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1 Introduction

Time dependent processes are of utmost interest in physics and most of the time difficult

to address. In this work we consider such a process known as Quantum Quench [1, 2]

and [3]. Our objective is to study this phenomenon by means of holography [4, 5] and [6].

The field theoretic setup is the one considered in [7]; two identical 1 + 1 dimensional

Conformal Field Theories (CFT’s) each living on a half line, and prepared in their ground

states, are joined together at an instant of time to produce a CFT on the whole line. This

process is called Local Quench and the question of interest is the time evolution of the

system after quench [8, 9] and [10].

A natural probe to investigate the time evolution is the Entanglement Entropy (EE)

of various subspaces [7]–[14]. On the field theory side, this problem has been addressed in

full detail and rigour in [7, 11] using the power of conformal symmetry.

In this work we address the same problem using holography. The system we consider

consists of two Boundary Conformal Field Theories (BCFT’s) on half line, each of which

can be described holographically via the AdS/BCFT correspondence of [15], see also [16].

In this setup, each BCFT is described by part of the AdS3 background which is bounded

by the half plane of the BCFT on the one hand and a co-dimension one hyper-surface (two

dimensional in this case) in the bulk on the other. The hyper-surface which is a dynamical

object is part of the holographic description and intersects the boundary on a line.
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In the holographic model that we propose for local quench, when the two BCFT’s are

joined together, the corresponding hyper-planes detach from the boundary and attach one

another in the bulk. This leaves the boundary of the whole system as the two dimensional

world volume of a CFT on a plane. The bulk will be the whole AdS3 with a two dimensional

dynamical hyper-plane floating in it. The time evolution of this hyper-plane in the bulk

determines that of the resulting CFT in the boundary.

The problem simplifies significantly if the BCFT’s have a zero value of the so called

“boundary entropy” and this is the problem we consider. The general case of nonzero

boundary entropy is postponed to future works.

As we will describe in subsequent sections, when the boundary entropy is zero, the

hyper-planes will become the world sheets of tensionless open strings in the bulk with

the usual Polyakov action. The strings attach the boundary with a Neumann boundary

condition. The quench will then correspond to detaching the strings from the boundary

and attaching the tips together in the bulk. This will produce a folded closed string in

AdS whose dynamics is determined by the Polyakov action. The solution will turn out to

be the tensionless limit of the famous “Yo-Yo String” [17, 18]. The tip of the string, i.e.

the point where the closed string folds on itself, falls in the radial direction of AdS on a

null geodesic.

Being in the tensionless limit, we can make the total energy of the string arbitrarily

small and hence the geometry is not back reacted. Time evolution will solely be the result

of causal effects. The light cone of the tip of the falling string will divide the bulk points

into those that “know” of the formation of a closed string and those that do not. The light

cone is the holographic extension of the quasi-particles that are produced in the process

of quench and which propagate in both directions on the line and change the state of the

field theory.

Entanglement Entropy of various subspaces are described holographically by the Ryu-

Takayanagi (RT) curves [20]–[22]. We propose how the light cone of the falling string

deforms these curves and hence find the time dependent EE in terms of lengths of various

curves in the bulk. Our results produce the field theory expressions in full detail.

The rest of the paper is organized as follows. In the next section we briefly review

various ingredients that we need for the rest of the work. In particular we give a sketch

of the field theory treatment of quench, mention the previous attempts for a holographic

description of this process, state the AdS/BCFT correspondence and review the Yo-Yo

string solution. In section three we state our proposal for holographic quench. In section

four we calculate EE following a local quench by using the deformed RT curves. We

conclude with some remarks and discussions and work out some details in the appendix.

2 Review material

In this section we review different topics that we will need for our treatment of local quench

by holography. We will be very brief in each part and simply state the main results.
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2.1 Local quench by field theory

The main reference for this work is [7]. The approach here is to find the path integral

representation for the density matrix of the system at a time t after quench. This amounts

to considering the two world sheets with boundaries which have evolved from t = −∞ to

t = 0. The two world sheets are then joined together, to produce one with no boundaries

now, and is allowed to evolve for another time period t. The path integral on the resulting

manifold corresponds to the “ket” of the system at time t after quench.

A similar manifold will then correspond to the “bra” state and, once put together, the

path integral on the two manifolds glued together will represent the density matrix. One

can then calculate the expectation value o f various operators by introducing local operator

insertions on the manifold. To make the expressions convergent a regulator, ε, is introduced

in the path integral. Once analytically continued, the whole thing will correspond to a path

integral on a plane with two cuts along imaginary time, one from −∞ to −iε and the other

from iε to +∞.

The final step is to use a conformal transformation to map the manifold with two

cuts, parameterized by (z, z̄), into the upper half plane of (w, w̄) with Re(w) > 0. This is

achieved by

z
f−→ w(z) =

z

ε
+

√
1 +

(z
ε

)2
with inverse w

f−1

−−→ z(w) = ε
w2 − 1

2w
. (2.1)

To calculate, for example, time dependent entanglement entropy of various intervals,

one should insert the so called twist operators at proper locations and calculate the corre-

sponding n-point functions. This amounts to doing the standard calculations on the upper

half plane and use the conformal map to find the expressions on the original manifold

with cuts.

This procedure has been done with great care and detail in [7]. In particular the time

dependent EE following a local quench has been calculated for an interval with end points

at different locations.

2.2 AdS/BCFT correspondence

The main references here are [15, 16]. Consider a CFT living on a manifold M with

boundary ∂M. The conjectured AdS/BCFT correspondence states that this system has a

gravitational dual consisting of a part of AdS geometry N , together with a co-dimension

one hypersurface Q, such that ∂N = M∪ Q. It is important to note that Q, which is

homologous to M, is part of the holographic description.

