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We address the problem of phase noise (PHN) and carrier frequency offset (CFO) mitigation in multicarrier receivers. In
multicarrier systems, phase distortions cause two effects: the common phase error (CPE) and the intercarrier interference (ICI)
which severely degrade the accuracy of the symbol detection stage. Here, we propose a non-pilot-aided scheme to jointly estimate
PHN, CFO, and multicarrier signal in time domain. Unlike existing methods, non-pilot-based estimation is performed without
any decision-directed scheme. Our approach to the problem is based on Bayesian estimation using sequential Monte Carlo filtering
commonly referred to as particle filtering. The particle filter is efficiently implemented by combining the principles of the Rao-
Blackwellization technique and an approximate optimal importance function for phase distortion sampling. Moreover, in order
to fully benefit from time-domain processing, we propose a multicarrier signal model which includes the redundancy information
induced by the cyclic prefix, thus leading to a significant performance improvement. Simulation results are provided in terms of
bit error rate (BER) and mean square error (MSE) to illustrate the efficiency and the robustness of the proposed algorithm.
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1. INTRODUCTION

Multicarrier transmission systems have aroused great interest
in recent years as a potential solution to the problem
of transmitting high data rate over a frequency selective
fading channel [1]. Today, multicarrier modulation is being
selected as the transmission scheme for the majority of
new communication systems [2]. Examples include digital
subscriber line (DSL), European digital video broadcast
(DVB), digital audio broadcast (DAB), and wireless local area
network (WLAN) standards (IEEE 802.11 and 802.16).

However, multicarrier systems are very sensitive to
phase noise (PHN) and carrier frequency offset (CFO)
caused by the oscillator instabilities [3–8]. Indeed, random
time-varying phase distortions destroy the orthogonality of
subcarriers and lead after the discrete Fourier transform
(DFT) both to rotation of every subcarrier by a random
phase, called common phase error (CPE), and to intercarrier
interference (ICI).

In literature, many approaches have been proposed to
estimate and compensate PHN in OFDM systems either in
the time domain [9] or in the frequency domain [10–15].
All these methods require the use of pilot subcarriers in each
OFDM symbol which limits the system spectral efficiency.
Non-pilot-aided estimation algorithms are, therefore, a
challenging task since they have the advantage of being
bandwidth more efficient. Such methods have already been
proposed to compensate phase distortions [16, 17] in OFDM
systems. In [16], the authors propose an interesting CPE
correction scheme. However, when phase distortions become
significant, this approach has limited performances as it
neglects ICI. Recently in [17], a joint data and PHN estimator
via variational inference approach has been proposed using
the small PHN assumption. Moreover, in algorithms [16,
17], a decision-directed scheme is used at the initialization
step in order to make a tentative decision over the transmit-
ted symbols without any phase distortion correction. Con-
sequently, for significant phase distortions, noise-induced
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symbol decision errors may propagate through the feedback
loop, leading to poor estimator performance.

In this paper, we propose a new non-pilot-aided algo-
rithm for joint PHN, CFO, and signal estimation in general
multicarrier systems without any decision-directed scheme.
Because of the nonlinear behavior of the received signal, we
use a simulation-based recursive algorithm from the family
of sequential Monte Carlo (SMC) methods also referred to as
particle filtering [18]. Sequential Monte Carlo methodology
is useful to prevent the sampling dimension from blowing
up with time (with the number of subcarriers in our
context), unlike classical offline stochastic methods such as
Monte Carlo methods or also Markov chain Monte Carlo
(MCMC) methods. Furthermore, since statistical a priori
information about time evolution of phase distortions is
known, estimation is carried out in the time domain. Time
domain processing allows taking into account the redun-
dancy information induced by the cyclic prefix, yielding an
efficient algorithm.

This paper is organized as follows. In Section 2, both
the phase distortions and the multicarrier system model are
described. In Section 3, the suggested observation and state
equations are defined leading to the dynamic state-space
(DSS) representation. In Section 4, we review fundamentals
of particle filter and describe the proposed marginalized
particle filter algorithm using an approximate optimal
importance function. The posterior Cramér-Rao bound
(PCRB) which corresponds to the lowest bound achieved
by the optimal estimator is also derived in this section. In
Section 5, numerical results are given to demonstrate the
validity of our approach. The efficiency and the robustness
of the proposed non-pilot-aided marginalized particle filter
algorithm are assessed for both OFDM and MC-CDMA
systems and are compared to existing schemes. Finally,
Section 6 presents some concluding remarks.

2. PROBLEM FORMULATION

In this paper, N , Ncp, and T denote, respectively, the number
of subcarriers, the cyclic prefix length, and the OFDM
symbol duration excluding the cyclic prefix. Let N (x;μ,Σ)
and Nc(x;μ,Σ) represent, respectively, real and circularly
symmetric complex Gaussian random vectors with mean μ
and covariance matrix Σ. In and 0n×m, are respectively, the
n× n identity matrix and the n×m matrix of zeros. Finally,
lower case bold letters are used for column vectors and
capital bold letters for matrices; (·)∗, (·)T and (·)H denote,
respectively, conjugate, transpose, and Hermitian transpose.

2.1. Phase distortionmodel

In a baseband complex equivalent form, the carrier delivered
by the noisy oscillator can be modeled as

p(t) = exp
(
jφ(t)

)
, (1)

where the phase distortion φ(t) represents both the phase
noise (PHN) and the carrier frequency offset (CFO) and can

be written as follows:

φ(t) = θ(t) + 2πΔ f t, (2)

where θ(t) and Δ f correspond, respectively, to the PHN
and the CFO. The PHN is modeled as a Brownian process
[3, 5]. The power spectral density of exp(θ(t)) has a
Lorentzian shape controlled by the parameter β representing
the two-sided 3 dB bandwidth. This model produces a 1/ f 2-
type noise power behavior that agrees with experimental
measurements carried out on real RF oscillators. The phase
noise rate is characterized by the bandwidth β normalized
with respect to the OFDM symbol rate 1/T , namely, by the
parameter βT . At the sampling rate of the receiver N/T , the
discrete form of the PHN, for k = 0, . . . ,N + Ncp − 1, is

θn,k = θn,k−1 + vn,k, (3)

where k denotes the kth sample, n the nth OFDM symbol
and vn,k is an independent and identically distributed (i.i.d.)
zero mean Gaussian variable with variance σ2

v = 2πβT/N .
Finally, using (2) and (3) and assuming the initial

condition φn,−1 = 0 as in [5, 17], a discrete recursive relation
for the phase distortions is obtained

φn,k =

⎧
⎪⎨

⎪⎩

vn,0, if k = 0,

φn,k−1 +
2πε
N

+ vn,k, otherwise,
(4)

where ε = Δ f T is the normalized CFO with respect to the
subcarrier spacing.

