
121

Chapter 6

A Privacy Engineering
Lifecycle Methodology

“They always say time changes, but you actually have to change them
yourself.”

—Andy Warhol

This chapter discusses a systems engineering methodology that can be adapted to
privacy engineering. The methodology presented should be followed throughout
development of a project for a privacy solution. It involves interactive models that provide
pictorial documentation as well as business language use cases that together present
requirements, analysis, design, and test cases in a readable form. The models work
together to provide an understandable information and application architecture that
satisfies business requirements, including, of course, privacy and security.

Executives may wish to glide through this chapter to get a feel how their teams work
toward a project solution. Engineers, designers, and consultants will want to dig in deeper
to perform their function more effectively.

The requirements use cases, the class model and supporting metadata, the user
experience requirements, and any supporting requirements, as discussed in Chapter 5,
are the basis for developing an architectural solution.

Enterprise Architecture
This section discusses an enterprise architecture approach that actuates these
requirements into an architectural solution. The privacy engineering methodology is
based on concepts derived from enterprise architecture.

An enterprise has been defined as an association consisting of a recognized set of
interacting functions that are able to operate as an independent, stand-alone entity. There
are enterprises within enterprises. For instance, a business unit within the overall corporate
entity may be considered an enterprise as long as it could be operated independently.

Architecture provides the underlying framework, which defines and describes the
platform required by the enterprise to attain its objectives and achieve its business vision.
Architecture is an amalgam of engineering art and engineering science; there is no single
enterprise architecture. Instead, the overall architecture can be considered to consist of
four interrelated architectures or architectural views (Figure 6-1).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81824097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.goodreads.com/work/quotes/12645873

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

122

1The enterprise architecture section is based on two much-quoted papers: “Enterprise Architecture:
What and Why” by Tom Finneran (www.tdan.com/i007ht03.htm) and “Enterprise Architecture:
The What’s And How’s” by Tom Finneran (www.tdan.com/i018ht02.htm).
2Again, this is applicable to for-profit, nonprofit, and governmental enterprises.
3The privacy team will work with the data stewards to ensure that they are familiar with legal and
enterprise privacy policies, procedures, and privacy rules.

Architectural Views
The suggested architectural approach1 envisions four architecture views: business,
information, application, and technology architectures. These may contain levels of detail
that are used to describe the elements of a privacy engineered architecture, but are not
the processes themselves that will be built using these defined architectures.

In the privacy engineering methodology, the underlying architectural views have
specific privacy opingcharacteristics:

•	 Business architecture: Models the business enterprise to show
how business is to be done.2 The use cases, activity diagrams, and
supporting metadata documenting the business architecture privacy
requirements are enterprise requirements that must be enforced.

•	 Information architecture: Enables the enterprise to develop a
common, shared, distributed, accurate, and consistent data
resource that is based on the various data models and supporting
metadata. Some of the key factors in information architecture
are privacy requirements. Data stewards3 indicate that there are
privacy requirements that need to be enforced based on their
knowledge of the data for which they are responsible. This will
take the form of a metadata indicator that shows that privacy rules
need to be followed or that the data should be encrypted.

Figure 6-1. Enterprise architecture views

http://www.tdan.com/i007ht03.htm
http://www.tdan.com/i018ht02.htm

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

123

•	 Application architecture: Links the information and business
architectures to reflect applications and how they are used and
distributed. The UML sequence diagram and the component
diagram are application architecture documents. During the
application architecture process, the architect determines
whether to invoke privacy component rules or requirements
from within the system or to use it as an app. The application
architecture also reflects what privacy enabled technology (PET)
components, if any, will be included in the design. PETs are
discussed later in this chapter.

•	 Technology architecture: Links up with the application, business,
and information architectures to provide interoperable
technology platforms that meet the needs of the various user roles
(actors) at identified work locations. In developing the technology
architecture, decisions regarding which automated solutions can
be employed and whether to build or buy them are made.

In addition to the four enterprise architecture views shown in Figure 6-1, there is
another that can be considered.

•	 User interface architecture: Links up the information, business,
application, and technology architectures with the user facing
design and controls. The user interface architecture provides
the user experience, as discussed in Chapter 5 and below. This
type of architecture must provide a way to incorporate privacy
requirements into the architecture and design of the user
interface.

Solution Architecture
The solution architecture (Figure 6-2) is developed from a system engineering
methodology that consists of joining a user interface architecture design, information
architecture (reflecting data modeling and big data analysis), and an application
architecture. Thus, the privacy engineer can draw from a known engineering design and
build techniques to add fair processing requirements and standards in a manner that is
readily understood. The first new step on the journey to privacy innovation begins on a
well-trodden path.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

124

Given the understanding of the business architecture, information architecture, and
application architecture, the design team, including privacy engineering representatives,
apply the appropriate technology architecture.

Develop Procedures, Processes, and Mechanisms
Privacy policy development is discussed in Chapter 4 and requirements development in
Chapter 5. This chapter describes the methodology used to develop privacy procedures,
processes, and mechanisms, focusing primarily on the latter (Figure 6-3). Note that
mandated standards and recommended guidelines based on privacy policies heavily
influence the end solution.

Figure 6-2. Solution architecture

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

125

Methodology
System Engineering Lifecycle
Although the focus of this chapter is development of automated privacy mechanisms, the
creation of processes and procedures will follow the same system engineering lifecycle
(Figure 6-4). The system engineering lifecycle is a methodology that has commonly been
used for at least 30 years. Some of the terminology has varied but the concepts remain the
same. The familiarity of the design methodology makes it an excellent known best practice to
leverage when adding in privacy specific requirements that may not have been raised at early
phases of requirements gathering, planning, designing, and execution at the technical level.

Figure 6-3. Privacy engineering development process

Figure 6-4. System engineering lifecycle

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

126

The system engineering lifecycle is composed of six stages in which the project team
adapts the tools and methods to the environment in which they are working:

1. The project initiation and scoping workshop stages look at
policies and best practices surrounding the enterprise and the
expected project or projects being considered (see Chapter 4).

2. The development of requirement use cases and class or data
model states defines the enterprise and seeks to understand
the business requirements sought to be addressed
(see Chapter 5).

3. The solution design stage includes prototyping the user
interface for the project.

4. The implementation stage includes solution construction.

5. The quality assurance stage includes testing and user
acceptance.

6. The final stage is solution rollout.

The lifecycle, at first glance, seems to be a “waterfalls approach,” where one step is
completed and then handed off to the next step until the project comes to completion,
but the dashed feedback lines in Figure 6-4 show that the process is actually iterative.
Incremental improvements will be made to project deliverables throughout the lifecycle.
This methodology has been combined with Agile techniques on many successful
projects. (See the sidebar “Privacy Engineering and Agile Development” to understand
how this approach and Agile techniques can be integrated.)

It should also be noted that inclusion of privacy principles in the technology and
governance frameworks early and continuously through the system engineering lifecycle
returns added important utility. The governance framework or policies must be updated
or managed as policies change. The resultant systems will be better understood and
documented.

prIVaCY eNGINeerING aND aGILe DeVeLOpMeNt

Rich Schaefer - director Technical Alliances, good Technology

various aspects of Agile development make it a very good fit for privacy engineering.
A primary Agile tenet is to address customer needs by continually delivering working
software that often must meet changing requirements. The customers for privacy
engineering projects include internal and external stakeholders. Chapter 5 identified
several actors present in use cases. The context diagrams in Chapters 7, 8, and
9 explicitly identify parties involved in the three scenarios. notable are business
stakeholders, especially the data stewards introduced in Chapter 3. As key members
of the privacy team, they are both customers specifying privacy requirements and

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

127

participants in development. The original Agile principles4 include a requirement that
businesspeople and developers work together on a daily basis. data stewards are the
embodiment of the need for this type of collaboration. Their responsibilities include
working directly with data analysts and database designers to develop data models.