The action that describes this system is

S = SN + SQ , (2.2)

where

SN =
1

16πGN

∫
N
ddx
√
−G(R− 2Λ) , SQ =

1

8πGN

∫
Q
dd−1x

√
−h(K − T ) . (2.3)

– 3 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
7

Figure 1. Holographic picture of a BCFT defined on the half-plane, M.

In these expressions hij and Kij are the induced metric and extrinsic curvature of Q re-

spectively and K = hijKij . The constant T is the tension of Q. One should also include

the boundary action associated with M

SM =
1

8πGN

∫
M
dd−1x

√
−gK , (2.4)

where again gij and Kij are the induced metric and extrinsic curvature of M, respectively

and K = gijKij . We choose the usual Dirichlet boundary condition on M but Neumann

boundary condition on Q. Then variational principle gives us Einstein equation in the bulk

region, N , as well as the following constraint on the boundary Q

Kij = hij(K − T ) . (2.5)

The case of our interest, which we will need in future sections, is the dual description of

a 1 + 1 dimensional BCFT on the half plane x < 0. Using the Poincaré coordinates for

AdS3 as

ds2 =
L2

z2

(
−dt2 + dz2 + dx2

)
, (2.6)

we can parameterize The hypersurface Q as xQ = xQ(z). The unit normal on this surface

reads

nµ =
(
nt, nz, nx

)
=

z

L
√

1 + x′Q
2(z)

(
0,−x′Q(z), 1

)
. (2.7)

Assuming a constant T for simplicity, equation (2.5) determines the profile of Q

xQ(z) = α(T ) z + β , (2.8)

where

α(T ) ≡ TL√
1− T 2L2

, (2.9)

and since x = 0 when z = 0, we should set β = 0. The situation has been schematically

shown in figure 1.

One last point is that the boundary entropy of the BCFT is related to T . In particular,

when T = 0, the boundary entropy also vanishes.

– 4 –
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2.3 The Yo-Yo string

The main reference here are [17] and [18]. The Yo-Yo solution is an example of a classical

motion of an open string with finite momenta at end points. The main feature of such

strings is that the end points move on light-like geodesics on a direction along the string

itself. This is not compatible with any of the two allowed boundary conditions for open

strings, namely the Dirichlet and Neumann boundary conditions. Still, they can be found

as certain limits of allowed string configurations and hence should be considered as part of

the classical theory.

In flat space, one can write solutions that interpolate between the Yo-Yo and the

Regge solutions, the latter being an open string which rotates as a rod with a constant

angular velocity. Such solutions satisfy the Neumann boundary conditions at ends and

describes open strings that while rotating, their size changes between two positive numbers

l1 ≥ l2 > 0. At any instant of time, the string is a straight line.

The Regge limit is when l1 = l2. The other limit, Yo-Yo limit, is when l2 → 0. In

the Yo-Yo limit the Neumann boundary condition breaks down1 and for the energy of the

string to be conserved one has to add a boundary term to the usual string action. The

whole process can be generalised to arbitrary curved backgrounds [18].

In theories where open strings are not allowed, one can produce closed strings with

the same above features. This amounts to attaching two open strings at end points and

produce a closed string, folded back on itself, which, at any instant of time looks like a

straight line. The important difference is that the open string ends are now replaced by

the folding points which do not have to satisfy the open string boundary conditions. In

the Yo-Yo limit, we will no longer need the additional boundary term and each half of the

closed string provides the other half with the required boundary conditions.2 Therefore

one has valid classical solutions of strings which carry momentum at the folding points. In

the AdS background, these configurations are special cases of the rotating folded strings

which were studied in [19], when the angular momentum is zero. The configurations are

uniquely specified by a single number, the total length of the string or equivalently the

total energy.

The solution of our interest in this work is the folded closed string in AdS3 in coordi-

nates (2.6). Working out the details (look at [18]) one finds that the folding points move

on the trajectory z = t. Choosing the direction z to parameterize this trajectory, one finds

that the momentum of the folding point evolves as

ṗt = − TL2

4πGN

1

z2
, (2.10)

where dot stands for differentiation with respect to z. One can state the initial value of pt
in terms of the total energy of the string, E, which is pt(0) = −E/2. Therefore one finds

pt = −E
2

+
TL2

4πGN

1

z
. (2.11)

1It can be easily seen in the static gauge.
2In fact the two boundary terms for each half appear with opposite signs due to the orientation of the

boundary and cancel out.
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Using this relation one can find the point where the folding point changes direction

z∗ =
TL2

2πGNE
. (2.12)

This is called the “snapback” point and is the closest the folding point can get to the

boundary at z = 0. This relation will find special significance in next section when we

propose our holographic model for local quench.

2.4 Quench by holography

There have been a number of attempts to describe local quench by holography, [23, 24]

and [25]. see also [26]–[32]. Here we mention two of these works which are of more relevance

to ours.

The first one is [23]. The process that is studied in this work is when a CFT undergoes a

localized excitation. The excitation spreads throughout the system and changes the original

state. The holographic model that [23] proposes for this process is to consider a massive

particle which is falling freely in the AdS spacetime. As a result, the geometry in the bulk

will be affected and the state of the system changes in time. Of particular interest is to

compute the time dependence of EE for various subspaces. This is achieved by applying

the RT prescription to the backreacted geometry and finding the corresponding minimal

hypersurfaces in the bulk. In the case of AdS3 the calculations can be done analytically.

The results are in general agreement with expectations from field theory calculations.

