriptome-wide analysis confirms that the four main Symbiodinium clades found within corals
exhibit extensive evolutionary divergence (18.5-27.3% avg. pairwise nucleotide difference). Despite these
evolutionary distinctions, many corals appear to host multiple clades simultaneously, which may allow for rapid
acclimatization to changing environmental conditions. This study provides a first step toward understanding the
molecular basis of functional differences between Symbiodinium clades by highlighting a number of genes with
signatures consistent with positive selection along the thermally tolerant clade D lineage.
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Background
The symbiosis between stony corals (Scleractinia) and
photosynthetic dinoflagellates in the genus Symbiodinium
(zooxanthellae) allows for increased productivity in nutri-
ent poor waters and forms the base of the coral reef eco-
system [1]. It is estimated that most corals receive up to
90% of their energy requirements from their symbionts
[2]; meanwhile, the coral provides the dinoflagellates with
shelter and inorganic nutrients necessary for photosyn-
thesis [3]. This symbiosis is largely responsible for the suc-
cess of stony corals over the last 200 Myr [4]; however, the
future of this vital partnership is uncertain in the face
of global climate change [5-7]. Many coral/zooxanthellae
‘holobionts’ (i.e., cnidarian host and associated microbial
community, sensu [8]) appear to be living at, or near, their
upper thermal limits across a range of different regional
thermal environments, with high temperature anomalies
of just 1–2°C above mean local summer maximums
known to cause disruption of photosynthesis, coral bleach-
ing and even death [9-11]. Therefore, in the absence of
significant acclimatization or adaptation, corals will likely
face high levels of regional mortality over the next few
decades [12-14].
One potential mechanism for corals to acclimatize to

warming oceans is through a change in their symbiont
partner (i.e., ‘shuffling’ or ‘switching’) [15,16]. Within
Symbiodinium there are at least nine distinct phylogenetic
clades (or subgenera) [17,18]. Four of these clades are
commonly found in Scleractinian corals (clades A-D) and
many coral species are known to associate with multiple
symbiont clades, even within a single coral colony [19-21].
These four clades are estimated to have diverged between
30–65 Mya, and over this time they have accumulated
important functional differences [10,18]. For example,
clade A appears to have the unique ability to produce
UV-protecting mycosporine-like amino acids [22], which
may be partially responsible for its shallow distribution
throughout the Caribbean [23] and its relatively enhanced
ability to resist bleaching [24].
Clade D Symbiodinium are also of considerable interest

because, in general, they appear to enhance the coral holo-
biont’s ability to deal with high temperatures. Evidence for
the increased thermal tolerance of clade D comes from a
variety of coral genera, geographic locations and data
types. First, many studies have documented increased
abundances of clade D Symbiodinium, across multiple
genera of coral, in habitats characterized by unusually high
temperatures (e.g., Palau: [25]; Thailand: [26]; American
Samoa: [27,28]). Second, experimental work has demon-
strated that, in multiple species, association with clade D
Symbiodinium leads to reduced levels of bleaching and
greater maintenance of photosynthetic efficiency during
heat stress (Pocillopora: [29]; Acropora: [30,31]). Third,
several studies examining symbiont communities pre- and
post- natural bleaching events have demonstrated that
corals hosting clade D survive in higher proportions than
corals of the same species hosting clade C and that some
corals change from clade C to clade D after bleaching
(Pocillopora: [32]; Acropora: [33]). Although these patterns
are not universal across all corals (e.g., [25,34]), the zoo-
xanthellae in clade D [18] seem to possess functional
differences, which allow clade D symbionts to provide
greater thermal tolerance to the coral holobiont in many
different geographic locations and host associations.
Despite the plethora of ecological and physiological

data supporting increased thermal tolerance of clade D
zooxanthellae, little is known about the particular adap-
tations that have led to this phenotype. One promising
method for highlighting these functional differences is
through the comparison of rates of protein sequence
evolution (synonymous vs. non-synonymous substitu-
tions) along closely related lineages (e.g., [35,36]). Here,
we utilize high-throughput sequence data to construct
partial transcriptome assemblies from natural popula-
tions of clades C and D extracted from field-collected
samples of a single coral species (Acropora hyacinthus).
We then examine rates of protein evolution along the C
and D lineages with comparison to EST libraries from
isolates of clades A and B [37]. These high-throughput
sequences also provide us with a detailed view into the
co-occurrence of clades C and D within colonies of
A. hyacinthus, which has important implications regarding
potential mechanisms for acclimatization via a change in
symbiont communities.
We are able to highlight a number of genes and func-

tional categories as candidates for involvement in the
increased thermal tolerance of clade D. These include a
fatty acid desaturase, molecular chaperones and proteins
involved in photosynthesis and the thylakoid membrane.
We also demonstrate that clades C and D co-occur
within most colonies of A. hyacinthus, suggesting wide-
spread potential for this coral species to acclimatize to
changing thermal conditions via ‘shuffling’ the propor-
tions of these two clades from within their current sym-
biont communities.

Methods
Sample collection
We obtained genetic material for Symbiodinium clades
C and D directly from coral tissue collected from the
field. Sixteen colonies of A. hyacinthus were sampled
from the backreef pools on the south side of Ofu Island,
American Samoa (14°11’S, 169°36’W). To increase the
number of genes expressed (and therefore sequenced),
two samples (~2 cm) were collected from each colony
and transferred to nearby holding tanks, which were
maintained at two distinct thermal regimes (one branch
from each colony in each condition). One condition was
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maintained at ambient air temperature (26.8 – 34.5°C,
mean = 29.2°C) while the temperature of the other condi-
tion was elevated by ~2.7°C (27 – 37.6°C, mean = 31.9°C).
After 72 hours, all samples were preserved in a high-
concentration trisodium citrate buffer.

