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Background
MCDM is one of the process for finding the optimal alternative from the set of feasible 
alternatives according to some criteria. Traditionally, it has been generally assumed that 
all the information which access the alternative in terms of criteria and their correspond-
ing weights are expressed in the form of crisp numbers. But in day-today life, uncertain-
ties play a crucial role in the decision making process. Due to complexities of the system, 
the decision maker may give their preferences corresponding to each alternative to some 
certain degree. However, it is obvious that much knowledge in the real world is fuzzy 
rather than precise and thus their corresponding analysis contains a lot of uncertainties 
and hence does not give the correct information to the practicing. Such kind of situa-
tions is suitably expressed with intuitionistic fuzzy sets (IFSs) (Attanassov 1986) rather 
than exact numerical values. These days IFSs are one of the most permissible theories 
to handle the uncertainties and impreciseness in the data than the crisp or probability 
theory (Garg 2013, 2016a, d; Garg et  al. 2014; He et  al. 2014b; Li and Nan 2009; Wan 
et al. 2016a; Xu 2007a, b; Yu 2015a). In the field of MCDM, the primary objective is of the 
information aggregation process. For this, Yager (1988) proposed the ordered weighted 
average (OWA) operator by giving some weights to all the inputs according to their 
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ranking positions. Based on its pioneer work, many extensions have been appearing over 
it and applied it to solve the problems of multi-criteria decision making problems. For 
instance, Xu and Yager (2006) developed some geometric and Xu (2007a) proposed aver-
aging aggregation operators on IFSs environment including weighted, ordered weighted 
and hybrid weighted operators. Zhao et  al. (2010) combined Xu and Yager’s operators 
and developed their corresponding generalized aggregation operators. Xia and Xu (2010) 
proposed a series of intuitionistic fuzzy point aggregation operators based on the general-
ized aggregation operators (Zhao et al. 2010). He et al. (2014a) proposed an operations 
based on the principle of probability membership, non-membership and probability het-
erogenous functions operators. Wang and Liu (2011) and Wang and Liu (2012) proposed 
some geometric as well as averaging aggregation operator based on weighted and ordered 
weighted operators for different IFNs under Einstein operations. Zhao and Wei (2013) 
extended their aggregation operators by using the hybrid average and geometric opera-
tors. Apart from them, the various authors have addressed the problem of MCDM by 
using the different aggregation operators (Fei 2015; Garg 2015, 2016a, b, c, e; Garg et al. 
2015; Liu 2014; Li and Ren 2015; Li and Wan 2014; Li 2014; Nan et al. 2016; Robinson and 
Amirtharaj 2015; Wan and Dong 2015; Wan et al. 2016a, b; Wang and Liu 2011; Xu and 
Yager 2006; Yu 2013a, b, 2015b; Yu and Shi 2015; Zhou et al. 2012).

It has been observed from the above aggregator operators that they have some draw-
backs. For example, if there is an IFS whose at least one grade of non-membership func-
tion is zero, then the aggregated IFSs corresponding to the aggregator operators as 
described by Liu (2014), Wang and Liu (2011, 2013), Xu (2007a), Zhang and Yu (2014), 
Zhao et al. (2014) etc., have a zero degree of non-membership. This means that the role 
of the other grades of non-zero non-membership functions does not play any dominant 
role during the aggregation process. Similarly, if there is at least one degree of mem-
bership function to be zero then their corresponding IFSs obtained through geometric 
aggregator operators have a zero degree of membership functions. In other words, we 
can say that the effects of the other grades of either membership or non-membership 
on a corresponding geometric or an averaging aggregator operator does not play any 
significant role during the aggregation process. Further, it has been observed from above 
operators that the grades of overall membership (non-membership) functions are inde-
pendent of their corresponding grades of non-membership (membership) functions. 
Thus, under such circumstances, the results corresponding to these operators are unde-
sirable and hence does not give the reasonable preference order of the alternative.

Thus the objective of this manuscript is to present some new averaging aggregation 
operators under the IFSs environment. For this, some new operational laws on IFSs has 
been defined by considering the degree of hesitation between the grades of membership 
functions. Based on it, some series of different averaging aggregating operators includ-
ing weighted average, ordered weighted averaging and hybrid weighted averaging have 
been proposed. It has been observed from these operators that the existing operators can 
be deduce from the proposed operators by giving a parameters to be a special numbers. 
Finally, a MCDM method based on these proposed aggregation operators are presented 
to show the applicability, utility and validity of the proposed ones. From the studies, it has 
been concluded that it can properly handle the shortcoming of the existing work and hence 
give an alternative way to finding the best alternative using an aggregation operators.
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Preliminaries
Intuitionistic fuzzy set

An intuitionistic fuzzy set (IFS) A in a finite universe of discourse X = {x1, x2, . . . , xn} is 
given by (Attanassov 1986)

where µA, νA : X −→ [0, 1], respectively, be the membership and non-membership 
degree of the element x to the set A with the conditions 0 ≤ µA(x), νA(x) ≤ 1, and 
µA(x)+ νA(x) ≤ 1. For convenience, the pair A = �µA, νA� is called an intuitionistic 
fuzzy number (IFN) (Xu 2007a). Based on it, a score and accuracy function is defined as 
S(A) = µA − νA and H(A) = µA + νA, respectively. In order to compare two two IFNs, 
A1 = �µ1, ν1� and A2 = �µ2, ν2�, an order relation between them are summarized as fol-
lows (Wang et al. 2009; Xu 2007a).

(i)  If S(A1) > S(A2) then A1 ≻ A2.
(ii) If S(A1) = S(A2) then

• If H(A1) > H(A2) then A1 ≻ A2;
•  If H(A1) = H(A2) then A1 = A2.

t‑norm and t‑conorm

t-norm (T) and t-conorm (T ∗) operations are widely used for finding the various arith-
metic operations in the IFSs environment. For instance, Xu (2007a) defined the algebraic 
product, sum, scalar and power operations for three IFNs α = �µ, ν�, α1 = �µ1, ν1� and 
α2 = �µ2, ν2� and � > 0 be a real number, by using t-norm (T (x, y) = xy) and t-cornorm 
(T ∗(x, y) = x + y− xy) as follows

  • α1 ⊕ α2 = �1− (1− µ1)(1− µ2), ν1ν2�

  • α1 ⊗ α2 = �µ1µ2, 1− (1− ν1)(1− ν2)�

  • �α = �1− (1− µ)�, ν��

  • α� = �µ�, 1− (1− ν)��

On the other hand, if we define T (x, y) =
xy

1+(1−x)(1−y) and T ∗(x, y) =
x+y
1+xy then the 

operations on IFN are known as Einstein t-norm and t-conorm respectively which are 
defined as below (Wang and Liu 2012)

  • α1 ⊗ α2 =

〈

µ1µ2

1+ (1− µ1)(1− µ2)
,
ν1 + ν2

1+ ν1ν2

〉

  • α1 ⊕ α2 =

〈

µ1 + µ2

1+ µ1µ2

,
ν1ν2

1+ (1− ν1)(1− ν2)

〉

  • �α =

〈

(1+ µ)� − (1− µ)�

(1+ µ)� + (1− µ)�
,

2ν�

(2− ν)� + ν�

〉

  • α� =

〈

2µ�

(2− µ)� + µ�
,
(1+ ν)� − (1− ν)�

(1+ ν)� + (1− ν)�

〉

(1)A = {�x,µA(x), νA(x)� | x ∈ X}
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Hamacher (1978) proposed a more generalized t-norm and t-conorm by defin-
ing as T (x, y) =

xy
γ+(1−γ )(x+y−xy) and T ∗(x, y) =

x+y−xy−(1−γ )xy
1−(1−γ )xy  respectively. It is clear 

from these operations that when γ = 1 then they will reduce to algebraic t-norm and 
t-cornorm T (x, y) = xy and T ∗(x, y) = x + y− xy. Similarly when γ = 2, they will 
reduce to Einstein t-norm and t-cornorm respectively as T (x, y) =

xy
1+(1−x)(1−y) and 

T ∗(x, y) =
x+y
1+xy . Thus, based on these operations, Hamacher sum and product opera-

tions are defined for two IFNs α1 and α2 as

  • α1 ⊕ α2 =

〈

µ1 + µ2 − µ1µ2 − (1− γ )µ1µ2

1− (1− γ )µ1µ2

,
ν1ν2

γ + (1− γ )(ν1 + ν2 − ν1ν2)

〉

  • α1 ⊗ α2 =

〈

µ1µ2

γ + (1− γ )(µ1 + µ2 − µ1µ2)
,
ν1 + ν2 − ν1ν2 − (1− γ )ν1ν2

1− (1− γ )ν1ν2

〉

and their corresponding aggregation operators have been proposed by Liu (2014) for 
different IFNs αi’s by using weight vector ω = (ω1,ω2, . . . ,ωn)

T of αi(i = 1, 2, . . . , n) and 
ωi > 0 and 

∑n
i=1 ωi = 1 as

(i)  The intuitionistic fuzzy Hamacher weighted averaging (IFHWA) operator 
 

(ii)  The intuitionistic fuzzy Hamacher ordered weighted averaging (IFHOWA) operator 

 where (δ(1), δ(2), . . . , δ(n)) is a permutation of (1, 2, . . . , n) such that αδ(i−1) ≥ αδ(i) 
for all i = 1, 2, . . . , n.

(iii) The intuitionistic fuzzy Hamacher hybrid averaging (IFHHA) operator 

 where α̇σ (i) is the ith largest of the weighted intuitionistic fuzzy values α̇i 
(α̇i = nwiαi, i = 1, 2, . . . , n).