The second work we mention here is [24], see also [25]. This reference makes a parallel

computation of section (2.1) in the bulk. In particular, the bulk version of the map (2.1)

is introduced and the field theory correlation functions of the twist operator are calculated

by the usual RT curves in the bulk. The results thus obtained reproduce the field theory

calculations of [7] correctly.

In the next section we propose another model for local quench when two CFT’s on

semi-infinite lines are joined together. Our model considers each of the original BCFT’s

in terms of their dual descriptions through the AdS/BCFT correspondence. Local quench

occurs when the two extensions of the field theory boundaries, i.e., the Q surfaces mentioned

in (2.2) detach from the boundary and attach to one another. Their subsequent evolution in

bulk determines the time dependence of the process. In this work we only consider BCFT’s

with a zero boundary entropy. Extension to a general case is postponed to future works.

3 Local quench by AdS/BCFT and Yo-Yo string

Consider a CFT living on a semi-infinite line M with x < 0. The dual description will be

the one depicted in figure 1. The Q surface is determined by equations (2.8) and (2.9).

Specify to the situation when the tension on Q is zero. In the field theory language this

means that the boundary entropy for this system is zero.

A key observation is that for T = 0, the surface Q is simply the world sheet of an open

string which satisfies the classical equations of motion for a bosonic Polyakov string. The

string attaches the boundary at z = 0 with the usual Neumann boundary condition. The

– 6 –
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Figure 2. Two disconnected BCFT’s when T → 0.

string, however, is tensionless; α′ →∞. To see this, one can simply note that for T = 0, the

extrinsic curvature K of the surface Q vanishes and hence it is a minimal surface. Classical

solutions for Polyakov action are also nothing but minimal world sheets. The Neumann

boundary condition is also obvious from (2.8) which gives

∂zxQ|z=0 = 0 when T = 0 . (3.1)

Now consider an identical field theory which lives on the semi-infinite line M̃ with x > 0.

Again the same situation holds as above. Figure 2 shows the two systems together with Q

and Q̃ being the world sheets of tensionless Polyakov open strings

Local quench occurs as a result of manipulations at and around the point x = 0 which

joins the two disconnected field theories into a single one. The question is what should

be considered as the bulk version of these manipulations. Whatever these may be, they

should occur in the UV part of the AdS space, around the x = 0 point, which is a result of

(rather) local manipulations around this point. It should ultimately result in the removal

of the partition between the initially separate systems. Mirroring the field theory process,

this should happen in a time dependent manner which entangles the degrees of freedom of

the two systems as time goes by until one ends up in the ground state of single system,

consisting of the two. Since this state is the ground state of conformal field theory on a

line, the dual geometry must be empty AdS space.

Our proposal is that the bulk version corresponds to detaching each of the open strings

from the boundary and attaching the two ends together. This will produce a folded closed

string that can now propagate in the bulk (see figure 3).3 This propagation happens

according to the classical equations of motion for the string and should eventually result in

the removal of the string, or its shrinking to a point, such that we are left with an empty

AdS space at late times.

To find the subsequent motion of the string we note that once we attach the endpoints,

we are left with a folded closed string which stretches along the radial coordinate in AdS

with all of its points, including the folding point, at rest with zero momentum. This

3The other end of the string is behind the Poincaré horizon and we do not worry about it. If we consider

global AdS, a similar process happens in the other end and two BCFT’s on intervals join into one on a circle.

In bulk, a closed string forms which becomes point-like in late times. If one insists to have BCFT’s on

semi-infinite lines, one can still work in global coordinates but remove one point from the angular direction.

The picture will then describe an open string which is folded in bulk with end points attached to boundary

at infinity with Neumann boundary condition. This will not affect the motion of the folding point.

– 7 –
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Figure 3. Holographic picture for local quench; appearance of a folded string.

Figure 4. Regulators in boundary (Left) and bulk (Right).

coincides with a tensionless yo-yo string at the snapback point which, in turn, is uniquely

specified by its initial conditions. The dynamics will thus be governed by equations (2.10)

and (2.11). The only remaining initial condition is the total energy of the string or the z

value of the folding point.

To find this last piece of information to determine the motion of the string we should

properly define the tensionless limit of our yo-yo. Consulting equation (2.12), we see that

a finite value for the snapback point z∗ can be find by

E → 0 , T → 0 , lim
T→0,E→0

z∗ = lim
T→0,E→0

TL2

2πGNE
≡ δ . (3.2)

This is a reasonable limit once we remember what case of a quench we are studying. We are

attaching two BCFT’s with zero boundary entropy. In such a case no energy is released or

absorbed by quench [7]. Holographically this means that our AdS space never suffers back

reactions by the folded string. This is also reflected in the Q surfaces which are tensionless.

The last ingredient in our holographic picture for quench is to relate δ defined in (3.2)

to field theory. A relevant question in the field theory side is how local the manipulations

have been. In other words to what extent have the adjacent points around x = 0 have been

perturbed or excited as a result of quench. Let us assume that the process of attaching the

two field theories has affected a region of size ε.

We suggest that an interpretation of this length in terms of the bulk physics comes

through the snapback point z∗ and hence δ (see figure 4).

A natural identification for our holographic picture will be then (figure 5)

δ =
1

2
ε . (3.3)

Let us see how this picture produces the general features of quench in the bulk. Deal-

ing with zero boundary entropy for the initial BCFT’s, the whole process is governed by

– 8 –
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Figure 5. Identification of the regulators.

Figure 6. Holographic local quench: Light-cone and δ Vs. quasi-particles and ε.

causal effects rather than energy transfer. In the field theory language this is a result of

propagation of quasi-particles in both direction on the line which deliver the message of

manipulations at x = 0. These quasi-particles have an arbitrarily small energy.