Extraction and sequencing
Total RNA was extracted from each sample using a modi-
fied TRIzol (GibcoBRL/Invitrogen, Carlsbad, CA, USA)
protocol. Approximately 150-200mg of coral tissue and
skeleton was placed in 1ml of TRIzol and homogenized
for 2 min by vortexing with ~100 μl of 0.5 mm Zirconia/
Silica Beads (BioSpec Products, Inc., Bartlesville, OK,
USA). Resulting tissue/TRIzol slurry was removed by cen-
trifugation and standard TRIzol extraction was performed
according to manufacturer’s specifications with the re-
placement of 250 μl of 100% isopropanol with 250 μl of
high salt buffer (0.8 M Na citrate, 1.2 M NaCl) during the
final precipitation step. Resulting RNA pellet was resus-
pended in 12 μl of DEPC treated H2O.
Messenger-RNA (mRNA) was isolated from total RNA

using the micro fast-track mRNA isolation kit (Invitrogen)
and an overnight precipitation at −80°C. Between 40 ng
and 1 μg of mRNA was used in Illumina library construc-
tion as in Beck et al. [38]. Briefly, mRNA was converted
to double stranded cDNA in a PCR reaction contai-
ning random hexamer primers, Superscript III Reverse
Transcriptase (Invitrogen) and supplied buffer. Reactions
were cleaned with the MinElute Reaction Cleanup Kit
(Qiagen, Valencia, CA USA). Double-stranded, paired-end
oligonucleotide adapters were ligated onto the ds-cDNA
using T4 DNA Ligase (Invitrogen) at 16°C for 4 hours.
Resulting libraries were size selected for 200-300bp frag-
ments using agarose gel electrophoresis and purified using
the MinElute Gel Extraction Kit (Qiagen). The final library
was generated by PCR amplification of the linker-ligated
cDNA using P5 and P7 primers and Phusion PCR Master
Mix (New England Biolabs, Ipswitch, MA, USA) using the
following cycle program: initial denature at 98°C for 30
sec, 15 cycles of 98°C for 10 sec, 65°C for 30 sec, 72°C for
30 sec and a final extension at 72°C for 5 min.
In total, 31 libraries were constructed and sequen-

ced using the Illumina Genome Analyzer II (Illumina;
Additional file 1: Table S1). One of the elevated tempe-
rature samples (colony 3) was not sequenced due to poor
RNA extraction. Seven of these libraries were sequenced
by Illumina, Inc. (San Diego, CA) with a 76 base-pair (bp)
paired-end sequencing length (152 bp per sequence total),
four libraries were sequenced using single-end sequencing
and a length of 36 bp in the lab of Dr. Arend Sidow
(Stanford University), and the remaining 20 libraries were
sequenced by Eureka Genomics (Hercules, CA). The latter
20 libraries were all done with single end sequencing,
three were 72 bp reads the rest were 36 bp. An additional
36 bp paired-end lane was run for four of these libraries
(colony 1, control and heated; colony 3, control; colony 9,
heated) at the Stanford Functional Genomics Facility.
These four additional lanes generated few reads due to
concentration problems but are still incorporated in the
following analyses.
Poor quality portions (Phred quality < 20) were trimmed

from the ends of the raw sequences using the FASTX-
Toolkit, and any reads < 20 bp were discarded (fastq_
quality_trimmer -t 20 -l 20; http://hannonlab.cshl.edu/
fastx_toolkit/). The FASTX-Toolkit was also used to remove
any potential adapter sequences (fastx_clipper -l 20 -n).

Symbiodinium community characterization
We estimated the proportion of each clade of Symbiodinium
at the individual sample-level (i.e., mRNA library-level) by
counting the abundance of clade specific reads at three loci
that are known to be highly divergent between clades: in-
ternal transcribed spacer regions 1 and 2 (ITS1, ITS2) and
chloroplast 23S rRNA (cp23S; Additional file 2: Table S2).
Preliminary analyses, with reference sequences representing
the full extent of Symbiodinium diversity, indicated that our
coral samples contained only two types of Symbiodinium,
one from clade C and the other from clade D (not shown).
This is consistent with previous work done on these coral
populations, which detected only a single genotype from
each clade across 32 colonies of A. hyacinthus (using ITS1
and cp23S) [28]. Therefore, only these two types were con-
sidered in the final community characterizations (referred
to in this manuscript as ‘clade C’ and ‘clade D’). Clade C
and D ITS1 and cp23S reference sequences are from [28].
Clade-specific ITS2 sequences were mined from a prelimin-
ary de novo assembly of the data based on nucleotide simi-
larity to the reported sequences from GenBank (NCBI).
This resulted in two ITS2 sequences with best hits to type
C3k (100% match) and type D2 (1bp different).
Each sequence library was mapped to these six clade-

specific sequences using BWA [39]. Default settings were
used except that we allowed for about 10% divergence be-
tween individual reads and the reference (−n 0.005), and to
allow for an uneven distribution of mismatches within each
read we increased the number of mismatches possible
within the initial seeds (−k 5). These settings allow for se-
quence variability/sequencing error within populations
while still preventing reads from aligning to the incorrect
clade, and in practice we found these settings were suffi-
ciently permissive to allow all reads from these loci to
match (i.e., there was no substantial increase in the number
of mapped reads with more permissive settings). For
paired-end lanes, only the forward sequences were mapped.
Duplicate reads were identified using Picard v1.43
(MarkDuplicates.jar; http://picard.sourceforge.net/), and
clade proportions at each locus were calculated based on
the number of well-mapped, non-duplicate reads (≥25 bp,

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://picard.sourceforge.net/
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mapping quality ≥30) to each of the clade-specific
sequences, controlling for slight differences in sequence
lengths between clades.
Each of these rRNA sequences is known to be multi-

copy and therefore copy number differences between
our Symbiodinium types, if present, could impact the
number of rRNA sequences in our samples. However, by
independently estimating proportions of the two clades
from loci on two different genomes (nuclear and chloro-
plast), we have been able to demonstrate that any poten-
tial copy number differences have a minimal effect on
our clade proportion estimates (see Results). In order to
further validate these proportions, we also re-estimated
the proportions of each clade by mapping all sequencing
reads to the full transcriptomes that resulted from the
de novo assembly (see below).