Collaboration is inherent to privacy engineering, bringing together a wide variety of
experts from different disciplines within business, privacy, information technology,
and development. Agile project management approaches such as scrum can be
used to bring effectiveness to such diverse teams. Agile scrums are mentioned
as a best practice for coordinating privacy teams and their stakeholders to create
and review metadata models in this chapter. Additionally, scrum meetings and
sprints allow for timely adaptability to change. The need for flexibility to change
is a recurring theme throughout this text. Privacy requirements can change due
to factors external to the enterprise, including legal, consumer, and regulatory
reasons. Within the enterprise, new business objectives, requirements, practices,
and technology uses can have effects as well. Privacy engineering teams and their
projects must be able to incorporate new requirements at nearly any point in their
schedules. Agile processes enable the teams to prioritize changing requirements and
even exploit such change for customer benefit.

The incremental delivery of working software via Agile sprints not only tries to
guarantee that customers or their representatives receive what they desire, but also
gives the opportunity for ensuring quality as the project progresses.5 Regression
testing at the end of each sprint may detect flaws that can be fixed within the
following sprint(s). This practice avoids a shortcoming of traditional software
approaches where quality assurance teams perform regression testing after
development is completed and bugs are most costly to fix.

given the general discussion above, one may ask how Agile engineering practices
relate specifically to the formal techniques espoused in this text and depicted in the
system engineering lifecycle (figure 6-4). Use cases were introduced in Chapter 5 as
the foundation for developing requirements for the system. They describe the needs
of a user or actor and their answers to why, who, when, what, where, and how in
describing the interaction within the system. Use cases can be seen as an agreement
between customers and the development team.6 Sufficient detail is provided for
developers to understand what is required by the system and to embark on design.

User stories are a tool originating from the extreme programming (XP) Agile
community for describing user needs and the planning of releases and iterations
(their version sprints). Each consists of a few sentences, written in language a

4“Manifesto for Agile Software Development” at Agilemanifesto.org.
5The prototyping approach in this chapter is an example of incremental development.
6In fact, as mentioned in this chapter, first-cut use cases can be written by business users, with scrum
interactions and a scrum review. This is not merely theory but fact at a major telecommunication
company. These first-cut use cases could be considered user stories.

http://Agilemanifesto.org

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

128

user could understand, expressing a single user’s need representing an amount
of work small enough to be reasonably well estimated. They serve as the basis
for conversations with customers to flesh out more detail. Hence, use cases and
user stories serve somewhat different purposes. However, accompanying user
stories are acceptance criteria or tests that describe the conditions for their correct
implementation. it has been noted that use cases and user stories plus their
acceptance criteria are essentially equivalent. for much deeper comparison of use
cases and user stories, see “Use cases vs. user stories in Agile development.”7

UML models, also introduced in Chapter 5 for class and data models, give structure
to the solution being developed throughout the system engineering lifecycle and
provide an explicit communication tool among internal and external stakeholders.
They have been applied for large enterprise teams and complex projects that
have formal modeling methodology and documentation requirements. The Agile
Manifesto values the interaction of individuals and working software over tools and
comprehensive documentation. This apparently less formal approach has often led
to the attitude that Agile methods are better suited to smaller projects and will not
scale. However, significantly sized projects are referenced by Kent Beck
(40 person-years)8 and Scott Ambler (several hundred person-years).9 Additionally,
Agile modeling for scaling has been advocated by the latter, the developer of
“Agile Model-driven development” based on Agile principles from XP.10

Agile proponents have had mixed reactions to the use of UML. Some say the practices
within Agile development user stories and acceptance criteria supplant the need for
UML. The most positive seems to be that UML should be used to work through specific
issues where it is useful rather than in an end-to-end, comprehensive fashion. Martin
fowler’s often-quoted article “is design dead?”11 discusses traditional planned design
vs. evolutionary design employed by XP. He includes recommendations for the use of
UML diagrams alongside “Class-Responsibility-Collaboration” cards typically used
in XP. He emphasizes their use is for communication and can be used effectively for
design exploration and documentation.12

7“Use Cases vs. User Stories in Agile Development” and the links within this article at www.boost.co.nz/
blog/agile/use-cases-or-user-stories/.
8Kent Beck, “Test-Driven Development: By Example” (www.eecs.yorku.ca/course_archive/
2003-04/W/3311/sectionM/case_studies/money/KentBeck_TDD_byexample.pdf).
9At a large-information-provider-over-200-person project, we used a combination of Agile and the
UML-based approach discussed in this chapter. Chapter 9 is another example; well over 100 people
were involved. Compare Chapter 8, where an intergenerational scrum was used along with UML
modeling.
10“Agile Model Driven Development: The Key to Scaling Agile Software Development” at
www.agilemodeling.com/essays/amdd.htm.
11“Is Design Dead?” at http://martinfowler.com/articles/designDead.html.
12The modeling, using UML, proposed throughout Part 2 of this book, is most effective where
scrum-like modeling sessions and model review sessions, modelers, data stewards, privacy team,
and other business stakeholders are held. In fact scrums have been used for good modeling before
Agile and scrum terminology was being used.

http://www.boost.co.nz/blog/agile/use-cases-or-user-stories/
http://www.boost.co.nz/blog/agile/use-cases-or-user-stories/
http://www.eecs.yorku.ca/course_archive/2003-04/W/3311/sectionM/case_studies/money/KentBeck_TDD_byexample.pdf
http://www.eecs.yorku.ca/course_archive/2003-04/W/3311/sectionM/case_studies/money/KentBeck_TDD_byexample.pdf
http://www.agilemodeling.com/essays/amdd.htm
http://martinfowler.com/articles/designDead.html

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

129

Later in this chapter, creation of test cases from UML diagrams is described.
A potential use of modeling, UML based or otherwise, has been proposed for the
generation of test cases for tests-as-specification or test-driven development (Tdd),
a technique from XP.13 Tdd is iterative and proceeds by writing tests first and then
developing code to pass the test. it produces simple code and is followed by continual
refactoring or restructuring to avoid complexity and increase maintainability. Tdd
alone could be a good development process to employ in privacy engineering,
because policy rules (e.g., in the privacy component) could be embedded in the tests
driving the development and acceptance tests.

The software engineering lifecycle can incorporate either the formal use case or
UML-based methodology in the text, employ Agile process management (e.g., scrum),
use Agile engineering practices (e.g., from XP), or possibly a combination of these.

The Use of Models within the Methodology
The methodology utilizes a series of interrelated UML models, as shown in Figure 6-5.

Figure 6-5. Architectural model relationships

13“Modeling in an Agile World” at www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/
modellinginanagileworld.pdf.

http://www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/modellinginanagileworld.pdf
http://www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/modellinginanagileworld.pdf

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

130

Models and modeling best practices14 focus first on the progression from an
enterprise view of the business data model, through the more detailed logical data model,
and finally to a database design based on these models. Likewise, from the business data
model, a reporting model is derived for the reporting database.

Requirements models: Input and output data requirements
gathered from a system interface, from a web site, or from a
mobile source, together with the big data requirements must
be modeled within the business data model, here using the
UML class modeling diagram.15 Figure 6-5 shows how the need
for information from a document, from a video, from an audio
file, from an e-mail, or from any other big data source comes
together as big data requirements.

Business data model: The business data model is an integrated view
of all of the data requirements within the enterprise. The business
data model contains business-level (not necessarily normalized16)
data classes. It may contain many-to-many data relationships
and may not contain information about the optionality of data
relationships. It should contain all super-type data classes but not
necessarily all subtype data classes.17 It will contain only those
data attributes that are easy to find and define that are particularly
interesting or important. It will refer to corporate data classes
and relationships where possible and will raise data issues and
ambiguities early.