The above operations are very concise and have been widely used by the various 
authors (He et al. 2014a, b; Liu 2014; Wang and Liu 2012; Xu 2007a; Zhao et al. 2010), 
but the above operations have several drawbacks. Few of them have listed as below.

IFHWA(α1,α2, . . . ,αn) = ω1α1 ⊕ ω2α2 ⊕ · · · ⊕ ωnαn

=

〈 ∏

n

i=1(1+ (γ − 1)µi)
ωi −

∏

n

i=1(1− µi)
ωi

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

,

γ
∏

n

i=1 ν
ωi

i
∏

n

i=1(1+ (γ − 1)(1− νi))ωi + (γ − 1)
∏

n

i=1 ν
ωi

i

〉

IFHOWA(α1,α2, . . . ,αn) = ωδ(1)αδ(1) ⊕ ωδ(2)αδ(2) ⊕ · · · ⊕ ωσ(n)αδ(n)

=

〈 ∏

n

i=1(1+ (γ − 1)µδ(i))
ωi −

∏

n

i=1(1− µδ(i))
ωi

∏

n

i=1(1+ (γ − 1)µδ(i))
ωi + (γ − 1)

∏

n

i=1(1− µδ(i))
ωi

,

γ
∏

n

i=1 ν
ωi

δ(i)
∏

n

i=1(1+ (γ − 1)(1− νδ(i)))
ωi + (γ − 1)

∏

n

i=1 ν
ωi

δ(i)

〉

IFHHA(α1,α2, . . . ,αn) = ωσ(1)α̇σ (1) ⊕ ωσ(2)α̇σ (2) ⊕ · · · ⊕ ωσ(n)α̇σ (n)

=

〈 ∏

n

i=1(1+ (γ − 1)µ̇σ(i))
ωi −

∏

n

i=1(1− µ̇σ (i))
ωi

∏

n

i=1(1+ (γ − 1)µ̇σ(i))
ωi + (γ − 1)

∏

n

i=1(1− µ̇σ (i))
ωi

,

γ
∏

n

i=1 ν̇
ωi

σ(i)
∏

n

i=1(1+ (γ − 1)(1− ν̇σ (i)))
ωi + (γ − 1)

∏

n

i=1 ν̇
ωi

σ(i)

〉
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Example 1 Let α1 = �0.72, 0�, α2 = �0.55, 0.35�, α3 = �0.23, 0.72�, α4 = �0.33, 0.58� be 
four IFNs and ω = (0.2, 0.3, 0.4, 0.1)T is the standardized weight vector corresponding to 
these IFNs. By utilizing the IFHWA operator to aggregate all these numbers correspond-
ing to γ = 1 we get IFHWA(α1,α2,α3,α4) = �0.4720, 0� and for γ = 2, we get IFHWA 
(α1,α2,α3,α4) = �0.4582, 0�. From these results it has been seen that the degree of non-
membership is zero and is independent of the parameter γ. Furthermore, this degree is 
independent of the degree of other non-membership (those which are nonzero in αi’s) 
and hence these plays an insignificant role during the aggregation process.

Example 2 Let α1 = �0.23, 0.35�, α2 = �0.45, 0.23�, α3 = �0.65, 0.17� and α4 = 
〈0.50, 0.20〉 be four IFNs and ω = (0.2, 0.3, 0.4, 0.1)T is the standardized weight vec-
tor of these numbers. Then based on IFHWA operator we get the aggregated IFNs are 
〈0.5137, 0.2186〉 by taking γ = 1 and 〈0.5060, 0.2196〉 when γ = 2. On the other hand, if 
we replace α2 and α3 IFNs with β2 = �0.32, 0.23� and β3 = �0.37, 0.17� then their corre-
sponding aggregated IFN become 〈0.3443, 0.2186〉 when γ = 1 and 〈0.3422, 0.2196〉 when 
γ = 2. Hence, it has been seen that the degree of non-membership values of aggregated 
IFN becomes independent of the change of the degree of membership values. Therefore, 
it is inconsistent and hence does not give a correct information to the decision maker.

Therefore, the existing operators, as proposed by Liu (2014) are invalid to rank the 
alternative and hence there is a need to pay more attention on these issues.

Some improved weighted averaging aggregator operators
In this section, we have define some improved aggregation operator by using an 
improved operational laws defined as below.

Definition 1 Let α = �µ, ν� and α1 = �µ1, ν1�, α2 = �µ2, ν2� be three IFNs and � > 0 be 
a real number then some basic arithmetic operations between them have been defined 
by using Hamacher norms as follows

(i)  

 

α1 ⊕ α2 =

〈

∏2
i=1 [1+ (γ − 1)µi]−

∏2
i=1(1− µi)

∏2
i=1 [1+ (γ − 1)µi]+ (γ − 1)

∏2
i=1(1− µi)

,

γ
∏2

i=1(1− µi)− γ
∏2

i=1 [1− µi − νi]
∏2

i=1 [1+ (γ − 1)µi]+ (γ − 1)
∏2

i=1(1− µi)

〉

(ii)

  

α1 ⊗ α2 =

〈

γ
∏2

i=1(1− νi)− γ
∏2

i=1 [1− µi − νi]
∏2

i=1 [1+ (γ − 1)νi]+ (γ − 1)
∏2

i=1(1− νi)
,

∏2
i=1 [1+ (γ − 1)νi]−

∏2
i=1(1− νi)

∏2
i=1 [1+ (γ − 1)µi]+ (γ − 1)

∏2
i=1(1− νi)

〉

(iii)  �α =

〈

[1+ (γ − 1)µ]� − [1− µ]�

[1+ (γ − 1)µ]� + (γ − 1)[1− µ]�
,

γ [1− µ]� − γ [1− µ− ν]�

[1+ (γ − 1)µ]� + (γ − 1)[1− µ]�

〉

(iv)  α� =

〈

γ [1− ν]� − γ [1− µ− ν]�

[1+ (γ − 1)ν]� + (γ − 1)[1− ν]�
,

[1+ (γ − 1)ν]� − [1− ν]�

[1+ (γ − 1)µ]� + (γ − 1)[1− ν]�

〉
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Weighted average aggregation operator

Definition 2 Let Ω is the set of IFNs αi = �µi, νi�, (i = 1, 2, . . . , n) and ω =

ω = (ω1,ω2, . . . ,ωn)
T be its weight vector such that ωi > 0 and 

∑n
i=1 ωi = 1, and 

IFHIWA : Ωn −→ Ω, if

then IFHIWA is called an intuitionistic fuzzy Hamacher interactive weighting averaging 
operator.

Theorem 1 Let αi = �µi, νi�, (i = 1, 2, . . . , n) be the collection of IFNs, then

Proof When n = 1 then ω = ω1 = 1, and hence

Thus, results hold for n = 1. Assume that result holds for n = k, i.e.,

By using the operational laws as given in Definition 1 for n = k + 1 we have

IFHIWA(α1,α2, . . . ,αn) = ω1α1 ⊕ ω2α2 ⊕ · · · ⊕ ωnαn

(2)

IFHIWA(α1,α2, . . . ,αn) =

〈
∏

n

i=1(1+ (γ − 1)µi)
ωi −

∏

n

i=1(1− µi)
ωi

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

,

γ
{
∏

n

i=1(1− µi)
ωi −

∏

n

i=1(1− µi − νi)
ωi

}

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

〉

IFHIWA(α1) = ω1α1 = �µ1, ν1� =

〈

(1+ (γ − 1)µ1)
1 − (1− µ1)

1

(1+ (γ − 1)µ1)1 + (γ − 1)(1− µ1)1
,

γ
{

(1− µ1)
1 − (1− µ1 − ν1)

1
}

(1+ (γ − 1)µ1)1 + (γ − 1)(1− µ1)1

〉

IFHIWA(α1,α2, . . . ,αk) =

〈

∏

k

i=1(1+ (γ − 1)µi)
ωi −

∏

k

i=1(1− µi)
ωi

∏

k

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

k

i=1(1− µi)ωi

,

γ

{

∏

k

i=1(1− µi)
ωi −

∏

k

i=1(1− µi − νi)
ωi

}

∏

k

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

k

i=1(1− µi)ωi

〉
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Hence complete the proof.  �

Lemma 1 (Xu 2007a) Let αi = �µi, νi�,ωi > 0 for i = 1, 2, . . . , n and 
∑n

i=1 ωi = 1, then

with equality holds if and only if α1 = α2 = · · · = αn.