2.2. Multicarrier systemmodel

Figure 1 shows the block diagram of a downlink multicarrier
system. The MC-CDMA includes the OFDM modulation
when the spreading code length Lc = 1 and the number of
users Nu = 1. So below, the index u which corresponds to the
uth user is omitted for the OFDM system. For simplicity, in
the case of MC-CDMA, Lc is chosen equal to N .

First, for each user u = 1 · · ·Nu, the input i.i.d. bits
are encoded into M-QAM symbols Xu

i which are assumed to
form an i.i.d. zero mean random process with unitary power.
Then after the inverse discrete Fourier transform (IDFT), the
samples of the transmitted signal can be written as

sn,l = 1√
N

N−1∑

i=0

dn,ie
j2πil/N . (5)

Whatever the multicarrier system, sn,l can be viewed as an
OFDM symbol, where l denotes the lth sample and n the nth
OFDM symbol. Only dn,i differs according to the multicarrier
system:

dn,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

XnN+i, for OFDM system,

Nu∑

u=1

Xu
n c

u
i , for MC-CDMA system,

(6)

where {cuk}Lc−1
k=0 represents the spreading code of the uth

user. Equation (5) also holds for the MC-DS-CDMA
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system, which is not treated in this paper, with dn,i =
∑Nu

u=1 X
u
�n/N�N+ic

u
n mod Lc , where the operator �·� stands for the

largest integer smaller than or equal to (·).
The general OFDM symbol defined in (5) is extended

with a cyclic prefix of Ncp samples, larger than the channel
maximum excess delay in order to prevent interference
between adjacent OFDM symbols. The resulted signal forms
the transmitted signal (Figure 2).

The time varying frequency selective channel h(t, τ) is
assumed to be static over several OFDM symbols. Assum-
ing perfect time synchronization, the nth received OFDM
symbol can be expressed as shown in (7), where vectors rn,
s̃n, wn, and matrices Φn, Ωn have the following respective
sizes (N + Ncp) × 1, (N + Ncp + L − 1) × 1, (N + Ncp) × 1,
(N + Ncp)× (N + Ncp), (N + Ncp)× (N + Ncp + L− 1):
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rn,N+Ncp−1

rn,N+Ncp−2
...

rn,Ncp

rn,Ncp−1
...

rn,0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
rn

=

⎡

⎢
⎢
⎢
⎣

e jφn,N+Ncp−1

. . .

e jφn,0

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Φn

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

hn,0 hn,1 · · · hn,L−1

hn,0 hn,1 · · · hn,L−1

. . .
. . .

hn,0 hn,1 · · · hn,L−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Ωn

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sn,N−1

sn,N−2
...

sn,0

sn,N−1
...

sn,N−Ncp

sn−1,N−1
...

sn−1,N−L+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
s̃n

+ wn

(7)

Φn and wn, correspond, respectively, to the phase distortions
and to the additive white Gaussian noise:

wn =
[
wn,N+Ncp−1 · · ·wn,0

]T
, (8)

where each element wn,l is a circular zero-mean white
Gaussian noise with power σ2

w.
After discarding the cyclic prefix and performing discrete

Fourier transform (DFT) on the remaining N samples (i.e.,

rn,Ncp , . . . , rn,Ncp+N−1), it is straightforward to show that the
demodulated signal at subcarrier k depends on all the
phase distortion states {φn,Ncp , . . . ,φn,Ncp+N−1} leading to the
CPE and the ICI [3, 6]. In contrast, we remark that each
observation rn,k (7) depends on only one phase distortion
state φn,k. Therefore, using the statistical a priori knowledge
of phase distortion time evolution (4), the tracking ability of
time-domain methods appears as a promising alternative to
frequency domain schemes for phase distortion mitigation in
multicarrier systems.

3. PHASE DISTORTIONMITIGATION

In this paper, we propose a new robust non-pilot-aided
scheme to jointly estimate in the time domain both the trans-
mitted signal and the phase distortions. After demodulating
the estimate of the transmitted multicarrier signal by the
FFT transform, symbol detection is carried out without any
additional frequency equalizer. The mathematical founda-
tion of our solution is the Bayesian theory. Its use requires a
dynamic state-space system (DSS) which includes both state
and measurement equations. In the first part of this section,
the measurement equation is derived. The two state processes
are given by the phase distortions and by the transmitted
signal. The state equation of the phase distortions is directly
defined by (4). Consequently, only the state equation of
the multicarrier signal is derived in the second part of this
section. Finally, these equations lead to the definition of the
DSS model.

3.1. Observation equation

Using (7), rn,k can be written as follows:

rn,k = e jφn,k

L−1∑

l=0

hn,lsn,k−Ncp−l + wn,k, (9)

where wn,k is a circular zero-mean Gaussian noise with
variance σ2

w. This observation equation takes into account
both the insertion of the cyclic prefix and the interference
intersymbol (ISI) due to the multipath channel. We use the
following definition of sn,k for k < 0:

sn,k =
{
sn,N+k, if −Ncp ≤ k ≤ −1,

sn−1,k+N+Ncp, if k < −Ncp.
(10)

In matrix form, (9) can be rewritten as

rn,k = e jφn,khTn sn,k + wn,k (11)

with

hn =
[
hn,0 · · · hn,L−1 01×(N+Ncp−1)

]T
,

sn,k =
[
sn,k−Ncp · · · sn,−Ncp−L+1 01×(N+Ncp−k−1)

]T
.

(12)

The observation equation (11) involves two unknown
states: the CFO and the PHN included in φn,k and the
transmitted multicarrier signal sn,k. The general objective is
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Figure 1: Block diagram of the transmission system including both MC-CDMA and OFDM systems.

nth OFDM symbol

· · · sn−1, N−1 sn, N−Ncp · · · sn, N−1 sn,0 sn,1 · · · sn, N−Ncp · · · sn, N−1 sn+1, N−Ncp · · ·

Cyclic prefix

Figure 2: Example of a multicarrier system flow.

to jointly and adaptively estimate these two dynamic states
using the set of received signals, rn,k, with k = 0, . . . ,N +
Ncp − 1. Since the a priori dynamic feature of φn,k is already
given by (4), only the state equation of sn,k is required for the
joint a posteriori estimation.