Operational (logical) data model: The logical data model
(see Figure 6-9 as an example) should contain all of the
business data requirements within the problem domain
under study (here, privacy information data processing). The
conceptual data model subject areas, high-level data classes,
and high-level relationships are used as the starting point for
developing the logical data model. More detailed data classes
are developed as well as data classes, which are the product of
normalization. Subtype classes will also be derived from the
high-level business data classes.

14See Handbook of Relational Database Design by B. Van Halle & C. Fleming (Addison Wesley,
1989), pp. 18–24; Data Base Management by F. McFadden and J. Hoffer (Benjamin Cummings
Publishing, 1985), pp. 272–299; “The Bottom Line: Data-oriented Deliverables,” by T. R. Finneran,
in Handbook of Data Management (Auerbach Press, 1993), pp. 289–298.
15Other data modeling tools can be used. We recommend UML so that you can use one consistent
toolset throughout the whole lifecycle.
16Normalization is a well-known data analysis process of organizing the data attributes to minimize
redundancy and inconsistency. The business classes will not contain all of the data attributes and
therefore normalization is not applicable. The logical data model will use normalization.
17Classes can be arranged in hierarchies so that concrete classes (subtypes such as persons or
organizations) inherit attributes, relationships, and operations or methods from more abstract classes
(super-types such as parties of interest).

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

131

The logical data model is different from the less-detailed
business data model in that the former is normalized
and does not contain many-to-many data relationships.
Instead, it contains information about the optionality of data
relationships and contains both super-type data classes and
subtype data classes. It contains all data attributes relevant
to the enterprise and refers to corporate data classes and
relationships as much as possible.

As part of the data modeling process, the enterprise data model
as well as legacy databases not represented in the enterprise
data model will be examined to ensure that redundant data are
not created and that the enterprise data models are complete.

Operational database: The detailed operational data model is
used to develop the actual operational database. The reporting
data models are used to develop the reporting databases,
which could be the data warehouse, one or more data marts,
or one or more big data analytic data structures. Big data
requirements may also contribute to any required content
handling or presentation.

Metadata models: All modeling metadata are based on a series
of metadata models.18 To ensure that models and modeling
best support the corporate enterprise, best privacy engineering
practices require that all models and modeling metadata
be readily available to business users and to information
technology personnel. All data administrators and database
administrators should collaborate to ensure an enterprise view
of all information required by the enterprise and to ensure that
the best practices concerning shared data are followed.19

Best practices that support data sharing include data naming and
data identification standards, the collection of integrity rules, the
collection of security rules, and management of information in
all of its forms. One way that works well in gaining collaboration
among businesspeople, the privacy team, and the information
technology development team is to hold Agile scrums. These
scrums are often called first thing in the morning for the very
detail-oriented people. Management scrums would be held
weekly in some cases and biweekly in others.

18More than 20 metadata models comprise the database design of a typical metadata repository.
Appendix A shows data attributes of some of these models.
19It must be noted that such collaboration does not require the mythical, monolithic data mapping
and classification exercise of old where millions of dollars were expended, and consultants were
sent swarming across the enterprise to arrive—perhaps—with a set of already outdated binders of
data. Instead, data privacy principles define privacy information and a common understanding of
how and where and by whom those data may be processed becomes a discovery methodology to
evaluate existing data patterns.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

132

Activity diagram, sequence model, and component model:
The activity diagram showing the business process combines
with the various data models to define a sequence within the
system and then to the component design. The component
design model and supporting metadata will contribute to the
component design. Therefore, the various models and modeling
efforts interact to provide a well-engineered, data-centric design.

Content Design: The user experience of the system and its user
interface are based on the content design that takes inputs
from the visualization aspects of the big data requirements and
the business data model. The content design also impacts the
actual operational database design and the component models
by determining how users interact with them.

The steps of the methodology are described in detail in the following sections to
illustrate how the system engineering lifecycle applied to privacy is effectively deployed.

INNOVatING WIth prIVaCY StaNDarDS

By dawn n. Jutla, Phd, Board director, oASiS, and Professor, Sobey School of
Business, Saint Mary’s University, Halifax, nova Scotia, Canada

Consumer and privacy legislators are working to understand new online business
environments that exploit personal data outside of citizens’ working knowledge and
control. The office of the Privacy Commissioner of Canada, the 27 different data
protection agencies in the European Union, the US federal Trade Commission, and
senators in the US Congress now regularly question major innovators about their
business practices concerning their handling of personal data. Associations such as
the Electronic frontiers foundation and the Electronic Privacy information Center also
regularly highlight new online privacy violations. Media reports openly criticize marketers,
raising awareness of personal data collection practices, as in the Wall Street Journal’s
“What They Know Series”: “Marketers are spying on internet users—observing and
remembering people’s clicks, and building and selling detailed dossiers of their activities
and interests.”20 ventureBeat, a technology news website, identifies a key privacy issue:

The fact of the matter is that most end users are ignorant of how much they expose
about themselves when they authorize through facebook or Twitter or any other
sign-on process—and that this information would be shared to entities outside just
the app developer.21

20“What They Know” (November 25, 2013). Wall Street Journal. Retrieved from
http://blogs.wsj.com/wtk/.
21I. Mosquera (August 27, 2011). “Why Mobile Apps Need to Have Privacy Policies.” VentureBeat.
Retrieved from http://venturebeat.com/2011/08/27/why-mobile-apps-need-to-have-
privacy-policies/.

http://blogs.wsj.com/wtk/
http://venturebeat.com/2011/08/27/why-mobile-apps-need-to-have-privacy-policies/
http://venturebeat.com/2011/08/27/why-mobile-apps-need-to-have-privacy-policies/

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

133

To respond to this situation, can companies integrate privacy standards into internet
products and services to achieve an online environment that both protects privacy
(as with user-permission-based models) and allows for commerce? oASiS (organization
for the Advancement of Structured information Standards) is a leader in the internet
identity management and trust elevation standards space. its oASiS Privacy Management
Reference Model and Methodology22 (PMRM) Technical Committee (TC) has created a
committee specification draft as a standards track product.

The advantages of privacy standards are manifold. They include building a common
and widespread understanding of privacy governance among adopting organizations
at an international level and creating consistent compliance, auditing criteria, and
user expectations across industries. Privacy standards can promote better system
design, facilitate information interchange and interoperability, and foster innovation
through multi-stakeholder collaboration. Some organizations may leverage the
resulting privacy-enhanced products and services for market differentiation.

However, people don’t usually think of standards as vehicles of innovation, even
though numerous examples exist of new standards leading to new markets and
technologies. Rather, standards are sometimes seen as the outcome of long
political processes that are way too slow for young internet innovators. These same
innovators are busy with the newest commercial technologies, such as Big data
plays, the emerging internet of Things, and attendant new business models focused
on aggregating, interlinking, and monetizing personal data. Meanwhile, the tension
between these new business models and the user’s privacy rights is increasing with
each passing day. indeed, there is a growing sense among experts that many internet
companies, renowned for innovation and high levels of experimentation with new
services, are not well versed in best practices for privacy governance. These relatively
young companies, and many others, would benefit from more comprehensive privacy
governance guidelines from the executive to the unit software testing levels. Here is
where the patient process of standards can pay off to play a catalyst role in spurring
responsible innovation and competitive advantage for many.

Upcoming privacy standards should foster another entire level of protection for
consumer rights, as well. Privacy consultants praise the oASiS PMRM standards-track
specification for codifying the processes for specifying privacy requirements. one
excitedly said, “. . . it’s better than the ad-hoc processes that are in my head. now i
have an explicit reference methodology that my clients are willing to invest in.”