De novo transcriptome assembly
Separate de novo assemblies were conducted for the two
clades of Symbiodinium, using only the sequence libraries
with ≥95% of a single Symbiodinium clade (averaged
across the three clade-specific loci, see above). A small
percentage of sequences from each non-focal clade are
not expected to strongly bias the resulting assemblies be-
cause contigs were constructed using the consensus se-
quence at each base position. However, sequences
originating from the non-focal clade may be incorporated
into the transcriptome assembly if the two clades have
highly divergent levels of expression (i.e., very low in the
focal clade and very high in the non-focal clade). This situ-
ation is likely to be uncommon and most importantly will
not result in significantly high dN/dS estimates.
The assemblies were conducted using CLC Genomics

Workbench (v. 4, CLC Bio). Default setting were used ex-
cept that the short read (<56 bases) penalties were adjusted
to only allow for a maximum of five unaligned bases at the
ends of reads, while still allowing for 2 mismatches or two
indels (mismatch cost of 1, insertion and deletion costs of
2, limit of 5). Also the minimum length fraction of the long
reads was decreased to 0.27 to help form contigs across
low coverage regions. Our libraries contain a mixture of
sequences from many members of the coral holobiont, in-
cluding Symbiodinium, the cnidarian host and other asso-
ciated microbes [8,40]. Therefore, we identified putative
Symbiodinum contigs for each assembly based on se-
quence similarity (BLASTN ≥100bp, ≥75% identity or
TBLASTX ≥50 amino acids, ≥85% identity) to ESTs from
Symbiodinium sp. KB8 (clade A), sp. MF1.05b (clade B;
http://medinalab.org/zoox/) and sp. C3 (clade C) [41], and
Polarella glacialis (unpublished data) [42]. Potential coral
contamination was then identified and removed based on
sequence similarity (BLASTN ≥100bp, ≥75% identity) to a
wide array of cnidarian cDNA databases: A. hyacinthus and
A. millepora larval ESTs from the Matz Lab, UT-Austin
[42] (http://www.bio.utexas.edu/research/matz_lab/matzlab/
Data.html), A. millepora larval ESTs from the Miller lab,
JCU [43], predicted transcripts from the A. digitifera gen-
ome [44] and predicted transcripts from the Nematostella
vectensis genome [45]. Ribosomal RNA contamination was
then removed based on significant nucleotide similarity
(BLASTN, e-value ≤ 1×10-8) to the SILVA LSU and SSU
rRNA databases (http://www.arb-silva.de/), and finally,
MEGAN 4 [46] was used to remove any additional
sequences likely to be contamination based on similarity to
metazoans, fungi, bacteria or archaea. The MEGAN settings
were altered slightly from the defaults: min. support = 1,
min. score = 200, top percent = 20. These settings were
chosen so that contigs would only be removed if they exhib-
ited strong matches solely to groups that are distantly
related to Symbiodinium. However, the settings were also
conservative in that they only required a single match to a
particular taxon for this taxon to be included in the analysis.
The remaining de novo contigs for clade C were then

‘meta-assembled’ based on sequence similarity to EST
sequences from Symbiodinium sp. C3 [41] using custom
python scripts. Our scripts join contigs based on nucleo-
tide similarity to the same EST in a reference database.
Our de novo contigs were joined if they had ‘good’ top
blast hits (BLASTN, ≥100bp and ≥85% identity) to the
same sp. C3 EST, if the reference sequence regions
matched by the two contigs were overlapping or directly
adjacent and if the contigs were ≥95% identical in any
region of overlap. All scripts are available upon request.

Contig annotation
De novo contigs were annotated to gene ontology (GO)
categories based on translated amino acid similarity to the
Swiss-Prot sequence database (BLASTX, e-value ≤1×10-5).
Extraction of GO annotations from Uni-Prot flat files was
automated using a custom perl script.

Ortholog identification and sequence alignment
For the analyses of sequence divergence between clades,
we also included publically available transcriptome assem-
blies from Symbiodinium sp. KB8 (clade A) and sp.
MF1.05b (clade B) [37] (http://medinalab.org/zoox/). Pro-
tein sequences were identified and aligned identically for
all four Symbiodinium clades. In general, we took caution
at each step to avoid comparison of non-orthologous
sequences. This inevitably means that extremely divergent
genes and genes with closely related paralogs were
excluded from our analyses.
Open reading frames (ORFs) and protein sequences

were determined for each contig using OrfPredictor [47].
To minimize the number of erroneous protein predic-
tions, we only utilized sequences if they fell into one of
two categories: 1) significant similarity to a known pro-
tein sequence (BLASTX to NCBI’s nr, evalue ≤1×10-5) or