3.2. State equation of themulticarrier signal

The cyclic prefix in the multicarrier system is a copy of
the last portion of the symbol appended to the front of
the OFDM symbol, so that the multicarrier signal may be
characterized as a cyclostationary process with period N .
Using this property and the assumption of i.i.d., transmitted
symbols with unitary power, E[|sn,k|2] = 1, we derive the
following relation:

E
[
sn,ks

∗
n,l

]

=
⎧
⎨

⎩

1, if k = l + zN with z ∈ Z, k ∈ [−Ncp;N−1
]
,

0, otherwise,
(13)

where Z denotes the rational integer domain. According
to the central limit theorem, the envelope of the multi-
carrier signal can be approximated by a circular Gaussian
distributed random variable. The central limit theorem has
been already used in literature to approximate the OFDM
signal as a circularly Gaussian random vector, especially
for the derivation of analytical expression of the peak-to-
average power ratio (PAPR) [19, 20]. In [21], a rigorous
proof establishes that the complex envelope of a bandlimited
uncoded OFDM signal converges weakly to a Gaussian ran-
dom process. As shown in Appendix A, this approximation

provides an accurate modeling of the multicarrier signal.
Therefore, the state equation of the vector sn,k is written in
the matrix form as

sn,k = An,ksn,k−1 + bn,k, (14)

where the transition matrix An,k is defined as

An,k =
[

ξTn,k
I(N+Ncp+L−2) 0(N+Ncp+L−2)×1

]

. (15)

Using relation (13), ξn,k is given by

ξn,k=

⎧
⎪⎨

⎪⎩

[
01×(N+Ncp+L−1)

]T
, if 0 ≤ k ≤ N − 1,

[
01×(N−1) 1 01×(Ncp+L−1)

]T
, if N≤k≤N+Ncp−1.

(16)

Finally, bn,k is a circular (N +Ncp +L−1)-by-1 zero-mean
Gaussian noise vector with the following covariance matrix:

E
[
bn,kbHn,k

] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
bn,k

0 · · · 0

0 0
...

...
. . .

...

0 · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (17)

where

σ2
bn,k
=
⎧
⎨

⎩

1, if 0 ≤ k ≤ N − 1,

0, if N ≤ k ≤ N + Ncp − 1.
(18)
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Preambule
section Payload section

Variable number of multicarrier symbolsChannel estimation

Figure 3: Multicarrier packet structure.

3.3. Dynamic state spacemodel (DSS)

By using (4), (14), and (11), we obtain the following DSS
model:

φn,k =

⎧
⎪⎨

⎪⎩

vn,0, if k = 0,

φn,k−1 +
2πε
N

+ vn,k, if k=1, . . . ,N+Ncp−1

sn,k = An,ksn,k−1 + bn,k,

rn,k = e jφn,khTn sn,k + wn,k.

(19)

In order to jointly estimate ε, φn,k, and sn,k, we need
the joint posterior probability density function (p.d.f.)
p(φn,0:k, ε, sn,k | rn,0:k). Unfortunately this p.d.f. is analytically
intractable, so we propose to numerically approximate
p(φn,0:k, ε, sn,k | rn,0:k) via particle filtering [18]. Let us note
that we assume in this paper the perfect knowledge of both
AWGN and PHN variances, that is, σ2

v and σ2
w, and also

the channel impulse response h. In fact, most of standards
based on multicarrier modulation such as Hiperlan2 or
IEEE 802.11a include training symbols used to estimate
the channel impulse response before the data transmission
as illustrated by Figure 3. Indeed, since the CIR changes
slowly (in Hiperlan/2 standard specifications, the channel
variations are supposed to correspond to terminal speeds
v ≤ 3 m/s.) with respect to the OFDM symbol rate, the
channel is thus only estimated at the beginning of a frame.
Then its estimates is used for data detection in the payload
section. In [22], we have proposed a joint channel, phase
distortions, and both AWGN and PHN variances using SMC
methodology. So these estimates obtained from the training
sequence remain valid in the payload section when dealing
with slow-fading channel. For simplicity, we assume in this
paper that their values are perfectly known by the receiver
since we focus on the payload section and thus on the
problem of data detection in multicarrier systems in the
presence of phase distortions.

4. PARTICLE FILTER

4.1. Introduction

The maximum a posteriori estimation of the state from
the measurement is obtained under the framework of the
Bayesian theory which has been mainly investigated in
Kalman filtering [23]. The Kalman filter is optimal when the
state and measurement equations are linear and noises are
independent, additive, and Gaussian. When these assump-
tions are not fulfilled, various approximation methods have
been developed among which the extended Kalman filter is
the most commonly used [23].

Since the nineties, particle filtering has become a power-
ful methodology to cope with nonlinear and non-Gaussian
problems [24] and represents an important alternative to
extended Kalman filter (EKF). The main advantage lies in
an approximation of the distribution of interest by discrete
random measures, without any linearization.

There are several variants of particle filters. The sequen-
tial importance sampling (SIS) algorithm is a Monte Carlo
method that is the basis for most sequential Monte Carlo
filters. The SIS algorithm consists in recursively estimating
the required posterior density function p(x0:k | y0:k) which is
approximated by a set of N random samples with associated

weights, denoted by {x(m)
0:k ,w(m)

k }m=1···N :

p̂
(
x0:k | y0:k

) =
N∑

j=1

δ
(
x0:k − x

( j)
0:k

)
w̃

( j)
k , (20)

where x
( j)
k is drawn from the importance function π(xk |

x
( j)
0:k−1, y0:k), δ(·) is the Dirac delta function and, w̃

( j)
k =

w
( j)
k /

∑N
m=1w

(m)
k is the normalized importance weight associ-

ated with the jth particle.