Certainly, the PMRM is valuable for its step-by-step guidelines and clear and concise
identification of privacy domains, controls, and critical touch points—or leakage
points—through which data flow. Privacy stewards and other stakeholders may use the
PMRM to create a privacy management analysis for use cases. PMRM’s methodology

22Privacy Management Reference Model and Methodology (PMRM), Ver. 1.0, March 2012, OASIS
Committee Specification Draft. Retrieved from http://docs.oasis-open.org/pmrm/PMRM/v1.0/
csd01/PMRM-v1.0-csd01.pdf.

http://docs.oasis-open.org/pmrm/PMRM/v1.0/csd01/PMRM-v1.0-csd01.pdf
http://docs.oasis-open.org/pmrm/PMRM/v1.0/csd01/PMRM-v1.0-csd01.pdf

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

134

extends to helping software engineers understand complex privacy requirements
inherent in today’s collaborative web-based systems. indeed, stakeholders can use
the methodology to perform thorough privacy management analyses in a wide variety
of contexts, from executive management to unit-level software testing for privacy
compliance.

focusing entirely on the software engineering space is the work of an even newer
standards committee, the oASiS Privacy-by-design documentation for Software
Engineers Technical Committee23 (Pbd-SE TC), which i convened and co-chair with
dr. Ann Cavoukian, the founder of Privacy by design, and ontario’s information
and Privacy Commissioner. The Pbd-SE TC members are collaborating on a future
standard that will help software engineers visualize privacy requirements and
operationalize Privacy by design principles. As a first step, the Pbd-SE TC has
accepted the PMRM specification to help organizations create use cases that embed
privacy requirements as functional requirements. in addition, this TC is currently
debating a new hybrid method of using software engineering modeling languages
and spreadsheets to represent integrated privacy requirements in tabular and
diagrammatic forms. Together, these approaches represent richer privacy models for
our increasingly socially responsible software engineers.

As shown in this timely book, professional software engineers in industry use
Unified Modeling Language (UML) diagram models for sharing vision, giving visual
representations of (sub)-systems, influencing code generation, and documenting
software requirements and design. The object Management group (oMg)’s UML
is an international Standards organization (iSo) software engineering industry
modeling standard. Because of UML’s ubiquity, oASiS Pbd-SE leverages UML and
may offer new extensions to it to support privacy.

Software engineers use UML to understand and collaborate on building software.
UML abstracts away confusing details and allows software developers to more easily
examine a system’s behavior, data, and process models more quickly compared to
textual documentation. However, while UML is a commonly used communications
medium, it has different degrees of adoption and use. for some large systems,
UML use may be quite formal, while for users of agile methodologies, software
engineers may sketch out a quick UML-like diagram that allows them to share and
easily refer to requirements and design. Today, requirements analysis takes up the
largest proportion of time in agile software engineering efforts. Any aid in reducing
the amount of time an engineer spends in understanding and embedding privacy
requirements is a bonus for productivity. Hence, the work of the oASiS Pbd-SE is
positioned to provide such a productivity boost to the field.

23OASIS Privacy by Design Documentation Technical Committee (PbD-SE) Charter. Retrieved
from www.oasis-open.org/committees/pbd-se/charter.php.

http://www.oasis-open.org/committees/pbd-se/charter.php

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

135

in summary, organizations participating in online privacy standardization efforts
today provide valuable leadership in shaping tomorrow’s privacy-preserving
societies. Software engineers, from business analysts and software developers to
unit testers, can use the current oASiS PMRM 2013 committee specification draft
and the oASiS Pbd-SE standards-track approaches to promote high quality privacy
engineering and responsible governance.

Author’s note: The Privacy Engineering methodology described in this book
is based on a system’s engineering methodology used for over 30 years and
therefore developed independently from PMRM and Pbd, but when we reviewed
these approaches, we found that privacy engineering is consistent with these
approaches. We have been using UML from its early days. When Jonathan and
Michelle presented their privacy assessment approach, we adapted it to UML using
existing UML icons without extending UML. dr. Jutla will be reviewing our proposed
approaches as part of the oASiS Pbd-SE TC analysis.

Stage 1: Project Initiation and Scoping Workshop
Project Initiation Defines Project Processes
During project initiation, the project team will develop project mechanisms for:

Developing a first-cut project plan, including a statement of •	
project objectives and scope. It should also include project
tasks, resource roles, task start date and duration, and task
dependencies.

Defining the method for monitoring milestone deliverables.•	

Reporting project status, including reporting period •	
accomplishments, next period plans, problems or issues, and
suggestions.

Managing change or service requests.•	

Release to management.•	

Change management is critical to the success of a project and must be fully
formalized, approved, and promulgated via service requests. The change management
process should be tracked and documented from the receipt of the first service request to
the final implementation. Service requests should:

Trigger all system development activities•	

Be made for all scope changes that could affect a project’s •	
objectives

Be made for all scope changes that will affect a deliverable’s •	
completion date

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

136

Be analyzed in regard to impact of the project on the entire •	
enterprise

Have a measurable business benefit stated•	

Release management should provide a formal process for authorizing the movement
from development and test into the production environment. Changes should be
scheduled as releases, as much as possible, and the scope of next releases should be
made available to all interested parties. The following steps should be performed:

•	 Track problems and issues: Issue number, related project,
task problem or issue description, responsible team member,
date reported, resolution, date closed, status, priority, reported
by whom

•	 Hold analysis, design, and development walkthroughs:
Management and technical team

•	 Measure success and design metrics: Process engineering metrics
(mean time to failure, repair, and extend), deliverables delivered,
resources to deliver

Obtain user signoff on preagreed to measure of success•	

Requirements Definition Within the Scoping Workshop

To win a race, the s wiftness of a dart availeth not without a timely start.24

Fred Brook’s classic article “The Mythical Man Month” begins with the following
profound observation: “More software projects have gone awry for lack of calendar time
than for all other causes combined. Therefore it is important to get a project off to a
running start.”25

John Zachman has stated that the beginning phase of any project is scoping
objectives.26 During the first week of any project, a scoping workshop is in order, during
which a variety of business users, the privacy team, and information technology (IT)
participants meet, preferably out of the office, to develop a project mission statement.
A mixture of user executives, managers, the privacy team, and workers along with
knowledgeable IT persons works best, but a less diverse group will be successful as long
as the participants understand the business. The scoping workshop participants then
develop a context diagram (see examples in Chapters 7, 8, and 9) that shows the suppliers
and recipients of information from the engineered solution.

24Jean de La Fontaine, 1621-1695, Fables as quoted in L. D Eigen and J. P Siegel, The Manager’s
Book of Quotations (AMACOM, 1991).
25F. B. Brooks, Jr., The Mythical Man-Month (Addison-Wesley Publishing Company, 1975), p. 14.
26J. A. Zachman, “A Framework for Information Systems Architecture,” in Handbook of Data
Management (Boston: Auerbach Publications, Warren Gorham Lamont, 1993), pp. 3–22.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

137

Next, the scoping session identifies major business classes, major business events,
major business processes, major business rules, and major business objectives.

The participants then review and set study priorities on major business events,
processes, or business classes. Typically, the events, processes, or business classes will
be designated either as being a primary focus item, a secondary focus item, or out of
scope. For primary and secondary focus items, stakeholders and subject matter experts
are identified. The stakeholders and subject matter experts will be use case participants,
those interviewed, or both.