In the bulk, the folded string falls freely away from the boundary into the bulk. The

folding point falls on a light-like geodesic. The string has an arbitrarily small energy and

does not back react on the geometry, again all that comes into play is the causal effects.

The message of formation of the folded string propagates into the bulk along the light-cone

depicted in figure 6.

The light-cone divides bulk points into those who know of the manipulations and those

who do not. The light front is identified as the bulk version of quasi-particles 6.

In the next section we will put our model to test by studying the time evolution of

entanglement entropy of a single interval after quench.

4 Entanglement entropy and local quench

The time dependence of entanglement entropy after quench will provide us with information

of how the initial ground states of the disjoint BCFT’s will evolve into that of a single CFT

on a line. Let us denote the entangling subregion by A and its entanglement entropy by

SA. The complementary region and its entropy are denoted by Ā and SĀ respectively.

Since the entire system is in a pure state at any instant of time, SA = SĀ remains true at

all times.

– 9 –
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In field theory, one starts with the initial value for SA. As the quasi-particles penetrate

A, the entanglement pattern begins to change. One again arrives at a final value for SA as

the quasi-particles exit A.

In the bulk side, one again starts with an initial condition. Denoting the endpoints of

A by (xi, xj), the holographic value for SA is given by the RT curve through

SA =
A(γxixj )

4GN
, (4.1)

where GN is the newton constant, γxixj is the geodesic curve in the bulk that is homologous

to A and A(γxixj ) is the length of γxixj . As the light front of figure 6 intersects with γxixj , it

deforms the standard RT curve and changes SA. Below, we propose how these deformations

and modifications take place and try to justify them by physical intuitions and arguments.

The example we pick up for illustration is when A is entirely inside one of the original

BCFT’s. We follow the conventions of [7] to make comparisons immediate. The endpoints

of A are located at `2 and `1 with `1 > `2 > 0. The two BCFT’s are joined at x = t = 0.

We first recall how the RT prescription works before quench and then propose how to

modify it.

4.1 Entanglement entropy before the quench

To apply the standard RT prescription for holographic Entanglement Entropy one should

find among all the curves that are homologous to the entangling region in the boundary

the one that has the minimum length. In the case of a BCFT where additional boundaries

exist both in the bulk and field theory sides the prescription has to be modified.

This amounts to considering two different types of curves, connected and disconnected.

The former are the usual RT curves that end on the boundaries of the entangling region

while the latter can end on the Q-surface in the bulk. Depending on the configuration of

the entangling region and the Q-surface, the connected or disconnected pieces yield the

minimum length and hence the EE.

To be more specific we consider the setup in the previous section where we have two

BCFT’s with a common boundary and with a zero boundary entropy each. In the symmet-

rical situation at hand we find the introduction of “Image Points” of special interest and

use.4 These points make the application of the RT prescription more easy and systematic.

We will later find that any modifications to the standard recipe will be facilitated by the

image points.

One can see that the connected RT curves, γc, are those that start and end on (image)

points whereas the disconnected curves, γd, correspond to those that have a point and an

image on the ends. Below in figure 7, we have depicted the connected vs. disconnected

RT curves.

The recipe can then be summarized as5

SEE = Min{A(γc) , A(γd)} , (4.2)

4In non symmetrical situations the image points can also be used.
5We will drop the factor 1/4GN in eq. (4.1), henceforth.

– 10 –
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Figure 7. Connected vs. disconnected geodesic curves.

There are a number of comments worth mentioning. The problem of a single interval

as the entangling region in a BCFT is in effect that of two disjoint intervals in a normal

CFT. This is well expected as in a BCFT, the calculation of the two point function of twist

operators will in effect be that of a four point function of operators inserted at points and

their images, see for example [33]. In the holographic setup this corresponds to the curves

that can end on image points.

It is well known that four point functions cannot be completely fixed by conformal

symmetry completely. They depend also on the operator content of the theory. They,

however, include a universal part which is fixed by symmetries. Using the notation of (2.1)

we can find the correlation function of twist operators, σ and σ̃, and thus the partition

function of the replicated theory as follows

Zn = Tr ρnA ∝ 〈σσ̃(interval endpoints)〉nz ∼ 〈σσ̃(interval endpoints)σσ̃(image points)〉nw .
(4.3)

Consequently, we will have

Zn = Z(u)
n F̃n({x}) , (4.4)

where Z
(u)
n represents the universal part of the replicated partition function, and F̃n({x})

stands for a non-universal function of cross-ratios which are shown by {x} in sum.

However, as we will argue later, the important part for our purposes is the universal

one. Using this technique the authors of [7] have computed the EE for various cases. For

the most general case, i.e. for a single interval A : [`2 > 0, `1 > 0] they have found

SA =
c

6
log

(`1 − `2)2

(`1 + `2)2

4`1`2
a2

. (4.5)

To facilitate the following discussion, and also to make contact with the holographic

description of EE, we rewrite the above relation as a sum of separate parts

SA = Sc + Sd + Sn =
c

6
log

(`1 − `2)2

a2
+
c

6
log

4`1`2
a2

+
c

6
log

a2

(`1 + `2)2
, (4.6)

where the subscripts c, d, n refer to connected, disconnected and negative contributions

respectively. We recognize the first two contributions as corresponding to the familiar con-

nected, γc, and disconnected, γd, RT curves. The negative contribution, however, although

appearing in the universal part, has no counterpart amongst the RT curves.