The weights w(m)
k are updated according the concept of

importance sampling:

w(m)
k ∝

p
(
yk | x(m)

0:k

)
p
(
x(m)
k | x(m)

0:k−1

)

π
(
x(m)
k | x(m)

0:k−1, y0:k

) w(m)
k−1. (21)

After a few iterations, the SIS algorithm is known to
suffer from degeneracy problems. To reduce these problems,
the sequential importance resampling (SIR) integrates a
resampling step to select particles for new generations in
proportion to the importance weights [18]. Liu and Chen
[25] have introduced a measure known as effective sample
size:

Neff = 1
∑N

m=1

(
w̃(m)
k

)2 , (22)

and have proposed to apply the resampling procedure
whenever Neff goes below a predefined threshold. For the
resampling step, we use the residual resampling scheme
described in [26]. This scheme outperforms the simple
random sampling scheme with a small Monte Carlo variance
and a favorable computational time [27, 28].

4.2. Jointmulticarrier signal, CFO and PHN estimation
usingmarginalized particle filter

Previously, we have explained how particle filtering can be
used to obtain the posterior density function p(x0:k | y0:k). In
the case of our DSS model (19), the state vector xk is defined
as

xk =
[
φn,k, ε, sn,k

]
. (23)

In order to provide the best approximation of the a
posteriori p.d.f., we take advantage of the linear substructure
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contained in the DSS model. The corresponding variables
are marginalized out and estimated using an optimal linear
filter. This is the main idea behind the marginalized particle
filter, also known as the Rao-Blackwellized particle filter
[18, 29, 30]. Indeed, conditioned on the nonlinear state
variable φn,k, there is a linear substructure in (19). Using
Bayes’ theorem, the posterior density function of interest can
thus be written as

p
(
φn,0:k, ε, sn,k |rn,0:k

)= p
(
sn,k |φn,0:k, rn,0:k

)
p
(
φn,0:k, ε |rn,0:k

)
,

(24)

where p(sn,k | φn,0:k, rn,0:k) is, unlike p(φn,0:k, ε | rn,0:k),
analytically tractable and is obtained via a Kalman filter.
Moreover, the marginal posterior distribution p(φn,0:k, ε |
rn,0:k) can be approximated with a particle filter:

p̂
(
φn,0:k, ε | rn,0:k

) =
N∑

j=1

δ
(
φn,0:k − φ

( j)
n,0:k; ε − ε( j)

)
w̃

( j)
n,k,

(25)

where δ(·; ·) is the two-dimensional Dirac delta function.
Thus substituting (25) in (24), we obtain an estimate of the
joint a posteriori p.d.f.:

p̂
(
φn,0:k, ε, sn,k | rn,0:k

)

=
N∑

j=1

p
(
sn,k | φ( j)

n,0:k, rn,0:k

)
δ
(
φn,0:k − φ

( j)
n,0:k; ε − ε( j)

)
w̃

( j)
n,k,

(26)

where p(sn,k | φ
( j)
n,0:k, rn,0:k) is a multivariate Gaussian pro-

bability density function with mean s
( j)
n,k|k and covariance

Σ
( j)
n,k|k. s

( j)
n,k|k and Σ

( j)
n,k|k are obtained using the kalman filtering

equations given by

Time update equations

⎧
⎪⎨

⎪⎩

s
( j)
n,k|k−1 = An,ks

( j)
n,k−1|k−1,

Σ
( j)
n,k|k−1 = An,kΣ

( j)
n,k−1|k−1A

H
n,k + E

[
bn,kbHn,k

]
,

(27)

Measurement update equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G
( j)
n,k = hTnΣ

( j)
n,k|k−1h

∗
n + σ2

w,

k
( j)
n,k = Σ

( j)
n,k|k−1

(
e jφ

( j)
n,khTn

)H(
G

( j)
n,k

)−1
,

s
( j)
n,k|k = s

( j)
n,k|k−1 + k

( j)
n,k

(
rn,k − e jφ

( j)
n,khTn s

( j)
n,k|k−1

)
,

Σ
( j)
n,k|k = Σ

( j)
n,k|k−1 − k

( j)
n,ke

jφ
( j)
n,khTnΣ

( j)
n,k|k−1.

(28)

In (28), we can notice that G
( j)
n,k and Σ

( j)
n,k|k are indepen-

dent of the particle coordinates φ
( j)
n,k and thus are identical

for all the particles. This remark can be used to reduce the
complexity of our algorithm.

Now, the posterior distribution of the multicarrier signal
sn,k is identified, so the remaining task is the simulation of

the particles in (26). The marginal posterior distribution can
be decomposed as follows:

p
(
φn,0:k, ε | rn,0:k

) = Cp
(
φn,0:k−1 | rn,0:k−1

)

× p
(
ε | φn,0:k−1, rn,0:k−1

)

× p
(
φn,k | φn,0:k−1, ε, rn,0:k

)

× p
(
rn,k | φn,0:k−1, ε, rn,0:k−1

)
,

(29)

where C = [p(rn,k | rn,0:k−1)]−1 is a constant independent
on φn,0:k and ε, so particle simulation is achieved in four
steps. First, φn,0:k−1 is simulated from p̂(φn,0:k−1 | rn,0:k−1)
obtained at the previous iteration, then ε is simulated from
p(ε | φn,0:k−1, rn,0:k−1) and φn,k from p(φn,k | φn,k−1, ε, rn,0:k).
Finally, particles are accepted with a probability proportional
to p(rn,k | φn,0:k−1, ε, rn,0:k−1). A similar decomposition is
used by Storvik [31].

(1) CFO sampling

At step k, the CFO ε is sampled from p(ε | φn,0:k−1, rn,0:k−1)
with

p
(
ε | φn,0:k−1, rn,0:k−1

)

= p
(
rn,0:k−1 | φn,0:k−1, ε

)
p
(
φn,0:k−1 | ε

)
p(ε)

p
(
rn,0:k−1,φn,0:k−1

)

∝ p
(
φn,0:k−1 | ε

)
p(ε).

(30)

Firstly, p(φn,0:k−1 | ε) is obtained from (4):

p
(
φn,0:k−1 | ε

)

= N
(
φn,0;φn,−1, σ2

v

)k−1∏

i=1

N
(
φn,i;φn,i−1 +

2πε
N

, σ2
v

)
.

(31)

Secondly, the CFO ε is assumed to be a uniform
random variable on the support [−(Δ f T)max; (Δ f T)max].
Consequently, the sampling distribution of ε in (30) can be
written as

p
(
ε | φn,0:k−1, rn,0:k−1

)

∝ N
(
ε;

N
∑k−1

i=1 φn,i − φn,i−1

2π(k − 1)
,

σ2
v

k − 1

)

×U[−(Δ f T)max;(Δ f T)max](ε),

(32)

where U[a;b](ε) is the uniform distribution on the support
[a; b]. This sampling distribution can be viewed as a
truncated normal distribution.

