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Abstract

Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin
oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an
ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-
Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from
300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a
one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum
power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-
structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially
produced perovskite solar cells.
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Background
Organic–inorganic hybrid perovskite (such as CH3NH3PbX3,
X= I, Cl, Br) solar cells has attracted much attention be-
cause of its superior photovoltaic performance, including
excellent light-harvesting ability and potential applica-
tions [1–6]. In previous reports, the high power conver-
sion efficiency (PCE) of perovskite solar cells was
achieved when a conducting polymer PEDOT:PSS thin
film that was formed using TiO2 nano-particles that had
been sintered at high temperature was used as the elec-
tron transport layer (ETL) (hole transport layer (HTL))
[7–9]. However, a trade-off must be between fabrication
cost and device stability, impeding the development of
commercialized solar cells. Inorganic p-type materials as
hole transport media have the double advantage of
excellent chemical stability and simplicity of preparation
[10–12]. Along with some inorganic HTLs (copper iodide
(CuI) [13], copper thiocyanate (CuSCN) [14–16], gra-
phene oxide (GO) [17], nickel oxide (NiO) [18], cuprous

oxide (Cu2O), and copper oxide (CuO) [19] have attracted
substantial interest owing to their direct gaps of 1.9–
2.2 eV[20–22], and these have been widely used as HTLs
in solar cells. Cu2O and CuO thin films can be prepared
by various methods, including reactive sputtering [23],
electrochemical deposition [24–27], chemical dissolution
[28–30], thermal oxidation [31], and successive ionic layer
adsorption and reaction (SILAR) method [12, 32].
In this work, CuO-Cu2O complex thin films were pre-

pared from thermally oxidized Cu thin films to form
HTLs for use in perovskite solar cells. The structural, op-
tical, and surface properties of CuO-Cu2O complex thin
films were investigated to elucidate the performance of
CuO-Cu2O complex thin film-based photovoltaics. The
device with an optimized CuO-Cu2O complex thin film as
the HTL exhibited superior photovoltaic performance,
revealing that the CuO-Cu2O complex thin film is a
potential inorganic HTL for use in perovskite solar cells.

Methods
Firstly, Cu layers were deposited on an indium tin oxide
(ITO) glass substrate by RF magnetron reactive sputter-
ing from Cu targets in gaseous argon (Ar) at a flow rate
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Fig. 1 a Preparation of nano-structured CuO-Cu2O complex films, b photograph image of shadow mask, and c structure of device
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of 15 sccm and a stable working pressure of 3 × 10
−3 Torr. The nano-structured CuO-Cu2O complex thin
films were formed by thermally oxidizing Cu on ITO
substrate at various annealing temperatures from 300 to
400 °C for 1 h in air, and these acted as HTLs. 1.25 M
Pbl2 and 1.25 M methylammonium iodide (MAI) were
dissolved in a cosolvent mixture of dimethyl sulfoxide
(DMSO) and γ-butyrolactone (GBL) (vol. ratio = 1:1),
and the resulting solution was used as the perovskite
precursor solution. The CH3NH3PbI3 perovskite precur-
sor was spin-coated on top of the nano-structured CuO-
Cu2O complex/ITO/glass and underwent in situ non-
polar solvent washing treatment [1–3] in a glove box
that was filled with highly pure nitrogen. The
CH3NH3PbI3 perovskite precursors were then coated onto
the CuO-Cu2O complex/ITO/glass samples in two con-
secutive spin-coating steps at 1000 and 5000 rpm for 10
and 20 s, respectively. At 5000 rpm for 20 s, the wet spin-
ning film was quenched by dropping 100 μl of anhydrous
toluene onto it. After spin coating, the film was annealed at
100 °C for 5 min. Finally, C60, BCP, and the Ag electrode
were sequentially deposited by thermal evaporation at a
base pressure of 5 × 10−6 Pa. The thicknesses of C60, BCP,
and Ag were 50, 5, and 100 nm, respectively. Figure 1a pre-
sents the steps in the preparation of CuO-Cu2O complex
thin film-based perovskite solar cells. The C60 thin film,
CH3NH3PbI3 perovskite thin film, and CuO-Cu2O complex
thin film in the cell structure acted as the ETL, the active
layer, and the HTL, respectively. A shadow mask firmly cov-
ered the sample to define an active area of 0.5 cm× 0.2 cm
during C60/BCP/Ag deposition. Figure 1b shows the photo
image of the shadow mask. Figure 1c schematically depicts
the complete structure.
The crystal characteristics of the CuO-Cu2O complex

thin films were determined using an X-ray diffractom-
eter (XRD) (D8, Bruker). Raman scattering spectroscopy
was used to analyze the CuO-Cu2O complex thin films.
A field-emission scanning electron microscope (FESEM)
(LEO 1530) was used to observe the cross-section and
surface morphology of the cells. The current density–
voltage (J-V) characteristics were measured using a
Keithley 2400 programmable source/meter unit under ir-
radiation by a 1000 W xenon lamp. To evaluate the
photovoltaic performance, the irradiation power density
on the surface of the sample was calibrated as set to
1000 W/m2. Photoelectron emission measurement
(manufactured by Riken Keiki, Model AC-2) was
performed in the air and at room temperature.