Corollary 1 Let αi, (i = 1, 2, . . . , n) be a collections of IFNs then the operators IFHWA 
and IFHIWA have the following relation:

Proof Let IFHIWA(α1,α2, . . . ,αn) = �µ
p
α , ν

p
α� = αp and IFHWA(α1,α2, . . . ,αn) = 

�µα , να� = α, and ω = (ω1,ω2, . . . ,ωn)
T be its corresponding weight vectors then

and

IFHIWA(α1,α2, . . . ,αk+1) =

k+1
⊕

i=1

ωiαi = IFHIWA(α1,α2, . . . ,αk)⊕ ωk+1αk+1

=

〈

∏

k

i=1(1+ (γ − 1)µi)
ωi −

∏

k

i=1(1− µi)
ωi

∏

k

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

k

i=1(1− µi)ωi

,

γ

{

∏

k

i=1(1− µi)
ωi −

∏

k

i=1(1− µi − νi)
ωi

}

∏

k

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

k

i=1(1− µi)ωi

〉

⊕

〈

(1+ (γ − 1)µk+1)
ωk+1 − (1− µk+1)

k+1

(1+ (γ − 1)µk+1)
ωk+1 + (γ − 1)(1− µk+1)

k+1
,

γ
{

(1− µk+1)
ωk+1 − (1− µk+1 − νk+1)

ωk+1

}

(1+ (γ − 1)µk+1)
ωk+1 + (γ − 1)(1− µk+1)

k+1

〉

=

〈

∏

k+1
i=1 (1+ (γ − 1)µi)

ωi −
∏

k+1
i=1 (1− µi)

ωi

∏

k+1
i=1 (1+ (γ − 1)µi)ωi + (γ − 1)

∏

k+1
i=1 (1− µi)ωi

,

γ

{

∏

k+1
i=1 (1− µi)

ωi −
∏

k+1
i=1 (1− µi − νi)

ωi

}

∏

k+1
i=1 (1+ (γ − 1)µi)ωi + (γ − 1)

∏

k+1
i=1 (1− µi)ωi

〉

n
∏

i=1

α
ωi
i ≤

n
∑

i=1

ωiαi

IFHIWA(α1,α2, . . . ,αn) ≤ IFHWA(α1,α2, . . . ,αn)

n
∏

i=1

(1+ (γ − 1)µi)
ωi + (γ − 1)

n
∏

i=1

(1− µi)
ωi ≤

n
∑

i=1

ωi(1+ (γ − 1)µi)+ (γ − 1)

n
∑

i=1

ωi(1− µi) = γ
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Thus, ν
p
α ≥ να where equality holds if and only if µ1 = µ2 = · · · = µn and 

ν1 = ν2 = · · · = νn.
Therefore,

If S(αp) < S(α) then for every ω, we have

If S(αp) = S(α) i.e. µp
α − ν

p
α = µα − να then by the condition νpα ≥ να, we have µp

α = µα 
and νpα = να, thus the accuracy function H(αp) = µ

p
α + ν

p
α = µα + να = H(α). Thus in 

this case, from the definition of score function, it follows that

Hence,

where that equality holds if and only if α1 = α2 = · · · = αn.  �

From this corollary it has been concluded that the proposed IFHIWA operator shows 
the decision maker’s more optimistic attitude than the existing IFHWA operator (Liu 
2014) in aggregation process.

Example 3 Let α1 = �0.1, 0.7�,α2 = �0.4, 0.3�,α3 = �0.6, 0.1� and α4 = �0.2, 0.5� be 
four IFNs and ω = (0.2, 0.3, 0.1, 0.4)T be the weight vector of αi’s, i.e. µ1 = 0.1, µ2 = 0.4, 
µ3 = 0.6, µ4 = 0.2, ν1 = 0.7, ν2 = 0.3, ν3 = 0.1, ν4 = 0.5; then for γ = 2, we have

νpα =
γ
{
∏n

i=1(1− µi)
ωi −

∏n
i=1(1− µi − νi)

ωi
}

∏n
i=1(1+ (γ − 1)µi)ωi + (γ − 1)

∏n
i=1(1− µi)ωi

≥

n
∏

i=1

(1− µi)
ωi −

n
∏

i=1

(1− µi − νi)
ωi

≥
γ
∏n

i=1 ν
ωi
i

∏n
i=1(1+ (γ − 1)(1− νi))ωi + (γ − 1)

∏n
i=1 ν

ωi
i

= να

S(αp) = µp
α − νpα ≤ µα − να = S(α)

IFHIWA(α1,α2, . . . ,αn) < IFHWA(α1,α2, . . . ,αn)

IFHIWA(α1,α2, . . . ,αn) = IFHWA(α1,α2, . . . ,αn)

IFHIWA(α1,α2, . . . ,αn) ≤ IFHWA(α1,α2, . . . ,αn)

IFHIWA(α1,α2,α3,α4) =

〈

∏4
i=1(1+ µi)

ωi −
∏4

i=1(1− µi)
ωi

∏4
i=1(1+ µi)ωi +

∏4
i=1(1− µi)ωi

,

2

{

∏4
i=1(1− µi)

ωi −
∏

n

i=1(1− µi − νi)
ωi

}

∏4
i=1(1+ µi)ωi +

∏4
i=1(1− µi)ωi

〉

=

〈

1.2712− 0.7010

1.2712+ 0.7010
,
2× (0.7010− 0.2766)

1.2712+ 0.7010

〉

= �0.2891, 0.4304�

IFHWA(α1,α2,α3,α4) =

〈

∏4
i=1(1+ µi)

ωi −
∏4

i=1(1− µi)
ωi

∏4
i=1(1+ µi)ωi +

∏4
i=1(1− µi)ωi

,

2
∏4

i=1 ν
ωi

i
∏4

i=1(2− νi)ωi +
∏4

i=1(νi)
ωi

〉

=

〈

1.2712− 0.7010

1.2712+ 0.7010
,

2× 0.3906

1.5497+ 0.3906

〉

= �0.2891, 0.4026�

IFWA(α1,α2,α3,α4) =

〈

1−
∏n

i=1
(1− µi)

ωi ,
∏n

i=1
(νi)

ωi

〉

= �0.2990, 0.3906�
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Thus, ν
p
α ≥ να where equality holds if and only if µ1 = µ2 = · · · = µn and 

ν1 = ν2 = · · · = νn.
Therefore,

If S(αp) < S(α) then for every ω, we have

If S(αp) = S(α) i.e. µp
α − ν

p
α = µα − να then by the condition νpα ≥ να, we have µp

α = µα 
and νpα = να, thus the accuracy function H(αp) = µ

p
α + ν

p
α = µα + να = H(α). Thus in 

this case, from the definition of score function, it follows that

Hence,

where that equality holds if and only if α1 = α2 = · · · = αn.  �

From this corollary it has been concluded that the proposed IFHIWA operator shows 
the decision maker’s more optimistic attitude than the existing IFHWA operator (Liu 
2014) in aggregation process.

Example 3 Let α1 = �0.1, 0.7�,α2 = �0.4, 0.3�,α3 = �0.6, 0.1� and α4 = �0.2, 0.5� be 
four IFNs and ω = (0.2, 0.3, 0.1, 0.4)T be the weight vector of αi’s, i.e. µ1 = 0.1, µ2 = 0.4, 
µ3 = 0.6, µ4 = 0.2, ν1 = 0.7, ν2 = 0.3, ν3 = 0.1, ν4 = 0.5; then for γ = 2, we have

νpα =
γ
{
∏n

i=1(1− µi)
ωi −

∏n
i=1(1− µi − νi)

ωi
}

∏n
i=1(1+ (γ − 1)µi)ωi + (γ − 1)

∏n
i=1(1− µi)ωi

≥

n
∏

i=1

(1− µi)
ωi −

n
∏

i=1

(1− µi − νi)
ωi

≥
γ
∏n

i=1 ν
ωi
i

∏n
i=1(1+ (γ − 1)(1− νi))ωi + (γ − 1)

∏n
i=1 ν

ωi
i

= να

S(αp) = µp
α − νpα ≤ µα − να = S(α)

IFHIWA(α1,α2, . . . ,αn) < IFHWA(α1,α2, . . . ,αn)

IFHIWA(α1,α2, . . . ,αn) = IFHWA(α1,α2, . . . ,αn)

IFHIWA(α1,α2, . . . ,αn) ≤ IFHWA(α1,α2, . . . ,αn)

IFHIWA(α1,α2,α3,α4) =

〈

∏4
i=1(1+ µi)

ωi −
∏4

i=1(1− µi)
ωi

∏4
i=1(1+ µi)ωi +

∏4
i=1(1− µi)ωi

,

2

{

∏4
i=1(1− µi)

ωi −
∏

n

i=1(1− µi − νi)
ωi

}

∏4
i=1(1+ µi)ωi +

∏4
i=1(1− µi)ωi

〉

=

〈

1.2712− 0.7010

1.2712+ 0.7010
,
2× (0.7010− 0.2766)

1.2712+ 0.7010

〉

= �0.2891, 0.4304�

IFHWA(α1,α2,α3,α4) =

〈

∏4
i=1(1+ µi)

ωi −
∏4

i=1(1− µi)
ωi

∏4
i=1(1+ µi)ωi +

∏4
i=1(1− µi)ωi

,

2
∏4

i=1 ν
ωi

i
∏4

i=1(2− νi)ωi +
∏4

i=1(νi)
ωi

〉

=

〈

1.2712− 0.7010

1.2712+ 0.7010
,

2× 0.3906

1.5497+ 0.3906

〉

= �0.2891, 0.4026�

IFWA(α1,α2,α3,α4) =

〈

1−
∏n

i=1
(1− µi)

ωi ,
∏n

i=1
(νi)

ωi

〉

= �0.2990, 0.3906�

Thus, it has been concluded that

Theorem 2 If αi = �µi, νi� be an IFNs, i = 1, 2, . . . , n, then the aggregated value by using 
IFHIWA operator is also an IFN i.e.

Proof Since αi = �µi, νi� be an IFNs for i = 1, 2, . . . , n, then by definition of IFN, we 
have

Take, IFHIWA(α1, . . . ,αn) = �µIFHIWA, νIFHIWA�, we have

Also

Thus 0 ≤ µIFHIWA ≤ 1. On the other hand,

S(IFHIWA) < S(IFHWA) < S(IFWA)

IFHIWA(α1,α2, . . . ,αn) ∈ IFN

0 ≤ µi, νi ≤ 1 and µi + νi ≤ 1

∏

n

i=1(1+ (γ − 1)µi)
ωi −

∏

n

i=1(1− µi)
ωi

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)(1− µi)ωi

= 1−
γ
∏

n

i=1(1− µi)
ωi

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
n
∏

i=1

(1− µi)ωi

≤ 1−
∏n

i=1
(1− µi)

ωi ≤ 1

1+ (γ − 1)µi ≥ (1− µi) ⇔

n
∏

i=1

(1+ (γ − 1)µi)
ωi −

n
∏

i=1

(1− µi)
ωi ≥ 0

⇔

∏n
i=1(1+ (γ − 1)µi)

ωi −
∏n

i=1(1− µi)
ωi

∏n
i=1(1+ (γ − 1)µi)ωi + (γ − 1)

∏n
i=1(1− µi)ωi

≥ 0.