(2) Phase distortion sampling

The choice of the importance function is essential because
it determines the efficiency as well as the complexity of
the particle filtering algorithm. In this paper, we consider
the optimal importance function for φn,k which minimizes
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the variance of the importance weights conditional upon
the particle trajectories and the observations [32]. In our
context, it is expressed as

π
(
φn,k | φ( j)

n,0:k−1, ε( j), r0:k

)
= p

(
φn,k | φ( j)

n,0:k−1, ε( j), r0:k

)
.

(33)

However, this p.d.f. is analytically intractable. To derive
an approximate optimal importance function, it is possible to
use the common linearization of the total PHN term e jθn,k =
1 + jθn,k. However, we propose to linearize only the state
update noise, that is, e jvn,k = 1 + jvn,k, where vn,k is defined
in (3) which leads to a more accurate approximation. As
detailed in Appendix B, this p.d.f. can thus be approximated
by

p
(
φn,k | φ( j)

n,0:k−1, ε( j), r0:k

)
≈ N

(
φn,k;μ

( j)
n,k,Λ

( j)
k

)
, (34)

where

μ
( j)
n,k =

⎧
⎪⎪⎨

⎪⎪⎩

γ
( j)
0 , if k = 0

γ
( j)
k + φ

( j)
n,k−1 +

2πε( j)

N
, otherwise,

Λ
( j)
k = χ

( j)
k σ2

v
∣
∣Γ

( j)
k

∣
∣2
σ2
v + χ

( j)
k

(35)

with γ
( j)
k = I(Γ

( j)∗
k rn,k)σ2

v /(|Γ
( j)
k |2σ2

v + χ
( j)
k ), (where I(·) de-

notes the imaginary part), χ
( j)
k = hTnΣ

( j)
n,k|k−1h

∗
n + σ2

b and

Γ
( j)
k =

⎧
⎪⎨

⎪⎩

hTn s
( j)
n,0|−1, if k = 0

e j(φ
( j)
n,k−1+2πε( j)/N)hTn s

( j)
n,k|k−1, otherwise,

(36)

where s
( j)
n,0|−1 is only composed of the L − 1 signal estimate

samples obtained for the previous n − 1th multicarrier
symbol.

(3) Evaluation of the importance weights

Using (21), the importance weights in the proposed
marginalized particle filter are updated according to the
relation:

w
( j)
n,k ∝ w

( j)
n,k−1

p
(
rn,k | φ( j)

n,k, rn,k−1

)
p
(
φ

( j)
n,k | φ

( j)
n,k−1, ε( j)

)

p̂
(
φ

( j)
n,k | φ

( j)
n,0:k−1, ε( j), rn,0:k

) ,

(37)

where p̂(φ
( j)
n,k | φ

( j)
n,0:k−1, ε( j), rn,0:k) is the approximate optimal

importance function given by (34),

p
(
rn,k | φ( j)

n,k, rn,k−1

)
= Nc

(
rn,k; e jφ

( j)
n,khTn s

( j)
n,k|k−1,G

( j)
n,k

)

(38)

with G
( j)
n,k the innovation covariance of the jth kalman filter

given by (28) and the prior distribution of φn,k is given using
(4) by

p
(
φ

( j)
n,k | φ

( j)
n,k−1, ε( j)

)

=

⎧
⎪⎪⎨

⎪⎪⎩

N
(
φ

( j)
n,0; 0, σ2

v

)
, if k = 0

N
(
φ

( j)
n,i ;φ

( j)
n,i−1 +

2πε( j)

N
, σ2

v

)
otherwise.

(39)

(4) MMSE estimate of multicarrier signal, PHN and CFO

Every element required in the implementation of the
marginalized particle filtering algorithm has been iden-

tified. The resulting weighted samples {s( j)
n,k|k,Σ

( j)
n,k|k,φ

( j)
n,0:k,

ε( j), w̃
( j)
n,k}Mj=1 approximate the posterior density function

p(sn,k,φn,0:k, ε | rn,0:k). Consequently, the minimum mean
square error (MMSE) estimates of sn,k, φn,k, and ε are
obtained at the end of the nth OFDM symbol by the
respective expressions:

ŝn,N+Ncp−1 =
N∑

j=1

w̃
( j)
n,N+Ncp−1s

( j)
n,N+Ncp−1|N+Ncp−1, (40)

φ̂n,0:N+Ncp−1 =
N∑

j=1

w̃
( j)
n,N+Ncp−1φ

( j)
n,0:N+Ncp−1, (41)

ε̂ =
N∑

j=1

w̃
( j)
n,N+Ncp−1ε( j). (42)

The proposed marginalized particle filter algorithm,
denoted by JSCPE-MPF where this acronym stands for
joint signal, CFO, and PHN estimation using marginalized
particle filter, is summed up in Algorithm 1.

4.3. The posterior Cramér-Rao bound

In order to study the efficiency of an estimation method,
it is of great interest to compute the variance bounds on
the estimation errors and to compare them to the lowest
bounds corresponding to the optimal estimator. For time-
invariant statistical models, a commonly used lower bound
is the Cramér-Rao bound (CRB), given by the inverse of the
Fisher information matrix. In a time-varying context as we
deal with here, a lower bound analogous to the CRB for
random parameters has been derived in [33]; this bound is
usually referred to as the Van Trees version of the CRB, or
posterior CRB (PCRB) [34].