Scoping Deliverables
The following deliverable may be developed27 from the scoping workshop:

List of business drivers•	

Scoping mission statement•	

Context diagram•	

List of context actors•	

List of actor locations•	

List of triggering events•	

List of information flows•	

List of business classes•	

List of business processes•	

Potential privacy requirements•	

Use case schedule using identified subject matter experts•	

Stage 2: Develop Use Cases and Class or
Data Models
Chapter 5 discussed use cases in detail. This is the step in the methodology where use
cases should be developed. In the following chapters, other use case examples are
presented.

Develop Business Activity Diagrams
The business activity diagram in Figure 6-6 shows the events and processes and decision
making between the various business processes involved in supporting vacation planning
(Chapter 9 discusses the vacation planner example in scenario 3).

27These things come to the surface during the scoping workshop and may or may not be formally
documented depending upon the time available.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

138

Using the Business Activity Diagram for Privacy Assessment
Some privacy professionals have proposed using the business activity diagram as
part of the privacy requirements assessment. The privacy team works with business
stakeholders, including data stewards, to identify key data attributes, especially
identifiers, within the business processes and decisions, as represented in Figure 6-7.
Privacy rules will be developed for these and other attributes as found and entered in the
metadata.

Figure 6-6. Business activity diagram: vacation planning

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

139

Defining Business and Privacy Data Classes
A class is a person, place, thing, concept, or event deemed to be of significance to an
enterprise. Classes deal with attributes, behaviors, and message passing. A class has a
name and a definition of its purpose and it has knowledge properties (“Data”) and action
properties (“Event Handlers and Processes”).

Data classes can also be persons, places, things, concepts, or events of interest
to the enterprise. Both class and data modeling approaches look at classes of things
and how they are related to each other. During the business-level (conceptual) stage,
methods (action properties) are not defined and the class model and data model may be
congruent.

Where data required are contained within a document, such as a graphic, an audio
input, web site content, something from e-mail, or from any other big data source, the
data may be either processed as an object reflected in the data model as a data block or
the data may be extracted within the program and stored as a data entity or data table.
A data block shows the data attributes of the data class and would be processed using a
NoSQL or a Hadoop system component. The scenario 3 vacation planner data model
(in Chapter 9) shows an example of a big data data block within the data model.

The business data requirements are, perhaps, the most important requirements to
be evaluated. If data are available in the database, a query can be developed to access it.
If required data are not there, then significant customization is required. Business data
modeling leads to a strong, well-designed, and flexible database.

Figure 6-7. Business activity diagram with key data attributes

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

140

Use cases identify classes and data attributes within the class. Class and data
modeling support use case analysis. Class and class relationships are represented as
UML class diagrams. Data and data relationships are represented as entity relationship
diagrams.28 Metadata document all aspects of class and data modeling. Data-oriented
business and privacy rules are documented as metadata. (See Appendix A for examples of
data-oriented metadata.)

Using the Unified Modeling Language Class Model as a
Data Model
The class model, much like a data model, shows the information we manage and the
relationships among the various classes. A data model reflects the data requirements
and is the basis for the design of the database used to support the system meeting these
requirements.29 Each data item can have rules, identifiers, and universal truths that will
become tables and columns within a database or otherwise processable data structure.
These are the “things” we manage—policies, rules, people roles—when they turn into
software or hardware. For consistency throughout the methodology, the UML class model
is used for the data model.

One example class model is the party of interest model, which can be any individual
or organization that is of interest to any enterprise. Figure 6-8 shows a more detailed
piece of the class model that would be developed. The party of interest would have
a uniqueness identification number, name, primary address, ZIP code, and primary
telephone number. The relationship lines30 indicate that persons and organizations
are the most common types of party of interest and inherit the data attributes and the
operational attributes (often referred to as methods). So person would have the attributes
of party of interest as well as its own attributes. It would also have create, read, update,
deactivate, and archive methods available.

28We use the UML class models for both class and data modeling. See the example below.
29We discuss a database here because it is in common use, but data models may be used in
designing other data structures. Even in the case of unstructured data, data modeling helps
organize the data elements extracted from the unstructured data into a “big data” data block. In
the Trillions book (Trillions: Thriving in the Emerging Information Ecology by Peter Lucas,
Joe Ballay, MickeyMcManus Wiley Press (2012)), the authors describe data storage containers
that will implement a so-called internet of things. Understanding the various data entities, and the
relationships of other data entities to it, is a condition precedent for the successful use of data.
30The arrow-like icon on the relationship lines indicates that there is an inheritance relationship
between the super-type party of interest and the subtypes individual person and organization.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

141

Example: Privacy Component Class Model
The party of interest is a class of the privacy component class model. Figure 6-9
shows classes that represent things managed by the enterprise and the data privacy
requirements. Each class represents a person, place, thing, concept, or event deemed
to be of significance to an enterprise within the data protection realm. Classes deal with
attributes, behavior, and message passing. A class has a name and a definition of its
purpose and other attributes that are characteristics of the class. This class model will be
described in more depth in Chapter 7.

Figure 6-8. Detail class model

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

142

Data Modeling Steps
The following data modeling steps should be performed:

1. Identify major classes

2. Identify big data requirements (documents, videos, audios,
web downloads, e-mails)

a. Find where the useful data are located. In the case of big
data, the same data may be scattered within and across
different sources.

b. Determine how to pull the data into a “single source of
the truth” to consolidate, cleanse, and centralize the data.

3. Identify one or more data block(s) in which data attributes
should be placed (e.g., a vacation plan data block in the
scenario 3 vacation planner data model in Chapter 9).

4. Identify attributes of each class and big data data blocks

5. Determine relationships between classes and data blocks

6. Identify uniqueness identifiers (part of data modeling)

7. Validate classes through normalization and big data analysis

Figure 6-9. Privacy component class model

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

143

 8. Attach business and privacy rules to classes, data blocks,
data relationships, or data attributes

 9. Integrate with existing class and data models

10. Analyze for stability and growth

11. Record in a metadata repository throughout process

Stage 3: Design an Engineered Solution
Once the analysis of business requirements has been completed, the project team works
with the system developers to support the design of system solutions. The team will
perform the activities in the following checklist, some of which are described in more
detail in the following sections:

Recommend redesign of business processes, where needed: •	
Existing business processes that need to be revised and improved

Define automation boundaries: Which business processes can be •	
automated by technology and which processes are administrative

Develop and utilize the system activity diagrams•	

Expand system use cases and class models and supporting •	
metadata

Design the operational and reporting databases and big data •	
analytics, from logical class or data model and expanded data
models, including big data data blocks

Perform dynamic modeling•	

Define service components and supporting metadata, including •	
big data handling components

Perform system evaluation and prototyping (as needed)•	

Define design units based on use cases•	

Design presentation layer (user interface), including any content •	
handling or presentation

Perform development and proof of concept prototyping •	
(if needed)

Design batch program modules•	

Finalize the solution (application and technology) architecture•	

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

144

User Interface Design
Basic User Interface Design Steps
There are several user interface (UI) design best practices that should be followed:

1. Understand your users’ requirements:

a. What are they trying to accomplish?

b. How experienced are the users?

c. What interfaces are they used to?

d. What data attributes to be collected or reported upon
require special privacy rules?

2. Use UI patterns that are as familiar as possible to the users.

3. Recognize a data hierarchy. For instance, an order with
descriptive information about the order and one or more
items should be shown as the order description with a list
of clickable items that, when clicked on, will give a description
of the selected item.

4. Interact with the user:

a. Be as self-descriptive as possible

b. Provide feedback

c. Help users and forgive mistakes

d. As the user becomes more used to the system, allow the
user to select a more powerful, sophisticated interface

e. Keep interactions conversational

f. KISS (Keep It Simple, Stupid)

Mapping Business Class Objects to System and Technology
Objects
The UI can be designed by mapping the business class objects to the system and
technology objects.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

145

There are various types of business class objects

•	 Elemental business object:31 Class and related components and
relationships

•	 Complex business class object:32 User view and related components
and relationships, including big data object.