– 11 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
7

In order to get an insight into this contribution to EE, consider a situation where

one changes the length of the entangling region or its position with respect to the bound-

ary smoothly. Interestingly, the negative contribution can make the transition between

connected and disconnected pieces a smooth one. To see this we first consider the limit

`1 � `2 > 0 in (4.5). In this limit `1 + `2 ∼ `1 − `2 and the disconnected piece, γd, domi-

nates. In the opposite limit `2 � `1 − `2 > 0, we have `1 ∼ `2 and thus (`1 + `2)2 ∼ 4`1`2
and therefore γc survives.

Moving to the holographic description we find it natural to include the negative con-

tribution in terms of geodesic curves specially since it appears in the universal part. This

should be understood as our proposal for how to modify the RT prescription in case of

multiple intervals as well as a single interval in presence of a boundary.

The holographic counterparts of these contributions can easily be identified as two

intersecting curves between points and their images. Denoting the image points by ˜̀
1 and

˜̀
2 the negative contribution can be produced by

Negative contribution :
1

2
{A(γ`1`′2) +A(γ`′1`2)} . (4.7)

So in summary, we have proposed the following prescription for computing the entangle-

ment entropy holographically, before quench

A0 =
1

2
{A(γ`1`2) +A(γ`′1`′2)}+

1

2
A(γ`1`′1) +

1

2
A(γ`2`′2)− 1

2
{A(γ`1`′2) +A(γ`′1`2)} . (4.8)

This coincides with the universal part of the field theory calculations, produces the con-

nected and disconnected pieces in the appropriate limits and makes a transition between the

limits possible. (4.8) should be considered as our proposal to correct/modify the standard

recipe of (4.2).

We have intentionally separated the contributions from points and their images be-

cause, as we will see in the following, the modifications will treat them differently. In

figure 8 we have shown the positive and negative contributions by black and red curves,

respectively.

In sum we believe that (4.8) should be considered as the holographic prescription for

computing the EE which sums two connected and disconnected pieces and includes the

negative contribution. We would like to emphasize again that it is somehow different

from (4.2), since in the latter, among the connected and disconnected pieces only the

minimal one is taken into account.

Incidentally we recently became aware of [34] in which the authors have computed the

EE for two disconnected subregions in 1 + 1 dimensions. Interestingly, our result is in a

complete agreement with what they have found and hence this would provide a further

support for what we have proposed in eq. (4.8).6

The above prescription will give us the following value for SA

SA(t < `2) =
c

6
log

(`1 − `2)2

(`1 + `2)2

4`1`2
a2

, (4.9)

6We would like to thank the referee for bringing this reference to our attention.
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Figure 8. Positive (Left) vs. Negative (Right) contributions.

where c is the central charge of the CFT and a is a regularization parameter which is the

lower bound for the coordinate z (look at appendix A for details).

4.2 Entanglement entropy after the quench

As stated before the main reference for field theory results is [1]. As we discussed before, in

their calculations universal as well as non-universal parts appear. The latter are in general,

functions of cross ratios. In some limits these contributions become negligible.

As argued by the authors of [1], the EE after quench is well approximated by the

universal parts. The non-universal parts are suppressed except at special times when the

quasi-particles pass through the boundaries of the entangling region, i.e., the end points of

the intervals.7

In the following where we propose how the RT curves must be deformed and modified

after quench, we are able to produce the universal contributions to EE as a function of

time. This means that at times when the non-universal parts become important, further

modifications should be introduced. Whatever these might be, they should depend on the

specific CFT under study.

In the limit of a large central charge where classical gravity is believed to capture

universal features of CFT’s, one may naturally expect that non-universal contributions

will not have a simple gravitational description.

First step is to motivate the modification we formerly pointed out and to do that

we note that the complementary region to A, denoted by Ā, changes in time. At early

times when A has not yet received the message of quench, its reduced density matrix ρA
is unaffected and hence SA remains unchanged. After the quasi-particle has penetrated A

(say at time t = t∗), part of the region, denoted by α ⊂ A, receives the message and the

entanglement pattern begins to change. This continues until the quasi-particle exits the

interval when SA assumes its steady state value. We are only interested in the intermediate

times `2 < t < `1 in the following.

Entanglement entropy changes by two competing contributions; one that decreases SA
and one that increases it. Some of the existing entanglements disappear and some new

ones form. In other words, the entanglement between A and Ā(t < t∗) transfers to that

between A and Ā(t > t∗).

As the quasi-particle pair travel in both directions, the degrees of freedom in α find

new counterparts to entangle with. These are those degrees of freedom which have been

7We would like to thank John Cardy for his useful comment on this point.
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Figure 9. Image point moved to left. This decreases entanglement.

swept by the pair. This in turn transfers part of entanglement between A and Ā(t < t∗)

to α and Ā(t > t∗).

The decreasing contribution can be best understood by focusing on the image point

`′2. Note that quasi-particles deal with points and their images differently. This is because

the image points owe their existence to the boundary and as the boundary is removed the

image points and their effects should be swept away. It is thus reasonable to assume that

the point `′2 is swept off to left to ˜̀′
2 (see figure 9) as the quasi-particle passes through it.

Turning to the holographic description, this will modify some of the original RT curves.

Out of the six contributions in (4.8), let us first focus on the four curves γ`1`2 , γ`′1`′2 , γ`1`′2
and γ`2`′1 and leave the remaining two for later. The shift of `′2 → ˜̀′

2 decreases the positive

contribution of A(γ`′1`′2)→ A(γ`′1 ˜̀′
2
) and increases the negative contribution of A(γ`1`′2)→

A(γ`1 ˜̀′
2
) while leaves the two parts A(γ`1`2) and A(γ`2`′1) unchanged.

The modified curves, up to now, are summarized in figure 9.