Unfortunately, the PCRB for the joint estimation of
{φn,k, ε, sn,k} is analytically intractable. Since the multicarrier
signal is the main quantity of interest, we derive in this paper
the conditional PCRB of sn,k, where {φn,k, ε} are assumed
perfectly known. Under this assumption, the DSS model
(19) becomes linear and Gaussian and the PCRB obtained
at the end of each OFDM symbol is equal to the covariance
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for n = 0 · · · End O f Symbols do
Initialization: for k = 0 · · ·N + Ncp − 1 do

for j = 1 · · ·M do

Sample ε( j)∼p(ε | φ( j)
n,0:k−1, rn,0:k−1) using (32)

Update the predicted equations of the Kalman filter using (27)

Sample φ
( j)
n,k∼ p̂(φn,k | φ( j)

n,0:k−1, ε( j), r0:k) using (34)
Update the filtered equations of the Kalman filter using (28)

Compute importance weights: w
( j)
n,k = w

( j)
n,k ∝ w

( j)
n,k−1(p(rn,k | φ( j)

n,k , rn,k−1)p(φ
( j)
n,k | φ

( j)
n,k−1, ε( j)))/ p̂(φ

( j)
n,k | φ

( j)
n,0:k−1, ε( j), rn,0:k)

Normalize importance weights: w̃
( j)
k = w

( j)
k /

∑M
m=1w

(m)
k

if Neff < Nseuil then
Resample particle trajectories

Compute MMSE estimates: ŝn,N+Ncp−1, φ̂n,0:N+Ncp−1 and ε̂ using, respectively, (40), (41) and (42).

Algorithm 1: JSCPE-MPF algorithm.

matrix Σn,N+Ncp−1|N+Ncp−1 of the posterior p.d.f. p(sn,N+Ncp−1 |
φn,0:N+Ncp−1, ε, rn,0:N+Ncp−1) given by the kalman filter [35]:

PCRB = E

[
1

N + Ncp

N+Ncp∑

k=1

[
Σn,N+Ncp−1|N+Ncp−1

]
k,k

]

, (43)

where [Σn,N+Ncp−1|N+Ncp−1]
k,k

denotes the (k, k)th entry of the
matrix Σn,N+Ncp−1|N+Ncp−1. This PCRB is estimated using the
Monte Carlo method by recursively evaluating the predicted
and filtered equations (27), (28), where {φn,k, ε} are set to
their true values.

5. RESULTS

In order to show the validity of our approach, extensive
simulations have been performed. In a first part, the case
of PHN without CFO is considered. The performances of
the proposed JSCPE-MPF are then compared to the non-
pilot-aided variational scheme proposed in [17] and to a
CPE correction with a perfect knowledge of the CPE value
corresponding to the ideal case of [16]. In the last part, the
performances of the JSCPE-MPF are assessed when both
CFO and PHN are present in multicarrier systems.

In all these cases, performances are shown in terms of
mean square error (MSE) and bit error rate (BER). Since
the joint estimation is carried out in the time domain with
the JSCPE-MPF, the MSE performance of the JSCPE-MPF
estimates holds whatever the multicarrier system used. For
comparison purposes, the BER performance of a multi-
carrier system using a frequency domain MMSE equalizer
(denoted by MMSE-FEQ) without phase distortions is also
depicted.

With regard to the system parameters, 16-QAM modu-
lation is assumed and we have chosen N = 64 subcarriers
with a cyclic prefix of length Ncp = 8. A Rayleigh frequency
selective channel with L = 4 paths and a uniform power delay
profile, perfectly known by the receiver, has been generated
for each OFDM symbol. The proposed JSCPE-MPF has been
implemented with 100 particles.

10−4

10−3

10−2

10−1

M
SE

16 18 20 22 24 26 28 30 32 34 36

SNR (dB)

PCRB
JSCPE-MPF-βT = 10−3

JSCPE-MPF-βT = 10−2

Figure 4: MSE of the multicarrier signal estimate versus SNR for
different PHN rates βT (ε = 0).

5.1. Performances with PHN only (i.e., ε = 0)

We first perform simulations with no CFO in order to
study the joint PHN and multicarrier signal estimation. The
multicarrier signal estimation performance of JSCPE-MPF
is shown in Figure 4. The performance of the proposed
estimator is compared to the posterior Cramér-Rao bound
(PCRB) of a multicarrier system without phase distortions
derived in Section 4.3. For a small phase noise rate βT , it can
be seen that the proposed JSCPE-MPF almost achieves the
optimal performance without PHN given by the PCRB. Con-
sequently, the proposed approximate optimal importance
function for the PHN sampling yields an efficient non-pilot-
based algorithm.

Figure 5 depicts the BER performance of the JSCPE-MPF
algorithm compared to the variational scheme proposed in
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B
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MMSE-FEQ without phase distortions
JSCPE-MPF without phase distortions
Without correction-βT = 10−3

Perfect CPE correction-βT = 10−3

Variational scheme-βT = 10−3

JSCPE-MPF-βT = 10−3

Without correction-βT = 10−2

Perfect CPE correction-βT = 10−2

Variational scheme-βT = 10−2

JSCPE-MPF-βT = 10−2

Figure 5: BER performance of the proposed JSCPE-MPF versus
Eb/N0 for different PHN rates βT in an OFDM system (ε = 0).

[17] and to a perfect CPE correction scheme. Since the
multicarrier signal estimation is achieved by a Kalman filter,
we can denote that, in a phase distortion-free context and
by excluding the cyclic prefix in the received signal, the
proposed algorithm leads to a time-domain MMSE equal-
izer. Time-domain and frequency-domain MMSE equal-
ization are mathematically equivalent and result in the
same performance [36]. Consequently, the performance
gain between the MMSE-FEQ and the JSCPE-MPF without
distortions clearly highlights the benefit of considering the
additional information induced by the cyclic prefix. As
depicted in Figure 5, the proposed JSCPE-MPF outperforms
conventional schemes whatever the PHN rate. Moreover, for
βT= 10−3, the JSCPE-MPF curve is close to the optimal
bound and outperforms the MMSE-FEQ without PHN.

5.2. Performances with both PHN and CFO

In the following simulations, the CFO term ε is generated
from a uniform distribution in [−0.5; 0.5], that is, half
of the subcarrier spacing. The performance of the JSCPE-
MPF joint estimation is first studied in term of the mean
square error (MSE). First, we focus on the phase distortion
estimation performance. Figure 6 shows the corresponding
MSE is plotted versus the signal-to-noise ratio (SNR).
Even with significant PHN rate and large CFO, JSCPE-
MPF achieves accurate estimation of the phase distortions.
The MSE curves tend toward a minimum MSE threshold
depending on PHN rate βT . Figure 7 depicts the multicarrier

10−3

10−2

10−1

M
SE

11 16 21 26 31 36

SNR (dB)

JSCPE-MPF-βT = 10−3

JSCPE-MPF-βT = 5× 10−3

JSCPE-MPF-βT = 10−2

Figure 6: MSE of phase distortion estimate versus SNR for different
PHN rates βT .
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100