http://medinalab.org/zoox/
http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html
http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html
http://www.arb-silva.de/
http://medinalab.org/zoox/
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Figure 1 Phylogenetic tree of Symbiodinium clades A-D used in
PAML analyses investigating rates of amino acid sequence
evolution. Grey branches indicate the focal lineages leading to
Symbiodinium clades C and D. Numbers indicate estimated
divergence times (in millions of years) based on [10,18].
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2) predicted protein sequence ≥200 amino acids long.
The second category was included because exploratory
analyses both utilizing and not utilizing BLASTX infor-
mation have indicated that OrfPredictor is very accurate
at identifying the correct reading frame for sequences
with ≥200 amino acids, even without the use of BLASTX
information (<5% error rate).
InParanoid v4.1 [48] was then used to identify ortho-

logous sequences between clades based on protein-level
similarity. InParanoid automates the identification of
orthologs using a reciprocal BLAST based approach. In
total, we conducted five pairwise comparisons among
clades in order to construct 3- and 4-taxa ortholog
groups: C-D, C-A, C-B, D-A and D-B. In each compari-
son, we also utilized protein sequences from three
strains of Toxoplasma gondii (GT1, ME49 and VEG)
[49] as an outgroup. If both sequences from a top ortho-
log pair in the C-D analysis shared the same top ortho-
log match in clade B, these three sequences were
combined into a 3-taxa ortholog group (BCD). Similarly,
if the same C and D sequences also shared the same top
A ortholog, a 4-taxa ortholog group was formed
(ABCD). Ortholog pairs from C-D with no shared clade
B ortholog were treated as 2-taxa ortholog groups (CD).
Orthologous protein sequences were aligned using
MUSCLE [50] and PAL2NAL [51] was used to construct
nucleotide alignments. PAL2NAL was also used to re-
move gaps and in frame stop codons. Levels of nucleo-
tide sequence divergence between clades were calculated
for each ortholog group in a pairwise manner using cus-
tom python scripts; positions with ambiguous bases were
not included in these calculations.

Rates of protein evolution
PAML v4 [52] was used to explore rates of synonymous
and non-synonymous nucleotide substitutions in a phylo-
genetic context (dN/dS or ω). The dN/dS ratio is one of the
most fundamental and powerful tests for identifying genes
that have been affected by positive selection because it
highlights loci with higher than expected rates of non-
synonymous substitution. However, a high dN/dS ratio can
be also achieved by lower than expected levels of syn-
onymous substitution. Therefore, dN/dS results, in general,
should be interpreted with an appropriate level of caution.
For 2-taxa ortholog groups, the codeml package was

used to estimate levels of dN/dS. With only two taxa, it
is not possible to polarize rates of evolution along spe-
cific branches; however, these rates are able to highlight
genes with generally high levels of amino acid substitu-
tions, which may have been affected by positive selection
in one or both clades. We only report results of analyses
with a total tree length ≤4 (# substitutions per codon).
For the 3- and 4-taxa ortholog groups, branch-models in

the codeml package were used to separately test for
significantly different rates of dN/dS along the clade C and
clade D lineages. Figure 1 illustrates the phylogenetic tree
used in these analyses (based on [53]). Specifically, for each
group of orthologs we first ran an analysis with a single ω
(dN/dS) across the entire tree (model=0). This first analysis
served as our null model and was also used to estimate the
degree of divergence between orthologs (i.e., total tree
length). Simulation studies have demonstrated that PAML
is able to remain informative even with large amounts of
sequence divergence, especially when the phylogenetic tree
contains many branches [54,55]. Regardless, we chose to
be somewhat conservative by setting a maximum tree
length cutoff (# substitutions per codon) of 2 times the
number of taxa in the tree. This resulted in a maximum
tree length of 8 for 4-taxa analyses and 6 for 3-taxa ana-
lyses. If a 4-taxa ortholog group had a tree that did not
meet this threshold, it was then run as a 3-taxa analysis.
Similarly, if a 3-taxa group had a tree that was too long, it
was run as a 2-taxa analysis. In addition to focusing
the analysis on the most informative subset of the data,
these cutoffs also helped to screen for poor nucleotide
alignments.
For each ortholog group that passed our tree length

cutoff, we then ran two analyses to look for contigs
evolving at different rates along our focal lineages: 1)
one rate along the clade C lineage (ωC) and a second
rate in the rest of the tree (ωBG) and 2) one rate along
the clade D lineage (ωD) and a second rate in the rest of
the tree (ωBG). Likelihood ratio tests were used to exam-
ine whether each of these two-rate models fit the data
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significantly better than the null, single-rate model using
a χ2 distribution with one degree of freedom. These ana-
lyses resulted in four subset lists of ortholog groups,
which serve as candidates for lineage-specific natural
selection: 1) significantly (p<0.05) higher dN/dS along the
clade C lineage, 2) significantly lower dN/dS along the
clade C lineage, 3) significantly higher dN/dS along
the clade D lineage and 4) significantly lower dN/dS
along the clade D lineage. GOEAST [56] was used to
look for enrichment of specific gene ontology categories
within each of these ortholog lists. Default parameters
were used in these enrichment analyses.

Results
Transcriptome sequences
The number of sequences was highly variable among
Illumina runs. On average, we obtained ~10.8 million
reads per single-end lane and ~24.4 million reads per
paired-end lane after quality trimming and adapter clip-
ping. This equates to 2–37 million reads and 0.067-2 bil-
lion base pairs per sequence library (i.e., coral sample;
Additional file 1: Table S1).