•	 Atomic business object: Data attribute and related components
and relationships

System objects are business objects viewed from a system’s perspective. There are
various types of system objects:

•	 Elemental presentation objects: Forms, lists, reports, or graphics of
elemental business objects

•	 Complex presentation objects: Forms, lists, reports, or graphics of
complex business objects, including privacy notices

•	 Action selection mechanisms (controls): Icons, pop-up or
pull-down menus, pop-up or pull-down lists, action buttons,
radio groups

•	 Specific functional object modules: Ad hoc reports and queries,
security, configuration management, privacy notice presentation
mechanisms, and consent mechanisms (opt-in or opt-out).

User Interface Prototype
A crucial part of rapid application design and development is development prototyping,
which is performed by the development team, consisting of IT personnel and business
personnel. At the minimum there should be a team leader, prototype developers, and a
modeler, along with representative business knowledge workers. In the case of a
privacy-related project, the privacy team should be represented. It cannot be overstated
how important the role of a great user interface designer who is skilled in aesthetic,
functional, and technical aspects of user based interfaces can be. Because privacy
engineering is relatively new and certainly rarely practiced, the more user centric and
less opaque or “creepy” intrusive the interface, the more acceptable and the more data or
person centric the system end product will be.

Larger functional areas will require more people. Starting with the demonstration
(analysis) prototype, the online system is developed interactively with the business
knowledge workers, along with further reports and functionality invoked by means of
the system’s presentation layer. Analysis and development prototyping are similar in

31Elemental objects or classes may be considered analogous to data classes. Elemental objects are
analyzed utilizing an approach called “fact-based normalization.”
32Complex objects are objects comprising or using information from more than one elemental object.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

146

method. Development prototyping is more design-oriented and, thus, more detailed.
The development prototyping deliverables are:

A working prototype of the online application system•	

A portion of the system design•	

Detailed information required to transform the logical data model •	
and the system use cases into the implementation system and the
implementation database

Prototyping Caveats

Prototyping is inherent in the design approach described previously. However, no matter
how good the development team’s efforts are and no matter how good the prototype
looks and acts, the prototype is NOT the production system.

The team does not take time to tune the prototype for •	
performance.

Entity and referential integrity protection may not be completely •	
developed.

Although some of the security features may be developed in •	
order to demonstrate how security might work, the security
system, especially security administration, will not be completely
developed.

Although some of the help screens may be geared toward the •	
business knowledge workers, the help system and screens will not
be complete.

Although the most important exception processing will be •	
developed and demonstrated to the business knowledge workers,
not all exception processing will be completed.

Some of the system administration functionality, especially •	
crucial reference tables, will be designed and geared toward the
business knowledge workers, but not all system administration
will be completed.

Some stress testing experiments will be carried out in regard •	
to the server and the network as a part of proof of concept
prototyping. The remainder of stress testing will take place once
production development is completed.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

147

Component Design
What Is Component Architecture?
A component architecture33 is a representation of the underlying set of interrelated
components that define and describe the solution domain required by the business to
attain its objectives and achieve its business vision.

COMpONeNt arChIteCtUre hIStOrY

By Tom finneran

in this book, we propose using a component architecture approach. There might
be some concern that designers might try a noncomponent architecture approach.
However, one might make the case that all programmers make use of components
and component architecture.

from the beginning of computer programming, we programmer designers have
grouped our code into modules or subroutines. We might have an input code module,
a process module, and an output module. in the 1830s, Ada Byron Loveless, studying
the Babbage differencing Engine, developed an algorithm for calculating a sequence
of Bernoulli numbers. The algorithm contained an input module, a processing of
the numbers module, and a resulting list of numbers. Even back then, we can
consider the modules a type of component, and Ada’s approach was an early form of
component architecture.

A component is a self-contained, reusable building block that can be used
independently or assembled with other components to satisfy software requirements.
A component handles a specific event, or related set of events, and provides a particular
function or group of related functions through a well-defined and stable interface.
All components consist of one or more component interfaces, component decision event
handlers, and component behavior activators. The component interface may send or
receive data from a file or may be a user interface. The decision event handler utilizes
business rules to determine which component behavior should be activated.

It is important to understand that from the beginning of computer programming
some form of component identification and architecting was done, although the
terminology was developed later. Things like routines, subroutines, macros, and
subsystems can be considered forms of a component.

33See “A Component-Based Knowledge Management System” by Thomas R. Finneran at
www.tdan.com/i009hy04.htm.

http://www.tdan.com/i009hy04.htm

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

148

INVeNtION MethODOLOGY

By Tom finneran

i was approached by a team of engineers who had an invention idea. it was a
network interface card (niC) based on a standard network protocol that would
greatly increase the power of a local area network (LAn). We started with a
scoping workshop, as discussed above. We then worked up a set of use cases and
then developed a component architecture, based on the component architecture
metadata model. This gave us an engineering spec from which we could designed
both the card and supporting software, but also having engineering documentation,
which made a favorable impression on the companies to which we were presenting
our invention. The documentation was mapped right on to the patent application,
including the patent claims, which are the basis for any patent.

So the methodology led to a hardware/software solution and a very straightforward
patent approval process. See Patent #60/029,902.

Example: Privacy Component
We can understand how the privacy component, or any component, might work by
interpreting the component metadata model (Figure 6-10). The privacy component may
be embedded in a system or as a mobile app or web service or program subroutine. It may
invoke a more broad-based system in the Cloud.

Figure 6-10. Component metadata model

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

149

The component interface may utilize a database based on a data model and, in most
cases, it may utilize the database for the system it is embedded within (e.g., the simplified
customer order data model in scenario 3 in Chapter 9). The component interface may
also have a user interface for interacting with the actors shown in a context diagram.

The component event handler will process the events listed as the triggering events
in the use case requirements (see Chapter 5). Each event implies one or more decision
to be made. For instance, the UI will ask the user if he or she wishes to see the Privacy
Notice.34 When the user answers, an affirmative answer invokes one set of privacy rules
and a negative answer invokes another set of privacy rules. Thus, each event triggers
one or more decisions, and each decision requires a set of privacy rules as the criteria
for making the decision. Each decision will then invoke a process or behavior that
may trigger another event, and its decision sets or may invoke another behavior, all in
accordance with the business rules. Each of the rules may require access to a database
related to the component.

Privacy Rules
A privacy rule is a type of business rule. A business rule is a written statement in natural
language that functions as a communication tool to express a rule, decision criteria, or
a policy common practice as a statement that relates to a decision involving business
information or business processes. A business rule is represented as an IF . . . THEN . . .
ELSE pattern.

For example, IF Privacy Notice is clicked THEN invoke Privacy Notice routine ELSE
check user role routine. These privacy rules will be derived from the privacy policies and
the privacy procedures, standards, and guidelines as discussed herein.

Develop a System Activity Diagram
A system activity diagram shows how the various actors impacted by the system
interact with the system processes, which are program modules with components and
subcomponents. In the privacy engineering methodology, we have added a new feature,
using a UML Note icon, to show which module satisfies the various FIPPS or GAPP
principles. Chapter 7 presents an example of a system activity diagram with the privacy
engineering enhancement.

Dynamic Modeling
For event-triggered activity identified within each system use case, a UML sequence
diagram is used to model implementation details of the various activities or transactions
of the system. The sequence diagram represents an interaction, which is a set of messages
exchanged among objects within a collaboration to effect a desired operation or result.

34FIPPS/GAPP requires that a Privacy Notice that defines the enterprise’s privacy policies be made
readily available to a system user.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

150

A sequence diagram shows objects involved in the activity by vertical lines,
which are called object lifelines or swim lanes. Horizontal vectors between the object
lifelines represent the messages passed between the objects. The messages are drawn
chronologically from the top of the diagram to the bottom; the horizontal placing or
spacing of objects is arbitrary.