M
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PCRB
JSCPE-MPF-βT = 10−3

JSCPE-MPF-βT = 5× 10−3

JSCPE-MPF-βT = 10−2

Figure 7: MSE of the multicarrier signal estimate versus SNR for
different PHN rates βT .

signal estimation accuracy as a function of the SNR. The
performance of the proposed estimator is compared to the
PCRB. For βT= 10−3, it performs close to the PCRB. The
gap between the PCRB and the JSCPE-MPF increases with
PHN rate since the phase distortions get stronger. Moreover,
by comparing MSE results depicted in Figure 4, where phase
distortions are reduced to PHN, it can be denoted that
the signal estimation performance is slightly degraded when
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JSCPE-MPF-βT = 10−2

Perfect CPE correction-βT = 10−3

Figure 8: BER performance of the proposed JSCPE-MPF versus
Eb/N0 with severe CFO and for different PHN rates βT in an OFDM
system.

considering CFO. These MSE results illustrate the accuracy
of both the CFO and the PHN sampling strategy.

Now, we study the BER performance of the proposed
JSCPE-MPF for two different multicarrier systems: the
OFDM and the MC-CDMA systems. Figure 8 depicts the
BER performance as a function of signal-to-noise ratio for
different PHN rates in an OFDM system. First, for the perfect
CPE correction scheme, an error floor exists because of the
residual ICI. In this case, it is obvious that any decision-
directed-based algorithms lead to poor performance. The
importance of considering the redundancy information
given by the cyclic prefix is illustrated by the gain between the
MMSE-FEQ and the JSCPE-MPF without phase distortions.
For βT= 10−3, the proposed JSCPE-MPF still outperforms
the MMSE-FEQ without phase distortions. Moreover, even
if the PHN rate increases, the JSCPE-MPF still achieves
accurate estimation.

Finally, the BER performances of the JSCPE-MPF for
a full and half-loaded MC-CDMA system are, respectively,
shown in Figures 9-10. Since the downlink transmission
is time-synchronous, Walsh codes are selected for their
orthogonality property. From these figures, we observe
that the JSCPE-MPF slightly outperforms the MMSE-FEQ
without phase distortions for both a full and a half-loaded
system. This is principally due to the cyclic prefix additional
information. Moreover, since the estimation accuracy of
the proposed algorithm does not depend on the system
load (Figure 7), the performance gap between a full and
a half-loaded system is simply explained by the multiple-
access interference (MAI) induced by the frequency selective
channel at the data detection stage.
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JSCPE-MPF-βT = 10−3

JSCPE-MPF-βT = 5× 10−3

JSCPE-MPF-βT = 10−2

Figure 9: BER performance of the proposed JSCPE-MPF versus
Eb/N0 for different PHN rates βT in a full-loaded MC-CDMA
system.
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Figure 10: BER performance of the proposed JSCPE-MPF versus
Eb/N0 for different PHN rates βT in a half-loaded MC-CDMA
system.

6. CONCLUSION

The paper deals with the major problem of multicarrier
systems that suffer from the presence of phase noise (PHN)
and carrier frequency offset (CFO). The originality of this
work consists in using the sequential Monte Carlo methods
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justified by the nonlinear behavior of the received signal.
Moreover, a time processing strategy is proposed in order
to take into account the redundancy information induced by
the cyclic prefix and to accurately estimate the time variations
of the phase distortions. Finally, the proposed scheme has the
advantage of being bandwidth efficient as it does not require
the transmission of pilot symbols.

Numerical simulations show that even with significant
PHN rates and severe CFO, the JSCPE-MPF achieves good
performances both in terms of the phase distortion estima-
tion and BER. In particular, it was found that, for a small
PHN rate, the JSCPE-MPF is more efficient in term of BER
than a frequency MMSE equalizer in a system without phase
distortions. Compared to the variational scheme proposed
in [17], the JSCPE-MPF has better performance when only
PHN degrades the transmitted signal. Moreover, unlike this
algorithm, the JSCPE-MPF enables to cope with severe
CFO. According to simulation results, our algorithm also
outperforms the algorithm based only on the CPE correction
[16] whatever the PHN rate and the CFO. As a consequence,
the JSCPE-MPF algorithm offers a significant performance
gain in comparison to existing methods and can be efficiently
used with the channel estimator proposed in [22] for the
design of a complete multicarrier receiver in wireline and
wireless communication systems.

APPENDIX

A. ON THE GAUSSIAN APPROXIMATIONOF
THEMULTICARRIER SIGNAL

Let us recall that the transmitted multicarrier signal is given,
for t = 0, . . . ,N − 1, by

sn,t = 1√
N

N−1∑

i=0

dn,ie
j2πit/N , (A.1)

where {dn,i}N−1
i=0 are a function of user data symbols and

spreading codes, so depending of the multicarrier system
considered. Since {dn,i}N−1

i=0 are i.i.d. variables with unitary
power and according to the central limit theorem, we can
expect that this multicarrier signal can be approximated as
a circular Gaussian distributed random variable.

In order to study precisely the accuracy of the Gaus-
sian approximation, Figure 11 presents the maximum gaps
between the cumulative distribution function (CDF) of both
the real and imaginary part of the OFDM signal, denoted by
F(·) and the CDF of a Gaussian random variable with zero
mean and variance 1/2, denoted by G(·). This gap is thus
defined as maxx|F(x)−G(x)|.

For simplicity, an OFDM system is assumed in this
appendix and thus {dn,i}N−1

i=0 are directly the user data
symbol. Moreover, 2,000,000 OFDM symbols have been
generated for each system configuration.

From these figures, it can be seen logically that the
accuracy of a Gaussian approximation for the multicarrier
signal increases with both the number of subcarriers and
the size of the constellation. Moreover, the approximation
accuracy for the real and imaginary part of the multicarrier is

identical except for the BPSK case. In fact, this difference with
the use of BPSK can be simply explained by (A.1). Indeed,
when BPSK is used, both sn,0 and sn,N/2 have no imaginary
part, that is,

sn,0 = 1√
N

N−1∑

i=0

dn,i,

sn,N/2 = 1√
N

N−1∑

i=0

dn,i(−1)i.