Symbiodinium community compositions and de novo
transcriptome assembly
A total of 20–704 non-duplicate reads (mean=348) mapped
to our three clade-specific markers per library, and the
estimated Symbiodinium clade proportions were highly
consistent across the three markers (avg. standard devia-
tion across markers =2.8%; Table 1 and additional file 3:
table S3). Furthermore, these 3-marker based estimates of
clade proportions are highly consistent with proportions
that were later estimated by mapping reads from each li-
brary to the full de novo transcriptomes of the two clades
(R2=0.985; Additional file 4: Figure S1). Therefore, we be-
lieve these to represent accurate descriptions of the compo-
sitions of our symbiont communities.
Thirteen sequence libraries had an average estimated

proportion of clade C ≥95% (mean=98.5%). These 13 li-
braries consist of 5 control tank samples and 8 heated
tank samples and contain ~233 million reads; all 13 were
used in the de novo assembly of the clade C transcrip-
tome. An additional 13 libraries had average estimated
proportions of clade D ≥95% (mean=98.5%). However,
one of these libraries (colony 75, heated) had only 20
reads align in total to all six clade-specific sequences.
Due to low confidence in clade assignment from so few
sequences, this library was not included in the clade D
transcriptome assembly. The remaining 12 libraries con-
sist of 7 control tank branches and 5 heated tank branches
and contain ~239 million reads. After BLAST-based filter-
ing and joining (Additional file 5: Table S4), the clade C
assembly consists of 26,986 contigs (mean length=464,
N50=534) and the clade D assembly contains 23,777
contigs (mean length=698, N50=920). A total of 9184
clade C contigs (34.0%) had good BLASTX hits to 6626
different proteins in Swiss-Prot, and 10,629 of the clade D
contigs (44.7%) had good hits to 7374 proteins.

Ortholog identification and clade divergence
InParanoid analyses identified 758 4-taxa orthologs
(ABCD), an additional 645 3-taxa orthologs (BCD) and
3437 ortholog groups with sequences from only clades C
and D. After filtering based on total tree length (# substi-
tutions per codon), 611 ortholog groups were analyzed
with all 4 taxa represented (average tree length = 4.1) and
528 were analyzed with 3 taxa (average tree length = 2.5).
The remaining 3701 ortholog groups were run as pairwise
comparisons between clades C and D; however, only 2418
of these were under our maximum tree length threshold
(average tree length = 1.7). Nucleotide alignments aver-
aged 635 nucleotides in length for the 4-taxa orthologs
(min=147, max=1857), 525 nucleotides for the 3-taxa
orthologs (min=108, max=1419) and 573 nucleotides for
the 2-taxa orthologs (min=81, max=4377). Levels of nu-
cleotide divergence between clades were highly variable
across orthologs, but, in general, levels of divergence were
high with median divergences among clades ranging be-
tween 18.5-27.3% (Figure 2). Based on divergence time
estimates from Pochon et al. [18], these divergences
equate to an overall substitution rate of ~3.1-3.4×10-9 per
site per year

Rates of protein evolution
From the 2418 pairwise analyses, dN/dS could not be esti-
mated in three instances because dS=0 (dN was also 0 in
two cases). For the rest, dN/dS was highly skewed toward
low values (mean=0.057; Figure 3); however, eight ortho-
log pairs were qualitatively distinguishable from the core
of the distribution, and five of these had dN/dS >1 (Table 2).
Four of these qualitative outliers had Swiss-Prot annota-
tions in at least one of the Symbiodinium clades. These
included an avidin-related protein, a RING finger protein,
a magnesium-chelatase subunit and a protein with disul-
fide oxidoreductase activity (Table 2).
Of the 1139 multi-branch codeml analyses (ABCD and

BCD), 207 orthologs (18%) were found to have significantly
different rates of dN/dS along the clade D lineage (p<0.05;
Additional file 6: Table S5-Additional file 7: Table S6); 74
(6.4%) had higher than average rates, while 133 (11.6%)
exhibited rates that were lower than average. Of these, 48
loci (23%) remained significant after Benjamini-Hochberg
false discovery rate (FDR) correction (α=0.05) [57] and 136
(65.7%) remained significant after Sequential Goodness of
Fit (SGoF) correction (α=0.05) [58] (Additional file 6: Table
S5-Additional file 7: Table S6). Similarly, 154 (13.4%) of the
same orthologs had significantly different rates along the C
lineage (p<0.05), 88 (7.7%) were higher than average and 66



Table 1 Symbiodinium community characterizations for each coral sample, including estimated proportion of clade D
at three different loci, the average and standard deviation across the three proportions and the total number of
sequence reads used in these estimations