A message from one object to another can be defined by the method called, or
invoked, by the sending object on the receiving object. The method called must belong to
the definition of the class instantiated by the receiving object.

During dynamic modeling, methods are included in classes in the class model.
Figure 6-11 presents a simplified UML sequence diagram showing the entry of a

scenario 3 order that shows use of the privacy component.

Define Service Components and Supporting Metadata
A service component is a self-contained, reusable building block component. It can
be used independently or assembled with other components to satisfy an enterprise’s
requirement(s). A service component may implement one or more class objects and
handles a specific event or a related set of events. It provides a particular function or group
of related functions. A service component has a well-defined and stable interface(s).

UML defines a component as a software module (source code, binary code,
executable, DLL, etc.) with a well-defined interface. The interface of a component
is represented by one or several interface attributes that the component provides.

Figure 6-11. Customer Order Sequence Diagram

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

151

Components are used to show compiler and runtime dependencies as well as interface and
calling dependencies among software modules. Components also show which component
implements which specific class(es). Both business service classes (e.g., the customer class
and the customer credit class) and controller classes (e.g., system business workflow class)
may be considered part of a component within the component model (Figure 6-12). A UML
component might not be a service component, in that the UML component may not meet
the more rigorous service component definition stated previously.

The privacy component can be seen as a component containing subcomponents.
For instance, although Figure 6-12 would reflect a simplified component design for
example scenario 3 (the vacation planner in Chapter 9), that scenario contains the
embedded privacy component (for example scenario 1). The privacy component
interface, the privacy rules, the roles, and the security components on the diagram are
actually subcomponents of the privacy component.

Figure 6-12. Sample component diagram

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

152

Privacy Enabling Technologies
There is no uniform definition of PET; but it typically refers to the use of technology to
help achieve compliance with data protection legislation or privacy policies. Many of
the technologies referred to as PETs can protect corporate confidential information and
protect revenues by securing the integrity of data. There are many PETs, and their benefits
are both technology-specific and application-specific. The privacy component is itself a
PET (Figure 6-13). The following concepts have been identified as PETs:35

•	 Encryption: Encryption may be implemented as a piece of code
included in an information system or as a component invoked by
the privacy component or by an embedded system.

•	 Digital rights management: Digital rights management (DRM)
is a systematic approach to protect an enterprise’s content and
intellectual property. DRM technology focuses on making it
impossible to steal content in the first place, a more efficient
approach to the problem than the hit-and-miss strategies aimed
at apprehending online poachers after the fact. Like encryption,
DRM may be implemented as a piece of code included in an
information system or as a component invoked by the privacy
component or by an embedded system.

•	 Privacy rules within application programs: As discussed
previously, privacy rules should be developed in conjunction
with data stewards. System developers will implement those rules
within the programs they develop. With the privacy component,
privacy rules can be maintained easily and, if invoked by the
various application programs, roles will be consistent throughout
the enterprise. If the privacy rules change, those changes may
be made within the privacy component and reflected within all
of the various application programs. The changes are made in
one place as opposed to individual changes made to all of the
application systems.

•	 Identity management: Enterprises may develop identifiers for the
various individuals impacted by their systems. Thus, they can
develop a set of security components for authenticating their
system users. There will also be authorization components that
answer the question whether the user has the right to perform
the action he or she is attempting. This may be based on security
rules, privacy rules, or both. Authentication should be consistent
throughout the enterprise. Therefore, including the authorization
and authentication component as a part of the privacy
component is often a prudent design decision.

35See “An Introduction to Privacy Enabling Technology” by Steve Kenny–Privacy Advisors,
at https://www.privacyassociation.org/publications/2008_05_introduction_to_
privacy_enhancing_technologies.

https://www.privacyassociation.org/publications/2008_05_introduction_to_privacy_enhancing_technologies
https://www.privacyassociation.org/publications/2008_05_introduction_to_privacy_enhancing_technologies

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

153

•	 Engineering and architecture: A well-architected system that
utilizes the privacy engineering approach can be considered a
form of PET.

•	 Privacy information services: As discussed previously, privacy
information services can be considered a PET that can be
plugged in wherever personal information functionality is
needed.

Some feel that just by using PETs, they are protecting privacy. Although this can
be partially true, it is not completely true. There is more to it than that. As discussed, a
privacy solution may include PETs, for example, encryption, as one or more component
within a component’s architecture design. Even if the design is full of PETs, privacy will
not be fully protected without well-written policies, standards, procedures, guidelines,
and a notice presented in a readable form, among other things. PETs are enablers, but
they are not substitutes for privacy engineering. PETs can be just one of many design
components but alone are not a privacy solution.

Figure 6-13. PETs does not equal privacy

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

154

BIG Data: What’S NeW? What’S NOt? What It MeaNS
tO YOU: 10 thINGS YOU NeeD tO kNOW

Leslie K. Lambert

Chief Security & Strategy officer for guruCul Solutions

1. What is Big Data, Really ? Big data is a term recently
coined within the information technology field to describe
tremendously large amounts of unstructured, or partially
structured data that has been collected. data is typically
considered to rise to the level of “Big data” when the
amount of data that’s available would take too much time
and would cost too much money to load and process in a
traditional manner via a relational database. The quantity of
data that is presumed to imply Big data is petabytes or more.

2. Big Data is Evolving Faster As a Concept Than As a
Working Infrastructure The problems we’ve experienced
in the past with storing, securing, sharing and making
meaning of data are exacerbated in the current world of Big
data. issues and struggles we experienced are magnified
in the world of Big data, accompanied by a growing set of
data collection and storage technologies that are not yet up
to the task of being able to properly protect the sensitive
data contained therein. older security models may not be
enough or sufficient to properly care for the Big data that is
being collected.

3. Hadoop is Big and Getting Bigger new information
technology that originates from the open source software
world has been developed to work with Big data. This
new technology, called Hadoop, is capable of enabling
the processing of very large quantities of data. Hadoop
has created incredible opportunity to reveal more of the
unknown in Big data through the ability to bring so many
more pieces of the puzzle together and serve it up ready
for analytics engineers. one downside to Hadoop is that
Hadoop databases typically have very slow processing
rates, an artifact of current architectures. However, there are
many powerful Hadoop-specific analytical tools that have
been developed that are capable of processing and gleaning
innovative meaning from these hoards of Big data in a
faster way.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

155

4. We May Need New Models for Database Security Past
models of secure schemes for entire data bases may be
too costly for today’s Big data. However, the same theories,
rules, and technologies apply to data today, even though the
quantity of data has grown exponentially. We need to remind
ourselves of the basics of data protection, both for security
and privacy’s sake, and that if they are performed well “in
the small”, they can be performed well “in the large” i.e. in
the new world of Big data. As is typical for technology that
rises from within the open source community, the functional
capabilities to work with Hadoop databases have developed
far more quickly than the associated technology to control
or protect the security and privacy of this data. if we did not
perform these data protection tasks well in the past, didn’t
take proper care of our earlier data stores, how are we to
secure and care for the Big data we have in hand today, in a
less mature, open source technology framework?

5. Big Data Requires More Protection given the current state
of technology and controls available today, it is easy for Big
data to quickly become a big problem with a really big price
tag. Current issues we see today, where companies already
do not sufficiently protect their data, lead to law suits, negative
publicity, brand damage, and, possibly, regulatory fines and
other fees. The more data that exists, the MoRE data protection
is required. Big data requires newer security and privacy
models that scale with Big data, including both the ability to
control access to data that is held within your networks, and
providing protection to data that is leaving your networks.