γ
{
∏

n

i=1(1− µi)
ωi −

∏

n

i=1(1− µi − νi)
ωi

}

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

≤
γ
∏

n

i=1(1− µi)
ωi

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

≤
∏n

i=1
(1− µi)

ωi ≤ 1 |∵ of Lemma 1
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Also

Thus 0 ≤ νIFHIWA ≤ 1.
Finally,

Hence, IFHIWA ∈ [0, 1]. Therefore, the aggregated IFN obtained by IFHIWA operator is 
again an IFN.  �

Example 4 If we apply the proposed IFHIWA operator on Example 1 then correspond-
ing to γ = 1, we get the aggregated IFNs as IFHIWA(α1,α2,α3,α4) = �0.4720, 0.4358� 
while for γ = 2 we have IFHIWA(α1,α2,α3,α4) = �0.4582, 0.4473�. Therefore, it has 
been seen that there is a non-zero degree of non-membership of the overall aggregated 
IFNs even if at least one of their corresponding grades of IFNs is zero. Thus, the others 
grades of non-membership function of IFNs play a dominant role during the aggregation 
process in the proposed operator.

Example 5 If we apply the proposed IFHIWA operator to aggregate the different IFNs 
as given in Example 2 then we get aggregated IFN are 〈0.5137, 0.2196〉 when γ = 1 and 
〈0.5060, 0.2231〉 when γ = 2. On the other hand, if we apply proposed aggregated opera-
tor on modified IFNs then we get IFHIWA(α1,β2,β3,α4) = �0.3443, 0.2257� for γ = 1 
and 〈0.3422, 0.2264〉 for γ = 2. Thus, the change of membership function will affect on 
the degree of non-membership functions and is non-zero. Therefore, there is a proper 
interaction between the degree of membership and non-membership functions and 
hence the results are consistent and more practical than the existing operators results.

Now, based on Theorem 1, we have some properties of the proposed IFHIWA opera-
tor for a collection of IFNs αi = �µi, νi�, (i = 1, 2, . . . , n) and ω = (ω1,ω2, . . . ,ωn)

T is the 
associated weighted vector satisfying ωi ∈ [0, 1] and 

∑n
i=1 ωi = 1.

Property 1 (Idempotency) If αi = α0 = �µ0, ν0� for all i, then

Proof Since αi = α0 = �µ0, ν0�(i = 1, 2, . . . , n) and 
∑n

i=1 ωi = 1, so by Theorem 1, we 
have

n
∏

i=1

(1− µi)
ωi −

n
∏

i=1

(1− µi − νi)
ωi ≥ 0

⇔
γ
{
∏

n

i=1(1− µi)
ωi −

∏

n

i=1(1− µi − νi)
ωi

}

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

≥ 0

µIFHIWA + νIFHIWA = 1−
γ
∏n

i=1(1− µi − νi)
ωi

∏n
i=1(1+ (γ − 1)µi)ωi + (γ − 1)

n
∏

i=1

(1− µi)ωi

≤ 1−
∏n

i=1
(1− µi − νi)

ωi ≤ 1

IFHIWA(α1,α2, . . . ,αn) = α0
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 �

Property 2 (Boundedness) Let α− = �mini(µi), maxi(νi)� and α+ = �maxi(µi),

mini(νi)〉 then

Proof Let f (x) = 1−x
1+(γ−1)x , x ∈ [0, 1] then f ′(x) = −γ

(1+(γ−1)x)2
< 0; thus, f(x) is decreasing 

function. Since µi,min ≤ µi ≤ µi,max, for all i = 1, 2, . . . , n then f (µi,max) ≤ f (µi) ≤ f (µi,min) 

for all i, i.e. 1−µi,max

1+(γ−1)µi,max
≤

1−µi
1+(γ−1)µi

≤
1−µi,min

1+(γ−1)µi,min
, for all i. Let ω = (ω1,ω2, . . . ,ωn)

T is 

the associated weighted vector satisfying ωi ∈ [0, 1] and 
∑n

i=1 ωi = 1, then for all i, we have 
(

1− µi,max

1+ (γ − 1)µi,max

)ωi

≤

(

1− µi

1+ (γ − 1)µi

)ωi

≤

(

1− µi,min

1+ (γ − 1)µi,min

)ωi

IFHIWA(α1,α2, . . . ,αn) =

〈
∏

n

i=1(1+ (γ − 1)µ0)
ωi −

∏

n

i=1(1− µ0)
ωi

∏

n

i=1(1+ (γ − 1)µ0)ωi + (γ − 1)
∏

n

i=1(1− µ0)ωi

,

γ
{
∏

n

i=1(1− µ0)
ωi −

∏

n

i=1(1− µ0 − ν0)
ωi

}

∏

n

i=1(1+ (γ − 1)µ0)ωi + (γ − 1)
∏

n

i=1(1− µ0)ωi

〉

=

〈

(1+ (γ − 1)µ0)
∑

n

i=1 ωi − (1− µ0)
∑

n

i=1 ωi

(1+ (γ − 1)µ0)
∑

n

i=1 ωi + (γ − 1)(1− µ0)
∑

n

i=1 ωi

,

γ

{

(1− µ0)
∑

n

i=1 ωi − (1− µ0 − ν0)
∑

n

i=1 ωi

}

(1+ (γ − 1)µ0)
∑

n

i=1 ωi + (γ − 1)(1− µ0)
∑

n

i=1 ωi

〉

=

〈

(1+ (γ − 1)µ0)− (1− µ0)

(1+ (γ − 1)µ0)+ (γ − 1)(1− µ0)
,

γ {(1− µ0)− (1− µ0 − ν0)}

(1+ (γ − 1)µ0)+ (γ − 1)(1− µ0)

〉

= �µ0, ν0�

= α0

α− ≤ IFHIWA(α1,α2, . . . ,αn) ≤ α+
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Thus,

On the other hand, let g(y) = γ−(γ−1)y
(γ−1)y , y ∈ [0, 1] then g ′(y) = −γ /((γ − 1))2y2 < 0 

so g(y) is decreasing function on (0,1]. Since 1− µi,max ≤ 1− µi ≤ 1− µi,min 
for all i then g(1− µi,min) ≤ g(1− µi) ≤ g(1− µi,max) i.e. γ−(γ−1)(1−µi,min)

(γ−1)(1−µi,min)

≤
γ−(γ−1)(1−µi)
(γ−1)(1−µi)

≤
γ−(γ−1)(1−µi,max)

(γ−1)(1−µi,max)
 for all i = 1, 2, . . . , n. Let ω = (ω1,ω2, . . . ,ωn)

T is 
the associated weighted vector satisfying ωi ∈ [0, 1] and 

∑n
i=1 ωi = 1, then for all i, we 

have

(3)

n
∏

i=1

(

1− µi,max

1+ (γ − 1)µi,max

)ωi

≤

n
∏

i=1

(

1− µi

1+ (γ − 1)µi

)ωi

≤

n
∏

i=1

(

1− µi,min

1+ (γ − 1)µi,min

)ωi

⇔ (γ − 1)

(

1− µi,max

1+ (γ − 1)µi,max

)

≤ (γ − 1)

n
∏

i=1

(

1− µi

1+ (γ − 1)µi

)ωi

≤ (γ − 1)

(

1− µi,min

1+ (γ − 1)µi,min

)

⇔

(

γ

1+ (γ − 1)µi,max

)

≤ 1+ (γ − 1)

n
∏

i=1

(

1− µi

1+ (γ − 1)µi

)ωi

≤

(

γ

1+ (γ − 1)µi,min

)

⇔

(

1+ (γ − 1)µi,min

γ

)

≤
1

1+ (γ − 1)
∏

n

i=1

(

1− µi

1+ (γ − 1)µi

)ωi

≤

(

1+ (γ − 1)µi,max

γ

)

⇔ 1+ (γ − 1)µi,min ≤
γ

1+ (γ − 1)
∏

n

i=1

(

1− µi

1+ (γ − 1)µi

)ωi
≤ 1+ (γ − 1)µi,max

⇔ (γ − 1)µi,min ≤
γ

1+ (γ − 1)
∏

n

i=1

(

1− µi

1+ (γ − 1)µi

)ωi
− 1 ≤ (γ − 1)µi,max

⇔ µi,min ≤

∏

n

i=1(1+ (γ − 1)µi)
ωi −

∏

n

i=1(1− µi)
ωi

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

≤ µi,max

(

γ − (γ − 1)(1− µi,min)

(γ − 1)(1− µi,min)

)ωi

≤

(

γ − (γ − 1)(1− µi)

(γ − 1)(1− µi)

)ωi

≤

(

γ − (γ − 1)(1− µi,max)

(γ − 1)(1− µi,max)

)ωi
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Thus,

Also

Take µmin = mini(µi), µmax = maxi(µi), νmin = mini(νi) and νmax = maxi(νi). Let 
IFHIWA(α1,α2, . . . ,αn) = α = �µα , να� then Eqs. (3) and (4) are transformed into 
µmin ≤ µα ≤ µmax, νmax ≤ να ≤ νmin.