Colony Treatment Proportion Clade D Standard
deviation

Total #
readsITS1 ITS2 cp 23S Average

1* control 1.000 1.000 1.000 1.000 0.000 226

1* heated 0.994 1.000 1.000 0.998 0.004 268

2* control 0.973 1.000 1.000 0.991 0.015 206

2* heated 1.000 1.000 1.000 1.000 0.000 169

3* control 0.990 1.000 0.984 0.991 0.008 389

6* control 0.974 1.000 0.938 0.971 0.031 236

6* heated 1.000 0.984 0.879 0.954 0.065 123

9* control 0.974 1.000 1.000 0.991 0.015 126

9* heated 0.990 1.000 0.981 0.990 0.009 348

31^ control 0.013 0.000 0.006 0.006 0.006 645

31^ heated 0.006 0.000 0.009 0.005 0.005 519

40^ control 0.000 0.000 0.000 0.000 0.000 219

40^ heated 0.011 0.024 0.000 0.012 0.012 202

44* control 0.993 0.977 0.986 0.986 0.008 507

44^ heated 0.005 0.000 0.005 0.003 0.003 632

45 control 0.091 0.274 0.336 0.234 0.128 168

45^ heated 0.037 0.074 0.000 0.037 0.037 69

55^ control 0.039 0.013 0.064 0.038 0.026 704

55^ heated 0.031 0.000 0.036 0.022 0.020 636

61 control 0.439 0.387 0.587 0.471 0.104 521

61 heated 0.785 0.782 0.789 0.785 0.004 621

65^ control 0.000 0.012 0.038 0.017 0.020 240

65^ heated 0.000 0.000 0.000 0.000 0.000 583

68 control 0.361 0.108 0.099 0.189 0.149 77

68^ heated 0.000 0.000 0.000 0.000 0.000 290

70^ control 0.011 0.022 0.057 0.030 0.024 391

70^ heated 0.005 0.039 0.035 0.026 0.018 380

71* control 0.983 1.000 0.952 0.978 0.024 563

71* heated 0.980 0.992 0.943 0.971 0.025 599

75 control 1.000 1.000 0.829 0.943 0.098 101

75 heated 1.000 1.000 1.000 1.000 0.000 20

For read count breakdowns for each individual locus see Additional file 3: Table S3. The symbols next to colony numbers indicate samples that were used in the de
novo transcriptome assemblies: ^ for clade C Symbiodinium, * for clade D. ITS1 & ITS2=internal transcribed spacer regions 1 and 2, cp 23S=chloroplast 23S rRNA.
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(5.7%) were lower (Additional file 8: Table S7-Additional
file 9: Table S8). Of these, 11 loci (7.1%) remained signifi-
cant after Benjamini-Hochberg FDR correction (α=0.05)
[57] and 83 (53.9%) remained significant after SGoF correc-
tion (α=0.05) [58] (Additional file 8: Table S7-Additional
file 9: Table S8).
Our power to detect significantly different rates of dN/

dS may be somewhat eroded due to the high levels of
nucleotide divergence among clades (Figure 2); there-
fore, for the functional enrichment analyses we chose to
utilize all orthologs that were significant prior to mul-
tiple test correction. This allows us to generally explore
the categories of genes exhibiting signatures of elevated
and depressed dN/dS, even if the signatures of selective
events have been somewhat masked by the accumulation
of large amounts of synonymous divergence. Multiple gene
ontology categories were significantly (p<0.05) enriched in
each of our four focal gene lists prior to correction for
multiple tests (Additional file 10: Table S9; for summary of
high dN/dS lists see Figure 4). None of these categories re-
main significantly enriched after correcting for multiple
tests. However, these nearly significant enrichment categor-
ies still provide a good view of the types of genes exhibi-
ting nucleotide substitutions characteristic of differential
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Symbiodinium clades A-D at the 611–3557 protein coding loci
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evolution. Divergences represent raw sequence differences without
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selection pressures on the two focal lineages. Therefore, we
explore these enriched categories below.

Discussion
Genetic divergence between clades
Phylogenetic studies looking at a handful of highly-
polymorphic, non-protein coding genetic markers have
demonstrated strong evolutionary divergence between
Symbiodinium clades, and based on these sequences, di-
vergence times between clades A-D have been estimated
at ~30-65 million years (Figure 1) [10,18,53]. However,
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Figure 3 Histogram depicting the distribution of pairwise dN/dS
estimates comparing clades C and D across 2418 protein
coding sequences. Stars indicate qualitatively outlier dN/dS values
for sequences with significant sequence similarity to annotated
proteins in Swiss-Prot. Table 2 contains information on
these annotations.
little is known about genome-wide levels of divergence,
especially at protein-coding genes, which typically ex-
perience higher levels of mutational constraint (though
see [59]). Our results illustrate substantial genetic diver-
gence throughout most coding genes between all four of
the clades most commonly found within Scleractinian
corals (A-D), with raw median nucleotide divergences
ranging from 18.5-27.3% and Kimura 2-parameter cor-
rected distances [60] of 21.6-34.3% (Figure 2). Although
sequencing and alignment errors may be adding to
these high levels of divergence, there is also reason to
believe that these divergences may actually be underes-
timates because we only calculated sequence divergence
at loci that were similar enough, at the amino acid level,
to be identified as orthologs and similar enough, at the
nucleotide level, to fall within our maximum tree length
cutoffs. Additionally, these estimates are based only on
single nucleotide polymorphisms (SNPs); they do not
include insertion and deletion differences.
It has been a long debate in the Symbiodinium research

community as to what level of divergence these clade des-
ignations represent (e.g., species, genus, family); however,
accurate characterization of genome wide divergence has
been limited by the lack of genomic resources available for
these taxa. The primates represent one well-studied sys-
tem for which several similar estimates of genomic diver-
gence are available. George et al. [61] report exome-wide
divergences between Homo sapiens and seven non-human
primates spanning three families and seven genera. The
average inter-genera divergence is 2.35% and the average
inter-family divergence is 2.91%. The lowest level of differ-
entiation estimated in our study, between clades B and C
(putatively belonging to the same genus), is more than
four times higher than the highest level of differentiation
reported by George et al. (4.19% between human and tam-
arin) [61]. Although the use of taxonomic divisions is not
standardized among groups, the high levels of genomic di-
vergence seen among these four Symbiodinium clades cer-
tainly suggests that they should be recognized at some
higher level of taxonomic division, such as family or order.
This is consistent with early phylogenetic work based on
rDNA sequences, which demonstrated that within a single
locus, genetic diversity within Symbiodinium was equiva-
lent to order-level differences seen in other dinoflagellate
groups [62].
The observed relative levels of genomic differentiation

are consistent with previously estimated phylogenetic rela-
tionships [18,53], with clades B and C exhibiting the low-
est level of divergence, clade D showing intermediate
levels of divergence to B and C, and clade A showing high
levels of divergence to all other clades. Assuming a 10–30
day generation time, in hospite [63,64], the resulting esti-
mate for Symbiodinium substitution rates (~3.1-3.4×10-9/
site/year) equates to ~3.8-12.5×10-8 substitutions per site