6. Surgical Application of Better Protection in the current
world of Big data, secure practices and technologies may
need to be applied in a more surgical manner to maintain
the cost of implementing and maintaining the protection.
There are costs to acquire the data, costs to maintain the
data, costs to secure the data, as well as the cost to use
and get value from the data. At the same time, there is an
even stronger need to handle data and perform the basics
of identifying, authenticating, authorizing and controlling
access to data in the Big data world. Applying strong
data protection for all of your data can be very costly and
cumbersome, with limited extra value or return on your
investment. A need exists to implement stronger data
protection for Big data exactly where and when it is needed
and to accept the costs of that stronger data protection.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

156

7. Know the Value of Your Data it is vital that we truly
understand the nature and sensitivity of the data in
hand. not all data are created equal. Some data is more
liable to place an organization at risk, some data is more
sensitive than others. Encryption of data can slow down
performance, increasing latency and time-to-value on the
data. This is even truer with the current state of Big data
technology. Hadoop technology is inherently slow, and
imagine placing the additional burden of encryption into
this same mix. Encryption can be applied to Big data, and
it’s recommended to encrypt only the most sensitive data
components within your Hadoop infrastructure—to not
encrypt non-sensitive Big data. As well, Big data system
back-ends, need to be protected in the manner of permitting
only limited or no access to raw data by applications
or services. for more real-time analysis, utilization, or
reporting of data, it is recommended to use a relational
database on the front-end of your Big data back-end.

8. Investment Drives the Need to Derive Meaning given the
expense that businesses have likely invested to collect and
store their tremendously large amounts of data, pressures
to produce answers build within business organizations
as they attempt to derive meaning from their data through
analyzing their Big data stores, looking for meaningful
relationships via analytical tools to reveal correlations or
repeatable patterns.

9. New Old Career Opportunities gleaning meaning from
Big data means greater investment in decision-making
algorithms and correlation engines. data science, once an
old career, is suddenly new again, and job candidates are
sought with high priced compensation packages. it is a new
model for “mentalists” who can see all by drawing meaning
from mega data stores.

10. Privacy Engineers are Vital Remember, data is still data.
you must know your data, the credibility of sources and
frequency of update of your data. And, with Big data, the
value of data is growing at the same logarithmic rate as
its size. it is important to focus on what truly needs to be
protected, and at what level. To manage both cost and
performance degradation, it is recommended that the

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

157

Privacy Engineer spend energy on protecting the data within
the Big data store that is related to true risk or compliance.
We need to mega-protect only what needs to be mega-
protected. There are new technologies to facilitate the
handling, correlation and making of meaning of Big data.
However these new technologies have grown and expanded
far more quickly than the controls to maintain the protection
of the data. it is vital to balance prudence, care, fiduciary
obligation, and enablement. Just because we can, doesn’t
mean that we should.

Stage 4: Complete System Development
The development team will take the approved development prototype and complete
the system development as soon as the prototype becomes accepted as a basis for the
production system. The prototype caveats can provide elements of the completion
criteria.

Stages 5 and 6: Quality Assurance and Rollout
Develop and Execute Test Cases
Test cases are developed for each use case, based on the activity diagram, the use case
metadata, the sequence diagrams, and the class model. The supporting metadata test
cases contain the following information:

The application name•	

The use case name•	

The use case code (ID)•	

Hardware or software•	

The tester name(s)•	

The date completed•	

Test scenarios•	

Within each test activity, test cases, and test conditions•	

The FIPPS/GAPP or similar principles will be used as test case criteria, along with
other use case requirements. Chapter 10 contains a privacy question and answer checklist.

As construction builds are developed, the various components are integrated.
The quality assurance project team members utilizes test cases, as described previously.
As defects are found, they should be systematically documented.

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

158

Testing and Rollout Deliverables
Rollouts may be pilot operations or incremental implementations. Testing and rollout
deliverables are:

Test cases or scenarios based on data metadata business rules•	

Test cases or scenarios based on use cases; activity, collaboration, •	
and sequence diagrams; and supporting metadata

Onsite and remote tests•	

Defect list, including resolutions•	

User acceptance tests•	

Incremental rollout plans•	

Knowledge Transfer
Knowledge transfer to client personnel is critical for the effective transition of the
application to the deployment and maintenance teams. It facilitates quick system
problem resolution when issues arise in production and ensures system extensibility
when additional functionality is needed.

Concerning the privacy component delivered alone, the training will be technical for
most direct users. Business stakeholders and management will need to be made aware of
the functionality and the potential impact of the privacy component.

For scenario 3 Vacation Planner Application, the training would focus on the
functionality of the embedding system. The development team will need to be made
aware of the functionality of the privacy component and its interface with an embedding
system. The business team and management will need to understand the privacy rules
enforced within the specific system.

For the scenarios, the use case requirements’ specifications will provide the basis
for the content of the subject matter within the training materials. This content may be
presented as a white paper or an online training class or within a classroom setting. The
students will be made aware of the privacy requirements being satisfied by the solution
along with the business and technology aspects of the solution.

A key to implementing a successful privacy program is empowering employees and
stakeholders of the organization to assist the company in preventing privacy problems.
If privacy education and training are provided to the entire population within the
organization, they will come to understand the fundamentals of privacy so they can help
protect against privacy vulnerabilities. More advanced instruction can be provided to
key people within the organization whose duties involve more exposure to systems or
processes that implicate privacy information implementation.

Internal communications such as published guidelines, FAQs, and other documents
are good ways to leverage the resources within the privacy team so that a broad
audience can be reached efficiently. These published communications also provide a
good starting point for new employees who need to quickly understand the important
elements of the privacy policy. Ongoing internal training events can provide another

CHAPTER 6 ■ A PRivACy EnginEERing LifECyCLE METHodoLogy

159

way to educate many at the same time. Problem-solving exercises involving practical
scenarios can be very effective in getting active learning participation in internal
training events.

Conclusion
This chapter has presented a systems engineering lifecycle methodology adapted to
implement privacy engineering. This methodology has been used successfully for over
30 years, with the privacy adaptations being used in recent years. The use of models
and modeling is crucial to intelligent systems design. The international standard UML
was selected because it is a widely used standard and it covers object, data, and process
modeling. Chapters 7, 8, and 9 will provide practical examples using this methodology
and discussed in more detail.

	Chapter 6: A Privacy Engineering Lifecycle Methodology
	Enterprise Architecture
	Architectural Views
	Solution Architecture
	Develop Procedures, Processes, and Mechanisms

	Methodology
	System Engineering Lifecycle
	The Use of Models within the Methodology

	Stage 1: Project Initiation and Scoping Workshop
	Project Initiation Defines Project Processes
	Requirements Definition Within the Scoping Workshop
	Scoping Deliverables

	Stage 2: Develop Use Cases and Class or Data Models
	Develop Business Activity Diagrams
	Using the Business Activity Diagram for Privacy Assessment

	Defining Business and Privacy Data Classes
	Using the Unified Modeling Language Class Model as a Data Model
	Example: Privacy Component Class Model
	Data Modeling Steps

	Stage 3: Design an Engineered Solution
	User Interface Design
	Basic User Interface Design Steps
	Mapping Business Class Objects to System and Technology Objects
	Prototyping Caveats

	User Interface Prototype
	Component Design
	Sec27
	What Is Component Architecture?

	Example: Privacy Component
	Privacy Rules
	Develop a System Activity Diagram
	Dynamic Modeling
	Define Service Components and Supporting Metadata
	Privacy Enabling Technologies

	Stage 4: Complete System Development
	Stages 5 and 6: Quality Assurance and Rollout
	Develop and Execute Test Cases
	Testing and Rollout Deliverables
	Knowledge Transfer

	Conclusion