So, S(α) = µα − να ≤ µmax − νmax = S(α+) and 
S(α) = µα − να ≥ µmin − νmin = S(α−). If S(α) < S(α+) and S(α) > S(α−) then by 
order relation between two IFNs, we have

 �

n
∏

i=1

(

γ − (γ − 1)(1− µi,min)

(γ − 1)(1− µi,min)

)ωi

≤

n
∏

i=1

(

γ − (γ − 1)(1− µi)

(γ − 1)(1− µi)

)ωi

≤

n
∏

i=1

(

γ − (γ − 1)(1− µi,max)

(γ − 1)(1− µi,max)

)ωi

⇔
γ − (γ − 1)(1− µi,min)

(γ − 1)(1− µi,min)
≤

n
∏

i=1

(

γ − (γ − 1)(1− µi)

(γ − 1)(1− µi)

)ωi

≤
γ − (γ − 1)(1− µi,max)

(γ − 1)(1− µi,max)

⇔
γ

(γ − 1)(1− µi,min)
≤

n
∏

i=1

(

γ − (γ − 1)(1− µi)

(γ − 1)(1− µi)

)ωi

+ 1 ≤
γ

(γ − 1)(1− µi,max)

⇔
(γ − 1)(1− µi,max)

γ
≤

1

∏

n

i=1

(

γ − (γ − 1)(1− µi)

(γ − 1)(1− µi)

)ωi

+ 1

≤
(γ − 1)(1− µi,min)

γ

⇔ 1− µi,max ≤
γ

(γ − 1)
∏

n

i=1

(

γ − (γ − 1)νi

(γ − 1)νi

)ωi

+ (γ − 1)

≤ 1− µi,min

(4)

1− µi,max − νi,min ≤ 1− µi − νi ≤ 1− µi,min − νi,max

⇔
1− µi,max − νi,min

1− µi,min

≤
1− µi − νi

1− µi

≤
1− µi,min − νi,max

1− µi,max

⇔
1− µi,max − νi,min

1− µi,min

≤

n
∏

i=1

(

1− µi − νi

1− µi

)ωi

≤
1− µi,min − νi,max

1− µi,max

⇔
−µi,max + µi,min + νi,max

1− µi,max

≤ 1−

n
∏

i=1

(

1− µi − νi

1− µi

)ωi

≤
−µi,min + µi,max + νi,max

1− µi,min

⇔ −µi,max + µi,min + νi,max ≤

γ

{

1−
∏

n

i=1

(

1− µi − νi

1− µi

)ωi
}

(γ − 1)
∏

n

i=1

(

1+ (γ − 1)µi

(γ − 1)(1− µi)

)ωi

+ (γ − 1)

≤ −µi,min + µi,max + ci,min

⇔ νi,max ≤
γ
{
∏

n

i=1(1− µi)
ωi −

∏

n

i=1(1− µi − νi)
ωi

}

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

≤ νi,min

α− < IFHIWA(α1,α2, . . . ,αn) ≤ α+
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Property 3 (Monotonicity) If αi and βi, (i = 1, 2, . . . , n) be two collections of IFNs such 
that αi ≤ βi for all i, then

Proof Proof of this property is similar to above, so we omit here.  �

Property 4 (Shift-invariance) If β = �µβ , νβ� be another IFN, then

Proof As αi,β ∈ IFNs, so

Therefore,

 �

IFHIWA(α1,α2, . . . ,αn) ≤ IFHIWA(β1,β2, . . . ,βn)

IFHIWA(α1 ⊕ β ,α2 ⊕ β , . . . ,αn ⊕ β) = IFHIWA(α1,α2 . . . ,αn)⊕ β

αi ⊕ β =

〈

(1+ (γ − 1)µi)(1+ (γ − 1)µβ)− (1− µi)(1− µβ)

(1+ (γ − 1)µi)(1+ (γ − 1)µβ)+ (γ − 1)(1− µi)(1− µβ)
,

γ
[

(1− µi)(1− µβ)− (1− µi − νi)(1− µβ − νβ)
]

(1+ (γ − 1)µi)(1+ (γ − 1)µβ)+ (γ − 1)(1− µi)(1− µβ)

〉

IFHIWA(α1 ⊕ β ,α2 ⊕ β , . . . ,αn ⊕ β)

=

〈 ∏n
i=1((1+ (γ − 1)µi)(1+ (γ − 1)µβ))

ωi −
∏n

i=1((1− µi)(1− µβ))
ωi

∏n
i=1((1+ (γ − 1)µi)(1+ (γ − 1)µβ))ωi + (γ − 1)

∏n
i=1((1− µi)(1− µβ))ωi

,

γ
{
∏n

i=1((1− µi)(1− µβ))
ωi −

∏n
i=1((1− µi − νi)(1− µβ − νβ))

ωi
}

∏n
i=1((1+ (γ − 1)µi)(1+ (γ − 1)µβ))ωi + (γ − 1)

∏n
i=1((1− µi)(1− µβ))ωi

〉

=

〈 ∏n
i=1((1+ (γ − 1)µi))

ωi(1+ (γ − 1)µβ)
ωi −

∏n
i=1((1− µi))

ωi(1− µβ)
ωi

∏n
i=1(1+ (γ − 1)µi)ωi(1+ (γ − 1)µβ)ωi + (γ − 1)

∏n
i=1(1− µi)ωi(1− µβ)ωi

,

γ
{
∏n

i=1(1− µi)
ωi(1− µβ)

ωi −
∏n

i=1(1− µi − νi)
ωi(1− µβ − νβ)

ωi
}

∏n
i=1(1+ (γ − 1)µi)ωi(1+ (γ − 1)µβ)ωi + (γ − 1)

∏n
i=1(1− µi)ωi(1− µβ)ωi

〉

=

〈

{
∏n

i=1(1+ (γ − 1)µi)
ωi
}

(1+ (γ − 1)µβ)−
{
∏n

i=1(1− µi)
ωi
}

(1− µβ)
{
∏n

i=1(1+ (γ − 1)µi)ωi
}

(1+ (γ − 1)µβ)+ (γ − 1)
{
∏n

i=1(1− µi)ωi
}

(1− µβ)
,

γ
({

∏n
i=1(1− µi)

ωi
}

(1− µβ)−
{
∏n

i=1(1− µi − νi)
ωi
}

(1− µβ − νβ)
)

{
∏n

i=1(1+ (γ − 1)µi)ωi
}

(1+ (γ − 1)µβ)+ (γ − 1)
{
∏n

i=1(1− µi)ωi
}

(1− µβ)

〉

= IFHIWA(α1,α2 . . . ,αn)⊕ β

Table 1 Comparison with IFHIOWA and existing operators

γ = 1 γ = 2 γ = 3

IFOWA  
(Xu 2007a)

Proposed IFHOWA 
(Wang 
and Liu 2012)

Proposed IFHOWA (Liu 
2014)

Proposed

IFN 〈0.1865, 0.2555〉 〈0.1865, 0.2570〉 〈0.1836, 0.2561〉 〈0.1836, 0.2579〉 〈0.1812, 0.2564〉 〈0.1812, 0.2586〉

Score 0.0690 −0.0705 −0.0726 −0.0743 −0.0752 −0.0774
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Property 5 (Homogeneity) If β > 0 be a real number, then

Proof Since αi = �µi, νi� be an IFNs for i = 1, 2, . . . , n. Therefore, for β > 0, we have

Therefore,

Hence,

 �

Property 6 Let αi = �µαi , ναi � and β = �µβi , νβi �(i = 1, 2, . . . , n) be two collections of 
IFNs , then

Proof As αi = �µαi , ναi � and β = �µβi , νβi �(i = 1, 2, . . . , n) be two collections of IFNs, 
then

IFHIWA(βα1,βα2, . . . ,βαn) = β IFHIWA(α1,α2 . . . ,αn)

βαi =

〈

(1+ (γ − 1)µi)
β − (1− µi)

β

(1+ (γ − 1)µi)β + (γ − 1)(1− µi)β
,

γ
[

(1− µi)
β − (1− µi − νi)

β
]

(1+ (γ − 1)µi)β + (γ − 1)(1− µi)β

〉

IFHIWA(βα1,βα2, . . . ,βαn)

=

〈
∏

n

i=1[(1+ (γ − 1)µi)
β ]ωi −

∏

n

i=1[(1− µi)
β ]ωi

∏

n

i=1[(1+ (γ − 1)µi)β ]ωi + (γ − 1)
∏

n

i=1[(1− µi)β ]ωi

,

γ
{
∏

n

i=1[(1− µi)
β ]ωi −

∏

n

i=1[(1− µi − νi)
β ]ωi

}

∏

n

i=1[(1+ (γ − 1)µi)β ]ωi + (γ − 1)
∏

n

i=1[(1− µi)β ]ωi

〉

=

〈

(
∏

n

i=1(1+ (γ − 1)µi)
ωi

)β
−

(
∏

n

i=1(1− µi)
ωi

)β

(
∏

n

i=1(1+ (γ − 1)µi)ωi

)β
+ (γ − 1)

(
∏

n

i=1(1− µi)ωi

)β
,

γ

{

(
∏

n

i=1(1− µi)
ωi

)β
−

(
∏

n

i=1(1− µi − νi)
ωi

)β
}

(
∏

n

i=1(1+ (γ − 1)µi)ωi

)β
+ (γ − 1)

(
∏

n

i=1(1− µi)ωi

)β

〉

= β

〈
∏

n

i=1(1+ (γ − 1)µi)
ωi −

∏

n

i=1(1− µi)
ωi

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

,

γ
{
∏

n

i=1(1− µi)
ωi −

∏

n

i=1(1− µi − νi)
ωi

}

∏

n

i=1(1+ (γ − 1)µi)ωi + (γ − 1)
∏

n

i=1(1− µi)ωi

〉

= β IFHIWA(α1,α2, . . . ,αn)