Table 2 Qualitative outliers from the pairwise estimates of dN/dS between clades C and D Symbiodinium

dN/dS Swiss-Prot annotation Contig names

Clade C Clade D Clade C Clade D

1.79 – – c_sym_54689 d_sym_6384

1.65 Avidin-related protein 4/5 Avidin-related protein 7 c_sym_66085 d_sym_105906

1.64 – – c_sym_32989 d_sym_105290

1.08 – – c_sym_32766 d_sym_105256

1.05 – – c_sym_98918 d_sym_110077

0.83 – Magnesium-chelatase 30 kDa subunit c_sym_11466 d_sym_36635

0.71 RING-H2 finger protein ATL1 RING finger protein 32 c_sym_38569 d_sym_8618

0.54 Thioredoxin domain-containing protein Protein disulfide-isomerase A2 c_sym_69335 d_sym_71587

Dashes indicate no hit to Swiss-Prot with e-value<1×10-5.

Ladner et al. BMC Evolutionary Biology 2012, 12:217 Page 9 of 13
http://www.biomedcentral.com/1471-2148/12/217
per generation. This is fairly consistent with mutation
rate estimates for Caenorhabditis elegans and Drosophila:
2.1×10-8 and 0.8×10-8 per site per generation, respectively
(reviewed in [65]).

Genes with elevated dN/dS along the clade D lineage
One of the best-described biochemical differences be-
tween relatively heat tolerant and sensitive types of
Symbiodinium is related to the saturation state of the
thylakoid lipid membranes of the chloroplast. Tchernov
et al. [10] demonstrated that several different relatively
heat tolerant strains of zooxanthellae (isolates from clades
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file 6: Table S5). This ortholog is very similar to the
palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase
(FAD5) in Arabidopsis thaliana (BLASTX evalue=3×10-104),
which is involved in early stages of desaturation of fatty
acids used in the synthesis of thylakoid membranes [66].
A nonsense mutation in this gene in A. thaliana resulted
in a change in the composition of the lipid thylakoid
membrane, a reduction in chlorophyll content and delayed
recovery of photosystem II after photoinhibition by high
light stress [66,67]. Therefore, this gene is a strong candi-
date for involvement in the described functional differ-
ences between our clade C and D type Symbiodinium [31].
No genes involved in fatty acid synthesis exhibited ele-
vated dN/dS along the clade C lineage.
In addition to this fatty acid desaturase, seven additional

genes related to the chloroplast exhibited elevated dN/dS
along the clade D lineage (4 significant after SGoF;
Figure 4, Additional file 10: Table S9), including five that
compose parts of the thylakoid membrane. Based on pro-
tein matches in Swiss-Prot, these orthologs include two
subunits of the photosystem I reaction center (subunit
II = 4-taxa ortholog 707, ωD=0.118, ωBG=0.021; subunit
IV = 4-taxa ortholog 202, ωD=0.153, ωBG=0.032; Additional
file 6: Table S5), part of the light-harvesting complex of
photosystem II (Fucoxanthin-chlorophyll a-c binding
protein F = 4-taxa ortholog 352, ωD=infinite, ωBG=0.044;
Additional file 6: Table S5) and a membrane protein
involved in the insertion of proteins into the inner mem-
brane of the thylakoid (Inner membrane ALBINO3-like
protein 2 = 3-taxa ortholog 58, ωD=0.078, ωBG=0.04;
Additional file 7: Table S6). In contrast, we found only one
gene involved in photosynthesis with elevated dN/dS along
the clade C lineage, peridinin-chlorophyll a-binding
protein (3-taxa ortholog 433, ωD=infinite, ωBG=0.046;
Additional file 9: Table S8). Therefore, proteins rela-
ted to the thylakoid and photosynthesis appear to be
additional candidates for functional differences between
clade C and D Symbiodinium.
Several additional functional categories of interest are

marginally enriched within the orthologs exhibiting ele-
vated dN/dS along the clade D lineage, including the bio-
logical process category ‘protein folding’ (5 orthologs; 4
significant after SGoF) and the related molecular func-
tion category ‘unfolded protein binding’ (i.e., chaperones,
3 orthologs), which include matches to heat-shock pro-
tein 90 (3-taxa ortholog 1308, ωD=infinite, ωBG=0.0001;
Additional file 7: Table S6), prefoldin subunit 3 (4-taxa
ortholog 424, ωD=0.099, ωBG=0.028; Additional file 6:
Table S5) and chaperone protein DnaJ (4-taxa ortholog
365, ωD=infinite, ωBG=0.018; Additional file 6: Table S5).
Chaperones are known to have a diverse set of non-
stress related cellular roles, primarily involved in pre-
venting inappropriate interactions among proteins in
non-native conformations [68]. However, it is also well
documented that chaperone proteins are often upregu-
lated in response to a multitude of stressors, including
high temperatures, which can cause protein denaturation
[68]. To our knowledge there has not yet been any large-
scale gene expression study dedicated to Symbiodinium
(reviewed in [69]). Therefore, it is unclear whether these
chaperones are also upregulated in response to heat stress
in zooxanthellae. However, Leggat et al. [41] identified
heat-shock protein 90 as the fourth most abundant tran-
script in an EST library constructed for Symbiodinium sp.
C3 extracted from Acropora aspera. In contrast to these
results, no chaperones or protein binding genes were iden-
tified with elevated dN/dS along the clade C lineage.
Higher rates of amino acid evolution of these proteins in
clade D may be related to the higher thermal tolerance of
clade D Symbiodinium.
It is worth noting that a number of the orthologs exhi-