Using RT formula for the deformed curves and noting that ˜̀′
2 = t, we have

A(γ`′1 ˜̀′
2
) =

c

6
log

(`1 − t)2

a2
, A(γ`1 ˜̀′

2
) =

c

6
log

(`1 + t)2

a2
. (4.10)

The contribution of the mentioned four curves appears in the following combination

1

2
{A(γ`1`2) +A(γ`′1 ˜̀′

2
)} − 1

2
{A(γ`1 ˜̀′

2
) +A(γ`′1`2)} , (4.11)

Quite interestingly, this combination can be depicted in terms of geodesic curves in a very

suggestive way. This is shown in figure 10 and illustrates the causal nature of deformations

in the RT curves as a result of quench.

The t-circle in this figure is the light front at time t. This picture motivates us to

propose that the light-cone of the falling folded string deforms the RT curves as shown in

figure 10. We call the combination in (4.11) as the decreasing contribution and denote it

by SD. In figure 10 we have introduced two new curves, Γ and Γ̃. In figure 11 we give a

better illustration for the former.

In calculating the lengths of the new curves we come across pieces that arrive at the

boundary along the light front. We should note that along such pieces the minimal value

for z, which appears as a limit in integrals, must be set equal to δ, the light-cone regulator.

Straightforward calculations lead to

A(Γ) =
c

6
log

2t

δ

`1 − `2
a

`1 − t
`2 + t

, A(Γ̃) =
c

6
log

2t

δ

`1 + `2
a

`1 + t

`2 + t
, (4.12)
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Figure 10. RT curves deformed by light-cone: Γ and Γ̃.

Figure 11. Deformed RT curve.

and the net contribution of the decreasing part, SD, will be

SD = A(Γ)−A(Γ̃) =
c

6
log

`1 − `2
`1 + `2

`1 − t
`1 + t

. (4.13)

As one can see, a and δ dependence cancel out. The situation is of course different once

we study the increasing contribution of SA.

Up to now we have addressed four of the initial RT curves and their possible modi-

fications after quench. We now turn to the remaining two. Of these, γ`1`′1 is unaffected

through the whole process as it is outside the light cone. The other one however, γ`2`′2 , will

get modified in the increasing contribution to the EE. This contribution, as stated before,

is a result of the new entanglements that the subset α finds with those degrees of freedom

that have already received the quench message. In figure 12 we suggest how to modify RT

for this contribution.

In the right hand side picture of figure 12, where we have proposed modifications to

RT, the curve on the left is the deformation of the previously existing curve γ`2`′2 . As the

light front passes through the image point `′2, it sweeps away the image and drags the curve

to ˜̀′
2.

We also propose that a new piece of curve, henceforth denoted by γα, forms between

`2 and the light front on the right. This is to account for the new entanglements that

– 15 –
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Figure 12. Modifications to RT for the increasing contribution to entanglement.

are formed between α and the interval (`2, ˜̀′
2). Out of all the curves that we consider to

find SA, this is the only one that is produced during the process unlike the other ones

which are deformations of initial curves. In this sense the appearance of γα in our recipe

is not as natural and satisfactory as the deformed curves we have proposed. In particular,

and as we will see below, we need to put a factor of 1/2 in front of A(γα) to produce the

correct results. This factor is a result of boundaries in the problem and we are aware that

after quench when γα forms no boundaries exist. It would be much more satisfactory if

one could predict and motivate the formation of this new curve by field theory arguments.

Unfortunately at the moment we do not have a compelling argument in favour of this part

of our proposal except that we have tested it in various cases when we change the relative

position of the boundary and the interval and we have always produced the correct results.

In particular we have applied the recipe to the cases of `1 →∞, `2 = 0 and `2 < 0 and found

full agreement with field theory. We hope to report progress in this line in future works.

In any case for the curves in figure 12 one calculates

A(γ`2 ˜̀′
2
) =

c

6
log

(t+ `2)2

aδ
,A(γα) =

c

6
log

(t− `2)2

aδ
, (4.14)

which gives the increasing contribution, SI as

SI =
1

2
A(γ`2 ˜̀′

2
) +

1

2
A(γα) =

c

6
log

t2 − `22
aδ

. (4.15)

Putting everything together, we end up with

SA = SD + SI +
1

2
A(γ`1`′1) =

c

6
log

`1 − `2
`1 + `2

`1 − t
`1 + t

t2 − `22
aδ

2`1
a

. (4.16)

Note that the last term is simply the only initial curve which has not been affected by the

light front. If we now express the holographic light-cone regulator δ in terms of the field

theory quench regulator ε through equation (3.3), we recover the field theory result of [7]

in full agreement.

A last point worth mentioning is to see how the image points and their effects are

totally erased as the boundary is removed. This is accomplished by the deformed curves.

By the time the quasi-particle reaches `′1, that is when ˜̀′
2 coincides with `′1, A(γ`′1 ˜̀′

2
) tends to

zero while the negative part due to A(γ`1 ˜̀′
2
) will be canceled by A(γ`1`′2) which is one of the

initial RT curves before quench. In addition, A(γ`2 ˜̀′
2
) will cancel the negative part A(γ`2`′1)

which had remained unchanged by the modifications in the increasing contribution.

In figure 13 we summarize our proposal for the deformation and modification of RT

curves by the folded string light-cone.
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Figure 13. Summary of modifications to RT; Above (below) produces SD(SI).

4.3 Interpretation of deformed RT curves

The deformed curves Γ and Γ̃ suggest a very interesting interpretation. Recall the standard

RT prescription for holographic EE. A very illuminating interpretation of this proposal was

introduced in reference [35] where the EE of a spherical region was explained in terms of

the statistical entropy of a related system in finite temperature. The latter system has a

gravitational dual which is a topological black hole.