IFHIWA(βα1, . . . ,βαn) = β IFHIWA(α1, . . . ,αn)

IFHIWA(α1 ⊕ β1,α2 ⊕ β2, . . . ,αn ⊕ βn) = IFHIWA(α1,α2 . . . ,αn)⊕ IFHIWA(β1,β2 . . . ,βn)

αi ⊕ βi =

〈

(1+ (γ − 1)µαi)(1+ (γ − 1)µβi)− (1− µαi)(1− µβi)

(1+ (γ − 1)µαi)(1+ (γ − 1)µβi)+ (γ − 1)(1− µαi)(1− µβi)
,

γ
{

(1− µαi)(1− µβi)− (1− µαi − ναi)(1− µβi − νβi)
}

(1+ (γ − 1)µαi)(1+ (γ − 1)µβi)+ (γ − 1)(1− µαi)(1− µβi)

〉
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Therefore,

Hence,

 �

Property 7 Let αi = �µi, νi�(i = 1, 2, . . . , n), β = �µβ , νβ� be an IFNs and If η > 0 be 
any real number, then

Proof By using the Properties 1, 5 and 6, we get the required proof, so it is omitted 
here.  �

Ordered weighted averaging operator

Definition 3 Suppose there is a family of IFNs αi = �µi, νi� for i = 1, 2, . . . , n and 
IFHIOWA : Ωn −→ Ω, if

where ω = (ω1,ω2 . . . ,ωn)
T is the weight vector associated with IFHIOWA, 

(δ(1), δ(2), . . . , δ(n)) is a permutation of (1, 2, 3, . . . , n) such that αδ(i−1) ≥ αδ(i) for any 
i. Then IFHIOWA is called intuitionistic fuzzy Hamacher interactive ordered weighted 
averaging operator.

IFHIWA(α1 ⊕ β1,α2 ⊕ β2, . . . ,αn ⊕ βn)

=

〈
∏

n

i=1[(1+ (γ − 1)µαi )(1+ (γ − 1)µβi )]
ωi −

∏

n

i=1[(1− µαi )(1− µβi )]
ωi

∏

n

i=1[(1+ (γ − 1)µαi )(1+ (γ − 1)µβi )]
ωi + (γ − 1)

∏

n

i=1[(1− µαi )(1− µβi )]
ωi

,

γ
{
∏

n

i=1[(1− µαi )(1− µβi )]
ωi −

∏

n

i=1[(1− µαi − ναi )(1− µβi − νβi )]
ωi

}

∏

n

i=1[(1+ (γ − 1)µαi )(1+ (γ − 1)µβi )]
ωi + (γ − 1)

∏

n

i=1[(1− µαi )(1− µβi )]
ωi

〉

=

〈
∏

n

i=1(1+ (γ − 1)µαi )
ωi
∏

n

i=1(1+ (γ − 1)µβi )ωi −
∏

n

i=1(1− µαi )
ωi
∏

n

i=1(1− µβi )
ωi

∏

n

i=1(1+ (γ − 1)µαi )
ωi

∏

n

i=1(1+ (γ − 1)µβi )
ωi + (γ − 1)

∏

n

i=1(1− µαi )
ωi

∏

n

i=1(1− µβi )
ωi

,

γ
{
∏

n

i=1(1− µαi )
ωi
∏

n

i=1(1− µβi )
ωi −

∏

n

i=1(1− µαi − ναi )
ωi
∏

n

i=1(1− µβi − νβi )
ωi

}

∏

n

i=1(1+ (γ − 1)µαi )
ωi

∏

n

i=1(1+ (γ − 1)µβi )
ωi + (γ − 1)

∏

n

i=1(1− µαi )
ωi

∏

n

i=1(1− µβi )
ωi

〉

=

〈
∏

n

i=1(1+ (γ − 1)µαi )
ωi −

∏

n

i=1(1− µαi )
ωi

∏

n

i=1(1+ (γ − 1)µαi )
ωi + (γ − 1)

∏

n

i=1(1− µαi )
ωi

,

γ
{
∏

n

i=1(1− µαi )
ωi −

∏

n

i=1(1− µαi − ναi )
ωi

}

n
∏

i=1

(1+ (γ − 1)µαi )
ωi + (γ − 1)

n
∏

i=1

(1− µαi )
ωi

〉

⊕

〈
∏

n

i=1(1+ (γ − 1)µβi )
ωi −

∏

n

i=1(1− µβi )
ωi

∏

n

i=1(1+ (γ − 1)µβi )
ωi + (γ − 1)

∏

n

i=1(1− µβi )
ωi

,

γ
{
∏

n

i=1(1− µβi )
ωi −

∏

n

i=1(1− µβi − νβi )
ωi

}

∏

n

i=1(1+ (γ − 1)µβi )
ωi + (γ − 1)

∏

n

i=1(1− µβi )
ωi

〉

= IFHIWA(α1,α2 . . . ,αn)⊕ IFHIWA(β1,β2 . . . ,βn)

IFHIWA(α1 ⊕ β1,α2 ⊕ β2, . . . ,αn ⊕ βn) = IFHIWA(α1,α2 . . . ,αn)⊕ IFHIWA(β1,β2 . . . ,βn)

IFHIWA(ηα1 ⊕ β , ηα2 ⊕ β , . . . , ηαn ⊕ β) = η IFHIWA(α1,α2 . . . ,αn)⊕ β

IFHIOWA(α1, . . . ,αn) = ω1αδ(1) ⊕ · · · ⊕ ωnαδ(n)
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Theorem  3 Let αi = �µi, νi�, (i = 1, 2, . . . , n) be the collection of IFNs, then based on 
IFHIOWA operator, the aggregated IFN can be expressed as

Especially, νi = 1− µi for i = 1, 2, . . . , n i.e all αi are reduced to µi, respectively then Eq. 
(5) is reduced to the following form

which becomes a fuzzy OWA operator of dimension n to aggregate fuzzy information.

Proof The proof is similar to Theorem 1.  �

Corollary 2 The IFHIOWA operator and IFHOWA operator have the following relation 
for a collections of IFNs αi(i = 1, 2, . . . , n)

As similar to those of the IFHIWA operator, the IFHIOWA operator has some proper-
ties as follows.

Property 8 Let αi = �µi, νi�(i = 1, 2, . . . , n) be a collection of IFNs and 
ω = (ω1,ω2, . . . ,ωn)

T be the weighting vector associated with IFHIOWA operator, 
ωi ∈ [0, 1], i = 1, 2, . . . , n and 

∑n
i=1 ωi = 1 then we have the following.

(i)  Idempotency: If all αi are equal i.e., αi = α for all i, then IFHIOWA(α1, . . . ,αn) = α

(ii)    Boundedness: 
 

  where αmin = min{α1,α2, . . . ,αn} and αmax = max{α1,α2, . . . ,αn}

(iii)  Monotonicity: If αi and βi, (i = 1, 2, . . . , n) be two IFNs such that αi ≤ βi for all i, 
then 

(iv)  Shift-invariance: If β = �µβ , νβ� be another IFN, then 
 

(v)  Homogeneity: If β > 0 be a real number, then 

(5)

IFHIOWA(α1,α2, . . . ,αn)

=

〈
∏

n

i=1(1+ (γ − 1)µδ(i))
ωi −

∏

n

i=1(1− µδ(i))
ωi

∏

n

i=1(1+ (γ − 1)µδ(i))
ωi + (γ − 1)

∏

n

i=1(1− µδ(i))
ωi

,

γ {
∏

n

i=1(1− µδ(i))
ωi −

∏

n

i=1(1− µδ(i) − νδ(i))
ωi }

∏

n

i=1(1+ (γ − 1)µδ(i))
ωi + (γ − 1)

∏

n

i=1(1− µδ(i))
ωi

〉

IFHIOWA(α1,α2, . . . ,αn)

=

〈
∏

n

i=1(1+ (γ − 1)µδ(i))
ωi −

∏

n

i=1(1− µδ(i))
ωi

∏

n

i=1(1+ (γ − 1)µδ(i))
ωi + (γ − 1)

∏

n

i=1(1− µδ(i))
ωi

,

1−

∏

n

i=1(1+ (γ − 1)µδ(i))
ωi −

∏

n

i=1(1− µδ(i))
ωi

∏

n

i=1(1+ (γ − 1)µδ(i))
ωi + (γ − 1)

∏

n

i=1(1− µδ(i))
ωi

〉

IFHIOWA(α1, . . . ,αn) ≤ IFHOWA(α1, . . . ,αn)

αmin ≤ IFHIOWA(α1,α2, . . . ,αn) ≤ αmax

IFHIOWA(α1, . . . ,αn) ≤ IFHIOWA(β1, . . . ,βn)

IFHIOWA(α1 ⊕ β ,α2 ⊕ β ⊕ . . .⊕ αn ⊕ β) = IFHIOWA(α1,α2, . . . ,αn)⊕ β

IFHIOWA(βα1,βα2, . . . ,βαn) = β IFHIOWA(α1,α2 . . . ,αn)
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Proof The proof is similar to IFHIWA properties, so we omit.

Example 6 Let α1 = �0.22, 0.23�, α2 = �0.04, 0.35� and α3 = �0.25, 0.23� be three IFNs 
and ω = (0.25, 0.50, 0.25)T be the position weighted vector then based on their score 
functions, we get their ordering as α3 ≥ α1 ≥ α2 and hence αδ(1) = α3, αδ(2) = α1 and 
αδ(3) = α2. Then for different value of γ, the aggregated IFNs by the proposed and exist-
ing operators are summarized in Table 1.