(A.2)

As a consequence, with BPSK modulation, the Gaussian
approximation of the real and imaginary part of the OFDM
signal can be summarized as follows:

R
(
sn,t
)∼

⎧
⎪⎪⎨

⎪⎪⎩

N (0, 1), if t = 0, t = N

2

N
(

0,
1
2

)
, otherwise

I(sn,t)∼

⎧
⎪⎪⎨

⎪⎪⎩

δ
(
I
(
sn,t
))

, if t = 0, t = N

2

N
(

0,
1
2

)
, otherwise.

(A.3)

These adaptations have to be taken into account in the
proposed multicarrier receiver if the BPSK modulation is
used.

From these results, it can be concluded that the Gaussian
distribution N (0, 1/2) represents an accurate model for both
the real and imaginary part of the transmitted multicarrier
signal, except in the BPSK case for t = 0 and t = N/2.

B. DERIVATION OF THE OPTIMAL IMPORTANCE
FUNCTION FOR PHN SAMPLING

The optimal importance function for phase distortion
φn,k sampling in the proposed particle filter requires the
derivation of the p.d.f. defined in (33). This p.d.f. can be
rewritten as

p
(
φn,k | φ( j)

n,0:k−1, ε( j), r0:k

)

=
p
(
rk | φn,k,φ

( j)
n,0:k−1, ε( j), r0:k−1

)
p
(
φn,k | φ( j)

n,0:k−1, ε( j)
)

∫
p
(
rk | φn,k,φ

( j)
n,0:k−1, ε( j), r0:k−1

)
p
(
φn,k | φ( j)

n,0:k−1, ε( j)
)
dφn,k

(B.1)

with

p
(
φn,k | φ( j)

n,0:k−1, ε( j))

=

⎧
⎪⎪⎨

⎪⎪⎩

N (φn,k; 0, σ2
v ), if k = 0

N
(
φn,k;φ

( j)
n,k−1 +

2πε( j)

N
, σ2

v

)
, otherwise

(B.2)

p
(
rn,k | φn,k,φ

( j)
n,0:k−1, ε( j), rn,0:k−1

)

=
∫

p
(
rn,k | sn,k,φn,k,φ

( j)
n,0:k−1, ε( j), rn,0:k−1

)

× p
(
sn,k | φ( j)

n,0:k−1, ε( j), r0:k−1
)
dsn,k.

(B.3)
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Figure 11: Maximum gaps between the CDF of both the real and imaginary part of the OFDM signal and the CDF of a Gaussian random
variable with zero mean and variance 1/2.

The summand in (B.3) is the product of the likelihood
p.d.f. and the posterior p.d.f. of the multicarrier signal sn,k

which are respectively given by

p
(
rn,k | sn,k,φn,k,φ

( j)
n,0:k−1, ε( j), r0:k−1

)

= Nc
(
rk; e jφn,khTn sn,k, σ2

b

)
,

p
(
sn,k | φ( j)

n,0:k−1, ε( j), r0:k−1
)

= Nc
(
sn,k; sn,k−1|k−1,Σ

( j)
n,k−1|k−1

)
.

(B.4)

Therefore, using (B.4), it is straightforward to show that
the expression described in (B.3) can be rewritten as

p
(
rn,k | φn,k,φ

( j)
n,0:k−1, ε( j), rn,0:k−1

)
= Nc

(
rn,k; ρ

( j)
k , χ

( j)
k

)
,

(B.5)

where ρ
( j)
k = e jφ

( j)
n,khTn s

( j)
n,k|k−1 and χ

( j)
k = hTnΣ

( j)
n,k|k−1h

∗
n +

σ2
b . According to (B.2)–(B.5), an analytical form for (B.1)

remains untractable due to the double exponential in (B.5).
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However, by linearizing e jvn,k , where the noise term vn,k is
defined by (4), the mean of (B.5) is approximated by

ρ
( j)
k ≈

⎧
⎪⎨

⎪⎩

(
1 + jvn,0

)
hTn s

( j)
n,0|−1, if k = 0

(
1 + jvn,k

)
e j(φ

( j)
n,k−1+2πε( j)/N)hTn s

( j)
n,k|k−1 otherwise.

(B.6)

This approximation holds when the phase distortion
power is small and is more accurate than the usual approx-
imation e jφn,k ≈ 1 + jφn,k. Using (B.2), (B.5), and (B.6) and
after several algebraic manipulations, the numerator of (B.1)
can be simplified as

p
(
rk | φn,k,φ

( j)
n,0:k−1, ε( j), r0:k−1

)
p
(
φn,k | φ( j)

n,0:k−1, ε( j))

≈ Υ
( j)
k e−(1/2Λ

( j)
k )[|rn,k−Γ( j)

k |2/(|Γ
( j)
k |2σ2

v +χ
( j)
k )−|γ( j)

k |2]

×N
(
φn,k;μ

( j)
n,k,Λ

( j)
k

)
,

(B.7)

where

μ
( j)
n,k =

⎧
⎪⎪⎨

⎪⎪⎩

γ
( j)
0 , if k = 0

γ
( j)
k + φ

( j)
n,k−1 +

2πε( j)

N
, otherwise

(B.8)

and Υ
( j)
k =

√
Λ

( j)
k /(2πχ

( j)
k σ2

v ), γ
( j)
k = I(Γ

( j)∗
k rn,k)σ2

v/(|Γ
( j)
k |2σ2

v +

χ
( j)
k ) (with I(·) the imaginary part),Λ

( j)
k = χ

( j)
k σ2

v /(|Γ
( j)
k |2σ2

v +

χ
( j)
k ) and

Γ
( j)
k =

⎧
⎪⎨

⎪⎩

hTn s
( j)
n,0|−1, if k = 0

e j(φ
( j)
n,k−1+2πε( j)/N)hTn s

( j)
n,k|k−1 otherwise.

(B.9)

Therefore, from (B.7), it is obvious that
∫

p
(
rk | φn,k,φ

( j)
n,0:k−1, ε( j), r0:k−1

)
p
(
φn,k | φ( j)

n,0:k−1, ε( j))dφn,k

≈ Υ
( j)
k e−(1/2Λ

( j)
k )[|rn,k−Γ( j)

k |2/(|Γ
( j)
k |2σ2

v +χ
( j)
k )−|γ( j)

k |2].
(B.10)

Finally, the optimal importance sampling for φn,k defined
in (B.1) can be approximated by

p
(
φn,k | φ( j)

n,0:k−1, ε( j), r0:k
) ≈ N

(
φn,k;μ

( j)
n,k,Λ

( j)
k

)
. (B.11)
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