As was shown in [35], RT curve turns out to be the horizon of the topological black

hole and the bulk points which are enclosed by this curve are the degrees of freedom outside

the horizon. This suggests that the reduced density matrix of the entangling region can be

described holographically by the bulk points enclosed by the RT curve and that the length

of the curve gives an account for the number of states.

Now consider the RT curve γ`1`2 which can be interpreted as above. As the light-front

of quench intersects this curve it deforms it into Γ. This curve encloses only those points

in the bulk which are still unaware of quench. The length of this curve can be interpreted

as how the original EE of the region is decreasing. The new entanglements that are formed

are accounted for by the points in the bulk that are inside the light-cone. This, in principle,

should be responsible for the new curve γα.

Finally, one should note that there are other possibilities for the entangling interval.

In all cases our proposal for deformation of RT curves works perfectly and the results are

in complete agreement with field theory.

5 Discussion

In this work we have proposed a holographic model for local quench in 1 + 1 dimensional

CFT. Local quench is a result of joining two identical BCFT’s living on semi-infinite lines.

We have assumed that the initial theories have a zero boundary entropy.

Using AdS/BCFT our starting point in bulk is described by two halves of AdS3 which

are bounded by the boundary at z = 0 on the one hand and a surface Q (and Q̃) on the

other. We observe that for a zero boundary entropy the surfaces Q and Q̃ coincide with
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the tensionless Polyakov strings which end at the boundary with a Neumann boundary

condition.

Local quench is described holographically when the open strings detach from boundary

and form a closed string in the bulk. The resulting closed string is a folded tensionless string

whose dynamics is given by the so called “Yo-Yo” solution. In particular the tip of the

folded string falls away from the boundary on a light-like geodesic. Being tensionless, the

string does not back react on the geometry.

On the field theory side, the process of quench has a short distance regulator which

determines the locality of the process. Also, the quasi-particles which are produced by

local manipulations propagate through the system and produce the time dependence after

quench. In our holographic setup we introduce the geometric counterparts of these features.

The short distance regulator naturally appears as the minimal distance between the

tip of the folded string and the boundary. We give an interpretation of this regulator in

terms of that for quench. As the folding point travels on a light-like geodesic, a light-cone

propagates throughout the bulk. The origin of this cone is the space-time point that the

closed string has formed. The light-front is thus interpreted as the bulk extension of the

field theory quasi-particles.

We use the holographic model to calculate time dependent entanglement entropy after

quench. We propose how the light-cone deforms standard RT curves and thus the EE. We

find full agreement with field theory results.

Dealing with a time dependent process, it is more natural to apply the time dependent

prescription to calculate holographic EE according to [36]. Working in constant time slices

we avoid possible complications in this paper but it would be nice to derive same results

by the mentioned proposal.

A possibly interesting generalization of this work is to study the same problem in the

global coordinates. This would correspond to a process of joining two CFT’s on intervals

at the two ends and create a CFT on a circle. The bulk picture will be a closed string that

evolves in space.

A more challenging extension of this work is to study local quench when the boundary

entropy is nonzero. The bulk surfaces Q will not be tensionless in this case. One should

find the dynamics of the surfaces in the bulk and should also take into account the back

reaction on the geometry. As pointed out in [7], one expects that in a unitary evolution of

the system, the original excess of energy will not dissipate and hence the system will always

have a memory of the initial condition. This feature was absent in the present work as no

energy excess existed in the first place. This problem is currently under investigation.

A Geodesics in AdS3

In this appendix we will find geodesics in AdS3 and calculate their length.

Consider the following parametrization for a geodesic, γx1x2 , in AdS3, (2.6)

t = 0 , xγ = xγ(z) . (A.1)
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which is a co-dimension two hypersurface whose induced metric reads

ds2
ind =

L2

z2

(
1 + x′γ

2
)
dz2 . (A.2)

Hence, one can evaluate the length of the curve as

A = 2

∫
dz
L

z

√
1 + x′γ

2 . (A.3)

The integrand can be considered as a Lagrangian which does not explicitly depend on

variable xγ

L = L[x′γ(z)] ≡ L

z

√
1 + x′γ

2 , (A.4)

therefore the equation of motion fixes the profile of the curve as

∂L
∂x′γ

= const.→ x′γ(z) =
z√

z2
0 − z2

, (A.5)

where z0 is the turning point at which x′γ →∞.

Substituting this profile in (A.3) and performing the integral we arrive at

A = 2

(
−L log

z0 +
√
z2

0 − z2

z
− L log z0

)∣∣∣∣∣
z0

a

= 2L log

(
2z0

a

)
, (A.6)

where a, represents the cut-off of the radial direction and z0 = 1
2 |x1 − x2|.
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[10] U. Divakaran, F. Iglói and H. Rieger, Non-equilibrium quantum dynamics after local

quenches, J. Stat. Mech. (2011) P10027.

[11] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42

(2009) 504005 [arXiv:0905.4013] [INSPIRE].

[12] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole

Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

[13] J. Aparicio and E. Lopez, Evolution of Two-Point Functions from Holography, JHEP 12

(2011) 082 [arXiv:1109.3571] [INSPIRE].

[14] T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal

and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027]

[INSPIRE].

[15] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602

[arXiv:1105.5165] [INSPIRE].

[16] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043

[arXiv:1108.5152] [INSPIRE].

[17] W.A. Bardeen, I. Bars, A.J. Hanson and R.D. Peccei, A Study of the Longitudinal Kink

Modes of the String, Phys. Rev. D 13 (1976) 2364 [INSPIRE].

[18] A. Ficnar and S.S. Gubser, Finite momentum at string endpoints, Phys. Rev. D 89 (2014)

026002 [arXiv:1306.6648] [INSPIRE].