Thus, it is clear from these results that

Hybrid weighted averaging operator

Definition 4 Suppose there is a family of IFNs, αi = �µi, νi�, (i = 1, 2, . . . , n) and 
IFHIHWA : Ωn −→ Ω, if

where ω = (ω1,ω2, . . . ,ωn)
T is the weighted vector associated with IFHIHWA, 

w = (w1,w2, . . . ,wn) is the weight vector of αi such that wi ∈ [0, 1],
∑n

i=1 wi = 1. Let α̇i is 
the ith largest of the weighted IFNs α̇i(= nwiαi, i = 1, 2, . . . , n), n is the number of IFNs 
and (σ (1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), such that α̇σ (i−1) ≥ α̇σ (i) for 
any i, then, function IFHIHWA is called intuitionistic fuzzy Hamacher interactive hybrid 
weighted averaging operator.
From the Definition 4, it has been concluded that

  • It firstly weights the IFNs αi by the associated weights wi(i = 1, 2, . . . , n) and mul-
tiplies these values by a balancing coefficient n and hence get the weighted IFNs 
α̇i = nwiαi(i = 1, 2, . . . , n).

  • It reorders the weighted arguments in descending order (α̇σ (1), α̇σ (2), . . . , α̇σ (n)), 
where α̇σ (i) is the ith largest of α̇i(i = 1, 2, . . . , n).

  • It weights these ordered weighted IFNs α̇σ (i) by the IFHIWA weights 
ωi(i = 1, 2, . . . , n) and then aggregates all these values into a collective one.

Theorem 4 Let αi = �µi, νi� be an IFNs, (i = 1, 2, . . . , n) then by IFHIHWA operator, the 
aggregated IFN becomes

IFHIOWA(α1,α2,α3) < IFHOWA(α1,α2,α3) < IFOWA(α1,α2,α3)

IFHIHWA(α1, . . . ,αn) = ω1α̇σ (1) ⊕ ω2α̇σ (2) ⊕ · · · ⊕ ωnα̇σ (n)

IFHIHWA(α1,α2, . . . ,αn)

=

〈 ∏

n

i=1(1+ (γ − 1)µ̇σ(i))
ωi −

∏

n

i=1(1− µ̇σ (i))
ωi

∏

n

i=1(1+ (γ − 1)µ̇σ(i))
ωi + (γ − 1)

∏

n

i=1(1− µ̇σ (i))
ωi

,

γ {
∏

n

i=1(1− µ̇σ (i))
ωi −

∏

n

i=1(1− µ̇σ (i) − ν̇σ (i))
ωi}

∏

n

i=1(1+ (γ − 1)µ̇σ(i))
ωi + (γ − 1)

∏

n

i=1(1− µ̇σ (i))
ωi

〉
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The proof is similar to Theorem 1, so it is omitted here.

Corollary 3 The IFHIHWA and IFHWA operators satisfies the following inequality

for a collections of IFNs αi’s.
Similar to those of the IFHIWA and IFHIOWA operators, the IFHIHWA operator has 

also follows the same properties as described in Property 8.

Decision making approach using proposed operators

MCDM problem is one of the fast and challenging method for every decision maker for 
finding the best alternative among the set of feasible one. For this, let {X1,X2, . . . ,Xn} 
be a set of n different alternatives which have been evaluate under the set of m different 
criteria {G1,G2, . . . ,Gm} by the decision maker(s). Assume that the decision maker(s) 
give their preferences in terms of IFNs αij = �µij , νij�, (i = 1, 2, . . . , n; j = 1, 2, . . . ,m), 
where µij and νij represents the degree that the alternative Xi satisfies and doesn’t satis-
fies the attribute Gj given by the decision maker respectively such that 0 ≤ µij , νij ≤ 1 
and µij + νij ≤ 1. Hence, MCDM problem can be concisely expressed in an intuitionistic 
fuzzy decision matrix D = (αij)n×m = �µij , νij�n×m. Various steps used in the proposed 
methodology for MCDM are explained as follows:

Step 1:  Obtain the normalized intuitionistic fuzzy decision matrix. In this step, if there 
are different types of criteria namely benefit (B) and cost (C) then we may trans-
form the rating values of B into C by using the following normalization formula: 

 where αc
ij is the complement of αij.

Step 2:  Aggregated assessment of alternatives. Based on the decision matrix, as obtained 
from step 1, the overall aggregated value of alternative Xi, (i = 1, 2, . . . , n) under 
the different choices of criteria Gj is obtained by using IFHIWA or IFHIOWA or 
IFHIHWA operator and get the overall value ri.

Step 3:  Compare each alternative: Based on the overall assessment of each alternative ri, 
a score value of each index are computed.

Step 4:  Ranking the alternative: Rank the alternative Xi(i = 1, 2, . . . , n) according to the 
descending value of their score values and hence select the most desirable alter-
native.

IFHIHWA(α1,α2, . . . ,αn) ≤ IFHWA(α1,α2, . . . ,αn)

(6)rij =

{

αc
ij; j ∈ B

αij; j ∈ C
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Illustrative example
The above mentioned approach has been illustrated through a case study on multiple 
criteria decision making problem. For this, assume that a certain company has a sum of 
money and they want to invest it somewhere. After carefully looking in the market sce-
nario they have decided to invest the money in the following three companies.

  • x1 is a car company,
  • x2 is a food company, and
  • x3 is a computer company.

according to the following four major criteria:

  • G1: The risk analysis,
  • G2: The growth analysis,
  • G3: The social-political impact analysis,
  • G4: The environmental impact analysis and
  • G5: The development of the society.

The weight vector corresponding to each criteria is given by the committee as 
ω = (0.1117, 0.2365, 0.3036, 0.2365, 0.1117)T . Assume that these alternatives are being 
assessed by the decision makers and give their preferences in the form of the IFNs. 
Then following are the step as followed by the proposed approach for accessing the best 
company.

By IFHIWA operator

Step 1:  As, it has been observed that there are different types of criteria so the prefer-
ences corresponding to each alternative xi, i = 1, 2, 3 w.r.t. each criteria Gj,  
j = 1, 2, 3, 4, 5 are obtained in the form of normalized intuitionistic fuzzy deci-
sion matrix D = (αij) = �µij , νij�3×5, i = 1, 2, 3; j = 1, 2, 3, 4, 5 as given below. 

Step 2:  Utilize the IFHIWA operator corresponding to γ = 2 to compute the overall 
assessment of each alternative as 

D(rij) =

G1 G2 G3 G4 G5
][

x1 〈0.2, 0.5〉 〈0.4, 0.2〉 〈0.5, 0.4〉 〈0.3, 0.3〉 〈0.7, 0.1〉
x2 〈0.2, 0.7〉 〈0.6, 0.3〉 〈0.4, 0.3〉 〈0.4, 0.4〉 〈0.6, 0.1〉
x3 〈0.2, 0.7〉 〈0.5, 0.3〉 〈0.4, 0.5〉 〈0.3, 0.4〉 〈0.6, 0.2〉

(7)
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Step 3: The scores values corresponding to each ri(i = 1, 2, 3, 4, 5) is. 

Step 4:  Since S2 > S1 > S3 thus we have x2 ≻ x1 ≻ x3. Hence, the best financial strat-
egy is x2 i.e. to invest in the food company.

By IFHIHWA operator

In order to aggregate these different IFNs by using IFHIHWA operator, the following 
steps are utilize.

r1 = IFHIWA(r11, r12, r13, r14, r15)

=

〈

(1.2)0.1117(1.4)0.2365(1.5)0.3036(1.3)0.2365(1.7)0.1117−

(0.8)0.1117(0.6)0.2365(0.5)0.3036(0.7)0.2365(0.3)0.1117

(1.2)0.1117(1.4)0.2365(1.5)0.3036(1.3)0.2365(1.7)0.1117+

(0.8)0.1117(0.6)0.2365(0.5)0.3036(0.7)0.2365(0.3)0.1117

,

2

{

(0.8)0.1117(0.6)0.2365(0.5)0.3036(0.7)0.2365(0.3)0.1117−

(0.3)0.1117(0.4)0.2365(0.1)0.3036(0.4)0.2365(0.2)0.1117
}

(1.2)0.1117(1.4)0.2365(1.5)0.3036(1.3)0.2365(1.7)0.1117+

(0.8)0.1117(0.6)0.2365(0.5)0.3036(0.7)0.2365(0.3)0.1117

〉

= �0.4298, 0.3317�

r2 = IFHIWA(r21, r22, r23, r24, r25)

=

〈

(1.2)0.1117(1.6)0.2365(1.4)0.3036(1.4)0.2365(1.6)0.1117−

(0.8)0.1117(0.4)0.2365(0.6)0.3036(0.6)0.2365(0.4)0.1117

(1.2)0.1117(1.6)0.2365(1.4)0.3036(1.4)0.2365(1.6)0.1117+

(0.8)0.1117(0.4)0.2365(0.6)0.3036(0.6)0.2365(0.4)0.1117

,

2

{

(0.8)0.1117(0.4)0.2365(0.6)0.3036(0.6)0.2365(0.4)0.1117−

(0.1)0.1117(0.1)0.2365(0.3)0.3036(0.2)0.2365(0.3)0.1117
}

(1.2)0.1117(1.6)0.2365(1.4)0.3036(1.4)0.2365(1.6)0.1117+

(0.8)0.1117(0.4)0.2365(0.6)0.3036(0.6)0.2365(0.4)0.1117

〉

= �0.4564, 0.3557�

r3 = IFHIWA(r31, r32, r33, r34, r35)