Results and Discussion
Table 1 presents the Hall measurements of the CuO-
Cu2O thin films. The increase in the carrier mobility
at 250–300 °C could be attributed to an improve-
ment in the crystallinity as well as a decrease in the

carrier density because carrier mobility is generally
affected by grain boundary scattering and by impur-
ity scattering due to the native defects. However, as
the annealing temperature increased to 400 °C, the
mobility in the sample decreased from 33.5 to
17.9 cm2/Vs for owing to the decrease in the size of
the grains caused by the phase transformation from
Cu2O to CuO. As the thermal annealing temperature
increased, the reduction of resistivity of the CuO-
Cu2O complex films post-annealing may be attrib-
uted to both the carrier concentration and carrier
mobility were decreased gradually, resulting in an in-
crease in resistivity. The reduction of mobility is at-
tributable to the transportation of carriers from one
grain to another grain.
Figure 2 plots the J-V curves for the CuO-Cu2O

complex thin film-based perovskite solar cells under
100 mW/cm2 illumination (AM 1.5G). Tables 2 and
3 list the characteristic parameters of these devices.
The PCE is improved from 3.15 to 7.32 % as the
thermal oxidation temperature increases from 300
to 350 °C, mainly owing to the increase in the
photo-generated carriers extracted and injected into
the electrode caused by the carrier mobility and
series resistance in the device, and then to result in
the increase in the short-circuit current density
(JSC). The PCE decreases from 7.32 to 6.43 % as the
thermal oxidation temperature increased from 350
to 400 °C. As listed in Table 2, for the device an-
nealing at 400 °C, the series resistance (Rs) in-
creases and the shunt resistance (Rsh) decreases.
The degradation of the performance may be attrib-
uted to the degradation of ITO electrode and leak-
age between CuO-Cu2O complex and perovskite
layer. The PCE of CuO-Cu2O complex thin film-
based perovskite solar cells is improved from 7.32
to 8.10 % as the thickness of CuO-Cu2O complex
thin film increased from 30 to 60 nm. However, fur-
ther increasing the thickness of the CuO-Cu2O
complex thin film to 120 nm reduced the PCE from
8.10 to 5.20 % due to the series resistance effect in
the cell, as listed in Table 3. According to the J-V
curve and PCE value, the optimized thickness of the
CuO-Cu2O complex thin film is 60 nm.

Table 1 Hall measurements of CuO-Cu2O complex films

Annealing
temp. (°C)

Resistivity
(Ω-cm)

Carrier concentration
×1017 (cm−3)

Mobility
(cm2/V-s)

As-deposited 2.1 2.9 10.3

300 1.5 2.1 19.3

350 2.0 9.2 33.5

400 9.7 3.6 17.9
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Fig. 2 Current–voltage (J-V) characteristics of perovskite solar cell that was constructed using CuO-Cu2O complex thin film under simulated
illumination with a light intensity of 100 mW/cm2 (AM 1.5). a Thermal oxidation temperatures. b The thicknesses of CuO-Cu2O complex thin film

Table 2 Parameters of CuO-Cu2O complex thin film-based
perovskite solar cells following thermal oxidation of the film
at various temperatures

Annealing
temp. (°C)

VOC(V) JSC(mA/cm2) FF(%) Eff(%) Rs(Ω) Rsh(Ω)

300 0.88 8.56 41. 42 3.15 25.8 234

350 0.95 13.88 55.54 7.32 7.9 738

400 0.89 12.71 56.89 6.43 12.5 698

Table 3 Parameters of CuO-Cu2O complex thin film-based
perovskite solar cells with films of different thicknesses

CuO-Cu2O complex
thickness (nm)

VOC(V) JSC(mA/cm2) FF(%) Eff(%) Rs(Ω) Rsh(Ω)