biting significantly high dN/dS along the clade D lineage
also show significantly low dN/dS along the clade C
lineage (Additional file 11: Table S10). This result
emphasizes the different patterns of evolution along
these two lineages, but it also a good reminder that the
analyses of dN/dS along our two focal branches are not
independent. Therefore, from the current analysis it is
not possible to determine whether the significant results
are due to stronger than average positive selection along
the D lineage, stronger than average purifying selection
along the C lineage or some combination of the two. It
is, of course, also possible that rates of change along
additional braches of the tree could be influencing the
patterns described. Furthermore, temperature tolerance
is just one phenotypic difference that exists between
clades C and D; therefore, genes involved in temperature
tolerance are expected to represent only a subset of the
loci highlighted in these analyses. However, the main
purpose of this study is to identify candidate genes for
the functional differences between clades C and D. Fur-
ther work is necessary to explore each of these candi-
dates in detail and to elucidate what, if any, role they
may have played in the thermal adaptation of clade
D Symbiodinium.
Additional genes that have been under positive selection

along the C and D lineages may have been missed due to
high levels of synonymous sequence divergence among
clades, which can mask signatures of selection. High levels
of sequence divergence appear to be inevitable when
comparing Symbiodinium clades in Scleractinian corals
(Figure 2); however, studies have begun to document high
levels of functional divergence even within Symbiodinium
clades and sub-clade types (e.g., [10,28,34,70]). For ex-
ample, type C1 has been shown to be even more thermally
tolerant than some clade D symbionts in association with
particular coral species [34], and similarly heat-tolerant
Symbiodinium types have also been described in clades A
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and B [10]. Subclade-level genetic comparisons within
clade D will be critical for pinpointing the exact evolution-
ary lineage(s), within clade D, on which selection for
increased heat-tolerance has occurred. This type of ana-
lysis is also likely to highlight additional genes involved in
thermal tolerance of the clade D type evaluated in this
study. Similar subclade-level studies in the other major
coral-associated Symbiodinium clades will also be im-
portant to see if similar mechanisms are involved in
heat-tolerance among the different clades. Increased
heat-tolerance may have evolved multiple independent
times within Symbiodinium, and therefore, heat-tolerant
types within the different clades may have evolved differ-
ent mechanisms for coping with increased temperatures.

Mixed assemblages of symbiodinium
The majority of genotyping methods for Symbiodinium
have a detection threshold for background types of >5-10%
of the total symbiont population [20,21,71]. Quantitative
real-time PCR techniques have demonstrated that because
of this limitation, traditional methods have greatly underes-
timated the number of corals hosting multiple clades of
Symbiodinium [20]. Our characterizations of symbiont
communities using high-throughput sequencing data pro-
vide further evidence for the prevalence of background
strains of Symbiodinium at low frequencies. All 16 colonies
of Acropora hyacinthus sampled in this study exhibit some
proportion of both clades C and D when results are pooled
across the two samples from each colony (background fre-
quencies: 0.1-49.4%), despite the fact that PCR-based cp23S
genotyping detected only a single clade in each of these col-
onies. The ubiquitous presence of both clades C and D
within A. hyacinthus colonies in Ofu illustrates the strong
potential within this population for symbiont ‘shuffling’
(i.e., changing the proportions of different symbionts
already coexisting within a coral colony) to play a role in
acclimatization of individual colonies in response to envir-
onmental fluctuations.
It is possible that this level of co-occurrence of clades

C and D is unusual for corals. American Samoa has been
shown to have a relatively high incidence of both clades
C and D [27]. By contrast, type D is less abundant in many
other Pacific localities [27]. Co-association with both clades
C and D may be less prevalent in situations where one
clade is particularly rare. However, Mieog et al. [20] demon-
strated similarly high levels of co-occurrence of clades C
and D in four species of coral across 11 geographic loca-
tions on the Great Barrier Reef. Therefore, high-levels of
co-occurrence are clearly not unique to American Samoa.
A surprise in our work is the suggestion that different

parts of the same colony house different proportions of
symbiont clades C and D (Table 1). Symbiont community
compositions are known to systematically vary within col-
onies of some coral species based on irradiance gradients
(e.g., tops vs. sides of colonies in Montastrea spp. in the
Caribbean; [24]). However, A. hyacinthus in Ofu, American
Samoa occur as flat plates ~20-60 cm across with little ob-
vious depth or light heterogeneity from branch to branch.
To date, we can detect no clear environmental gradient
within plates that would explain large differences in
Symbiodinium community compositions across a colony.
Conclusion
Transcriptome-wide analysis confirms the presence of deep
evolutionary divisions among the four most common
Symbiodinium clades associated with reef-building corals.
Nevertheless, phylogenetic tree-based comparisons of rela-
tive rates of nucleotide substitutions highlight a number of
genes and functional categories that are candidates for the
functional differences that have been attributed to clade D
Symbiodinium. Top candidates include a fatty acid desatur-
ase, three molecular chaperones and several proteins
involved in photosynthesis and the thylakoid membrane.
These data provide the first genomic-scale exploration into
the adaptive thermotolerance of clade D Symbiodinium.
The use of high-throughput sequencing data from field-
collected corals also allowed for a detailed examination into
the composition of naturally occurring Symbiodinium com-
munities. Our results provide additional support for the
prevalence of multiple Symbiodinium clades within individ-
ual coral colonies, and therefore the capacity of individual
colonies to adjust to changing conditions by ‘shuffling’ the
proportions of their resident endosymbionts.
Database submission
The de novo assembled contigs used in this study have been
deposited in the NCBI Transcriptome Shotgun Assembly
database under the accession numbers GAFO00000000
(Clade C) and GAFP00000000 (Clade D). The versions
described in this paper are the first versions, GAFO01000000
and GAFP01000000, respectively. They are also available
for download on the Palumbi lab website: http://palumbi.
stanford.edu/data/.
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