[19] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A Semiclassical limit of the gauge/string

correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].

[20] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[21] T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J.

Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

[22] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[23] M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement

Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].

– 20 –

http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905111
http://dx.doi.org/10.1088/1742-5468/2007/10/P10004
http://arxiv.org/abs/0708.3750
http://dx.doi.org/10.1088/1742-5468/2007/06/P06005
http://dx.doi.org/10.1088/1742-5468/2007/06/P06005
http://arxiv.org/abs/cond-mat/0703379
http://dx.doi.org/10.1088/1742-5468/2008/01/P01023
http://arxiv.org/abs/0711.0289
http://dx.doi.org/10.1088/1742-5468/2011/10/P10027
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://arxiv.org/abs/0905.4013
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.4013
http://dx.doi.org/10.1007/JHEP05(2013)014
http://arxiv.org/abs/1303.1080
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1080
http://dx.doi.org/10.1007/JHEP12(2011)082
http://dx.doi.org/10.1007/JHEP12(2011)082
http://arxiv.org/abs/1109.3571
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3571
http://dx.doi.org/10.1088/1367-2630/13/4/045017
http://arxiv.org/abs/1008.3027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.3027
http://dx.doi.org/10.1103/PhysRevLett.107.101602
http://arxiv.org/abs/1105.5165
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5165
http://dx.doi.org/10.1007/JHEP11(2011)043
http://arxiv.org/abs/1108.5152
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5152
http://dx.doi.org/10.1103/PhysRevD.13.2364
http://inspirehep.net/search?p=find+J+Phys.Rev.,D13,2364
http://dx.doi.org/10.1103/PhysRevD.89.026002
http://dx.doi.org/10.1103/PhysRevD.89.026002
http://arxiv.org/abs/1306.6648
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6648
http://dx.doi.org/10.1016/S0550-3213(02)00373-5
http://arxiv.org/abs/hep-th/0204051
http://inspirehep.net/search?p=find+EPRINT+hep-th/0204051
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://arxiv.org/abs/0905.0932
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0932
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
http://dx.doi.org/10.1007/JHEP05(2013)080
http://arxiv.org/abs/1302.5703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5703


J
H
E
P
0
5
(
2
0
1
5
)
1
0
7

[24] T. Ugajin, Two dimensional quantum quenches and holography, arXiv:1311.2562 [INSPIRE].

[25] C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field

theory, Phys. Rev. D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].

[26] P. Basu and S.R. Das, Quantum Quench across a Holographic Critical Point, JHEP 01

(2012) 103 [arXiv:1109.3909] [INSPIRE].

[27] S.R. Das, Holographic Quantum Quench, J. Phys. Conf. Ser. 343 (2012) 012027

[arXiv:1111.7275] [INSPIRE].

[28] A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08

(2012) 049 [arXiv:1206.6785] [INSPIRE].

[29] P. Basu, D. Das, S.R. Das and T. Nishioka, Quantum Quench Across a Zero Temperature

Holographic Superfluid Transition, JHEP 03 (2013) 146 [arXiv:1211.7076] [INSPIRE].

[30] A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic

plasmas, JHEP 05 (2013) 067 [arXiv:1302.2924] [INSPIRE].

[31] J.F. Pedraza, Evolution of nonlocal observables in an expanding boost-invariant plasma,

Phys. Rev. D 90 (2014) 046010 [arXiv:1405.1724] [INSPIRE].

[32] M.M. Roberts, Time evolution of entanglement entropy from a pulse, JHEP 12 (2012) 027

[arXiv:1204.1982] [INSPIRE].

[33] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York

U.S.A. (1997).

[34] V.E. Hubeny and M. Rangamani, Holographic entanglement entropy for disconnected regions,

JHEP 03 (2008) 006 [arXiv:0711.4118] [INSPIRE].

[35] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement

entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

[36] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

– 21 –

http://arxiv.org/abs/1311.2562
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2562
http://dx.doi.org/10.1103/PhysRevD.89.066015
http://arxiv.org/abs/1311.4173
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4173
http://dx.doi.org/10.1007/JHEP01(2012)103
http://dx.doi.org/10.1007/JHEP01(2012)103
http://arxiv.org/abs/1109.3909
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3909
http://dx.doi.org/10.1088/1742-6596/343/1/012027
http://arxiv.org/abs/1111.7275
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.7275
http://dx.doi.org/10.1007/JHEP08(2012)049
http://dx.doi.org/10.1007/JHEP08(2012)049
http://arxiv.org/abs/1206.6785
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6785
http://dx.doi.org/10.1007/JHEP03(2013)146
http://arxiv.org/abs/1211.7076
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.7076
http://dx.doi.org/10.1007/JHEP05(2013)067
http://arxiv.org/abs/1302.2924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.2924
http://dx.doi.org/10.1103/PhysRevD.90.046010
http://arxiv.org/abs/1405.1724
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1724
http://dx.doi.org/10.1007/JHEP12(2012)027
http://arxiv.org/abs/1204.1982
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1982
http://dx.doi.org/10.1088/1126-6708/2008/03/006
http://arxiv.org/abs/0711.4118
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.4118
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://arxiv.org/abs/0705.0016
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0016

	Introduction
	Review material
	Local quench by field theory
	AdS/BCFT correspondence
	The Yo-Yo string
	Quench by holography

	Local quench by AdS/BCFT and Yo-Yo string
	Entanglement entropy and local quench
	Entanglement entropy before the quench
	Entanglement entropy after the quench
	Interpretation of deformed RT curves

	Discussion
	Geodesics in AdS(3)