=

〈

(1.2)0.1117(1.5)0.2365(1.4)0.3036(1.3)0.2365(1.6)0.1117−

(0.8)0.1117(0.5)0.2365(0.6)0.3036(0.7)0.2365(0.4)0.1117

(1.2)0.1117(1.5)0.2365(1.4)0.3036(1.3)0.2365(1.6)0.1117+

(0.8)0.1117(0.5)0.2365(0.6)0.3036(0.7)0.2365(0.4)0.1117

,

2

{

(0.8)0.1117(0.5)0.2365(0.6)0.3036(0.7)0.2365(0.4)0.1117−

(0.1)0.1117(0.2)0.2365(0.1)0.3036(0.3)0.2365(0.2)0.1117
}

(1.2)0.1117(1.5)0.2365(1.4)0.3036(1.3)0.2365(1.6)0.1117+

(0.8)0.1117(0.5)0.2365(0.6)0.3036(0.7)0.2365(0.4)0.1117

〉

= �0.4068, 0.4267�

S(r1) = 0.0981; S(r2) = 0.1007; S(r3) = −0.0199



Page 23 of 27Garg  SpringerPlus  (2016) 5:999 

Step 1: Use the normalized fuzzy decision matrix as given in Eq. (7).
Step 2:  Compute the IFNs ṙij = (5wj)rij, where wj = (0.25, 0.20, 0.15, 0.18, 0.22)T we get 

 Now, reorders these IFNs based on their score function, and get ordered 
weighted IFNs ṙσ(ij) as 

 Thus, finally utilize these ordered weighted IFNs and the weight vector ω corre-
sponding to each criteria, the aggregated value have been obtained corresponding to 
each alternative as 

Step 3: The score values corresponding to above ri (i = 1, 2, 3, 4) is 

Step 4:  Thus, r1 ≻ r2 ≻ r3 and their corresponding alternative order are x1 ≻ x2 ≻ x3. 
Therefore, the best company for investing the money is x1 (car company).

Comparison with the existing methodologies

By Xu (2007a) approach

If we utilize IFWA (Xu 2007a) operator to aggregate these IFNs then we get their corre-
sponding aggregated values as

ṙ11 = �0.1206, 0.5958�, ṙ12 = �0.4, 0.2�, ṙ13 = �0.6098, 0.3075�,

ṙ14 = �0.3470, 0.2716�, ṙ15 = �0.6721, 0.1099�, ṙ21 = �0.1206, 0.7947�,

ṙ22 = �0.6, 0.3�, ṙ23 = �0.5224, 0.2281�, ṙ24 = (0.4462, 0.3638�,

ṙ25 = �0.5650, 0.1099�, ṙ31 = �0.1206, 0.7947�, ṙ32 = �0.5, 0.3�,

ṙ33 = �0.5224, 0.3902�, ṙ34 = �0.3470, 0.3638�, ṙ35 = �0.5650, 0.2194�

ṙσ(11) = �0.6721, 0.1099�, ṙσ(12) = �0.6098, 0.3075�, ṙσ(13) = �0.4000, 0.2000�,

ṙσ(14) = �0.3470, 0.2716�, ṙσ(15) = �0.1206, 0.5958�, ṙσ(21) = �0.5650, 0.1099�,

ṙσ(22) = �0.6000, 0.3000�, ṙσ(23) = �0.5224, 0.2281�, ṙσ(24) = �0.4462, 0.3638�,

ṙσ(25) = �0.1206, 0.7947�, ṙσ(31) = �0.5650, 0.2194�, ṙσ(32) = �0.5000, 0.3000�,

ṙσ(33) = �0.5224, 0.3902�, ṙσ(34) = �0.3470, 0.3638�, ṙσ(35) = �0.1206, 0.7947�

r1 = �0.4263, 0.2820�, r2 = �0.4450, 0.3574�, r3 = �0.4113, 0.4005�

S(r1) = 0.1443, S(r2) = 0.0876, S(r3) = 0.0108

r1 = IFWA(r11, r12, r13, r14, r15)

=

〈

1− (0.8)0.1117(0.6)0.2365(0.5)0.3036(0.3)0.2365(0.7)0.1117,

(0.5)0.1117(0.2)0.2365(0.4)0.3036(0.3)0.2365(0.1)0.1117
〉

= �0.4373, 0.2785�

r2 = IFWA(r21, r22, r23, r24, r25)

=

〈

1− (0.8)0.1117(0.4)0.2365(0.6)0.3036(0.6)0.2365(0.4)0.1117,

(0.7)0.1117(0.3)0.2365(0.3)0.3036(0.4)0.2365(0.1)0.1117
〉

= �0.4620, 0.3122�

r3 = IFWA(r31, r32, r33, r34, r35)

=

〈

1− (0.8)0.1117(0.5)0.2365(0.6)0.3036(0.7)0.2365(0.4)0.1117,

(0.7)0.1117(0.3)0.2365(0.5)0.3036(0.4)0.2365(0.2)0.1117
〉

= �0.4118, 0.3940�
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and hence order relation is r1 ≻ r2 ≻ r3 which corresponds to x1 ≻ x2 ≻ x3.

By Wang and Liu (2012) approach

If we utilize IFEWA (Wang and Liu 2012) operator to aggregate these IFNs then we get 
their corresponding aggregated values

and hence ranking of these alternatives are r1 ≻ r2 ≻ r3 and thus their corresponding 
alternative ranking order are x1 ≻ x2 ≻ x3.

Sensitivity analysis

To analyze the effect of γ on the most desirable alternatives on the given attributes, we 
use the different values of γ in the proposed approach to rank the alternatives. The cor-
responding score values and their ranking order are summarized in Table 2 along with 
the results as obtained by Liu (2014) approach. From this table, it has been analyzed 
that with the increase of the parameter γ, their score values corresponding to each 

r1 = IFEWA(r11, r12, r13, r14, r15)

=

〈

(1.2)0.1117(1.4)0.2365(1.5)0.3036(1.3)0.2365(1.7)0.1117−

(0.8)0.1117(0.6)0.2365(0.5)0.3036(0.7)0.2365(0.3)0.1117

(1.2)0.1117(1.4)0.2365(1.5)0.3036(1.3)0.2365(1.7)0.1117+

(0.8)0.1117(0.6)0.2365(0.5)0.3036(0.7)0.2365(0.3)0.1117

,

2(0.5)0.1117(0.2)0.2365(0.4)0.3036(0.3)0.2365(0.1)0.1117

(1.5)0.1117(1.8)0.2365(1.6)0.3036(1.7)0.2365(1.9)0.1117+

(0.5)0.1117(0.2)0.2365(0.4)0.3036(0.3)0.2365(0.1)0.1117

〉

= �0.4298, 0.2831�

r2 = IFEWA(r21, r22, r23, r24, r25)

=

〈

(1.2)0.1117(1.6)0.2365(1.4)0.3036(1.4)0.2365(1.6)0.1117−

(0.8)0.1117(0.4)0.2365(0.6)0.3036(0.6)0.2365(0.4)0.1117

(1.2)0.1117(1.6)0.2365(1.4)0.3036(1.4)0.2365(1.6)0.1117+

(0.8)0.1117(0.4)0.2365(0.6)0.3036(0.6)0.2365(0.4)0.1117

,

2(0.7)0.1117(0.3)0.2365(0.3)0.3036(0.4)0.2365(0.1)0.1117

(1.3)0.1117(1.7)0.2365(1.7)0.3036(1.6)0.2365(1.9)0.1117+

(0.7)0.1117(0.3)0.2365(0.3)0.3036(0.4)0.2365(0.1)0.1117

〉

= �0.4564, 0.3188�

r3 = IFHIWA(r31, r32, r33, r34, r35)

=

〈

(1.2)0.1117(1.5)0.2365(1.4)0.3036(1.3)0.2365(1.6)0.1117−

(0.8)0.1117(0.5)0.2365(0.6)0.3036(0.7)0.2365(0.4)0.1117

(1.2)0.1117(1.5)0.2365(1.4)0.3036(1.3)0.2365(1.6)0.1117+

(0.8)0.1117(0.5)0.2365(0.6)0.3036(0.7)0.2365(0.4)0.1117

,

2(0.7)0.1117(0.3)0.2365(0.5)0.3036(0.4)0.2365(0.2)0.1117

(1.3)0.1117(1.7)0.2365(1.5)0.3036(1.6)0.2365(1.8)0.1117+

(0.7)0.1117(0.3)0.2365(0.5)0.3036(0.4)0.2365(0.2)0.1117

〉

= �0.4068, 0.4000�
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alternative is decrease which is in accordance with the results of as obtained from Liu 
(2014) approach. The variations of the ranking of these three companies with respect to 
the value of parameter γ by the proposed IFHIWA and IFHIHWA operator are shown in 
Figs. 1 and 2 respectively. Furthermore, it has been obtained that the score value of each 
alternative by the proposed approach is less than the existing approach which shows the 
optimistic attitude nature to the decision makers’ which validates the Corollary 1.

Conclusion
In this article, the objective of the work is to present some series of an averaging aggre-
gation operators by using hamacher operations. For this, firstly shortcoming of the vari-
ous existing operations and their corresponding aggregator operators is highlighted. 
These shortcoming has been resolved by defining a new set of operational laws on the 
intuitionistic fuzzy set environment by considering the degree of interaction or hesita-
tion between the grades of functions. Based on these laws, some series of an averaging 
aggregation operators namely IFHIWA, IFHIOWA and IFHIHWA have been proposed. 
The desirable properties corresponding to each operator has been discussed. It has been 
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observed from the operators that some existing operators IFWA and IFEWA are taken 
as a special case of the proposed operators. These operators have been applied to solve 
the MCDM problem for showing the substantiality and effectiveness of the approach. 
From the proposed approach, it has been concluded that it contain almost all of arith-
metic aggregation operators for IFNs based on different γ and hence proposed operators 
are more general and flexible.
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