30 0.95 13.88 55.54 7.32 12.9 410

60 0.96 14.40 58.61 8.10 10.3 789

120 0.93 10.28 54.45 5.20 21.9 338
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In this study, the X-ray diffraction technique was
used to elucidate the crystal characteristics of CuO-
Cu2O complex thin films. To determine the relation-
ship between thermal oxidation temperature and
mechanism, the phase of the CuO-Cu2O complex
thin films was identified. Figure 3 shows the XRD
patterns of CuO-Cu2O complex thin films that were
deposited on a glass substrate. XRD experimental re-
sults demonstrate that the crystalline phases of CuO
and Cu2O were formed at different thermal oxidation
temperatures. Diffraction peaks at 35.84° and 38.85°
corresponded to the (−111) and (100) planes of the
cubic-structured CuO, and diffraction peaks at 36.8°
and 38.63° corresponded to the (111) and (200)
planes of the cubic-structured Cu2O. A broad diffrac-
tion peak at 35.84° was obtained from the Cu/ITO/
glass sample following thermal annealing at 350 °C.
This peak may be attributed to a complex layer that
comprised the (−111) plane of CuO and the (111)
plane of Cu2O. The XRD patterns of Cu2O (CuO)
gradually decrease (increase) as the thermal annealing
temperature increased from 300 to 400 °C, indicating
that the crystalline Cu2O is completely converted to
crystalline CuO. The crystal domain size G was
calculated according to the Scherrer’s equation: [33]

G ¼ 0:9λ
β cosθ

ð1Þ

where G, λ, β, and θ denote the grain size, the X-ray
wavelength, the full width at half maximum (FWHM) in
radians, and the Bragg angle of CuO or Cu2O peak, re-
spectively. The phase transformation from crystalline
Cu2O to crystalline CuO reduces the crystal domain size
from 31.83 to 29.39 nm, and thereby increases the car-
rier mobility of the CuO-Cu2O complex thin films,

improving the carrier collection at the CH3NH3PbI3/
CuO-CuO2 complex interface. However, the phase
transformation reduces the grain size and surface rough-
ness of the CuO-Cu2O complex thin films, as presented
in Fig. 4, which presents FESEM images of the Cu layers
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Fig. 3 XRD diffractograms of CuO-Cu2O complex thin film following
thermal oxidation at various temperatures

(a) thermal treatment at 300 °C 

(b) thermal treatment at 350 °C

(c) thermal treatment at 400 °C

Fig. 4 FESEM images of CuO-Cu2O complex thin films fabricated
using thermal oxidation at various temperatures. a Thermal
treatment at 300 °C. b Thermal treatment at 350 °C. c Thermal
treatment at 400 °C
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that had undergone thermal oxidation at various anneal-
ing temperatures. More flat surface favors the coverage
of the subsequently coated perovskite layer and C60 layer
on the Cu-CuO2 complex thin films to form the con-
tinuous films and so improves the fill factor of the per-
ovskite solar cells (Table 2). The image of the Cu layer
that underwent thermal treatment at 350 °C reveals that
the surface of the film consisted of small particles. The
mean particle size was approximately 20 nm, as dis-
played in Fig. 4a. When the annealing temperature
exceeded 300 °C, thin oxides were formed, particularly
in the grain boundary regions, implying that they were
formed by fast diffusion processes, as presented in Fig. 4.
To elucidate the relation between the crystal domain
size and the grain size in CuO-Cu2O complex thin films,
the Raman scattering spectra of CuO-Cu2O complex
thin films were measured, as shown in Fig. 5. According
to two relevant investigations [34, 35], the five peaks at
201, 300, 406, 489, and 638 cm−1 and the three peaks at
274, 328, and 627 cm−1 are the Raman fingerprints of
Cu2O and CuO, respectively. The Cu2O phase is com-
pletely converted to the CuO phase as the annealing
temperature increased from 300 to 400 °C, revealing that
the Cu2O is converted to CuO. The results are consist-
ent with the results of XRD patterns in Fig. 3. Therefore,
the grain size (Fig. 4) is reduced when the annealing
temperature increased from 350 to 400 °C owing to the
phase transformation. Figure 6 presents the photoemis-
sion spectra of Cu-Cu2O complex thin films, which were
used to determine their work functions. The work func-
tion of a CuO-Cu2O complex thin film is proportional
to the Voc of the perovskite solar cell in which it is used.

Conclusions
This study examined the characteristics of a nano-
structured CuO-Cu2O complex thin-film for use in per-
ovskite solar cells. A CH3NH3PbI3 perovskite absorber

was fabricated on top of a CuO-Cu2O complex thin film
in a one-step spin-coating process, which was followed by
toluene washing treatment. The work function of the Cu-
Cu2O complex thin film varied with the annealing
temperature. The work function of a CuO-Cu2O complex
thin film is proportional to the Voc of the perovskite solar
cell in which it is used. Following optimization, the max-
imum power conversion efficiency (PCE) exceeded 8.1 %.
Therefore, the low-cost, solution-processed, stable nano-
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Fig. 6 Photoelectron emission spectra of CuO-Cu2O complex thin films

Chen et al. Nanoscale Research Letters  (2016) 11:402 Page 6 of 7



structured CuO-Cu2O complex thin film can be used in
alternative hole transport layers (HTLs) in industrially
produced perovskite solar cells.
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