Thanh Thuy et al. Malaria Journal 2010, **9**(Suppl 2):P69 http://www.malariajournal.com/content/9/S2/-P69

2-*tert*-butyl-primaquine exhibit potent blood schizontocidal antimalarial activity via inhibition of heme crystallization

Nhien Nguyen Thanh Thuy^{1,2*}, Huy Nguyen Tien^{2,3}, Rahul Jain⁴, Kaeko Kamei²

From Parasite to Prevention: Advances in the understanding of malaria Edinburgh, UK. 20-22 October 2010

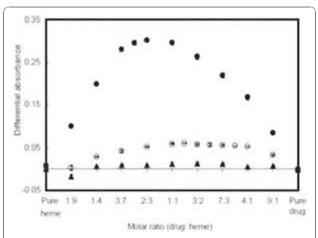
Background

Primaguine (PQ) is the only 8-quinolinamine available to treat the malarial parasites in the infections caused by Plasmodium vivax and P. ovale. PQ has broad range of antimalarial activities, including efficacy as a causal prophylactic, gametocytocide, and sporontocide. These encouraging pharmacological properties make PQ an ideal drug to emulate while designing new antimalarials with improved activities ([1]). The placement of a metabolically stable *tert*-butyl group at the C-2 position of a quinoline ring in PQ (2-tert-Butyl-Primaquine - BPQ) results in a tremendous improvement in blood schizontocidal antimalarial activity ([1,2]). Because free heme released from hemoglobin catabolism in a malarial parasite is highly toxic, the parasite protects itself mainly by crystallization of heme into insoluble nontoxic hemozoin ([3]). In this study, we investigate the mechanism of blood schizontocidal activity of BPQ.

Results

The ability of 2-*tert*-butylprimaquine to inhibit in vitro beta-hematin formation (see Table 1), to form a

 Table 1 IC50 values for inhibition of *P. falciparum* growth


 and heme crystallization

Drug	IC50 (µM) for inhibition of	
	P. falciparumD6 clone growth	BH formation
CQ	0.3	15.4
PQ	ND*	ND*
BPQ	0.1	2.9
*ND, not		2.9

¹Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam complex with heme with a stoichiometry of 1:1 (see Figure 1 and Figure 2), and to enhance heme-induced hemolysis (see Figure 3) were demonstrated.

Conclusion

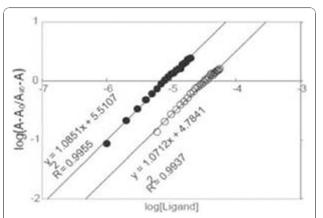

The results described herein indicate that a major improvement in the blood-schizontocidal antimalarial activity of 2-*tert*-butylprimaquine might be due to a disturbance of heme catabolism pathway in the malarial parasite.

Figure 1 (abstract P69). Job plots of heme-CQ (closed circles), heme-PQ (closed triangles), and heme-BPQ (open circles) interaction. The total final combined concentration of heme and drug in the mixtures was constant at 10 μ M in 40% aqueous DMSO. The pH and the temperature were constant at pH 7.4 and 25°C. The differential absorbance at 400 nm was recorded after incubation for 30 min. Values are the means ± standard errors of the means of three independent experiments. The results are reproducible.

© 2010 Thanh Thuy et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

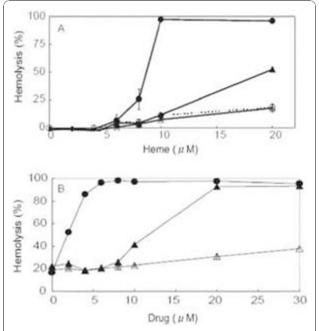
Figure 2 (abstract P69). Hill plots of heme-CQ (closed circles) and heme-BPQ (open circles) association. The *n* values correspond to individual slopes. The *n* and *Ka* values for heme-CQ association were 1.09 and 3.24×10^5 M⁻¹, respectively. The *n* and *Ka* values for heme-BPQ association were 1.07 and 0.61×10^5 M⁻¹, respectively.

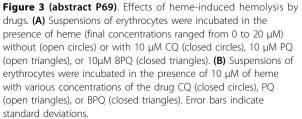
Acknowledgements

Our sincere thanks to all members in Structural Biotechnology Laboratory, Department of Applied Biology, Kyoto Institute of Technology who have contributed to and worked on this study.

Author details

¹Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. ²Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan. ³Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University; Nagasaki 852– 8523, Japan. ⁴Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.


Published: 16 December 2010


References

- Jain M, Vangapandu S, Sachdeva S, Singh S, Singh PP, Jena GB, Tikoo K, Ramarao P, Kaul CL, Jain R: Discovery of a bulky 2-tert-butyl group containing primaquine analogue that exhibits potent bloodschizontocidal antimalarial activities and complete elimination of methemoglobin toxicity. J Med Chem 2004, 47:285-287.
- Jain M, Vangapandu S, Sachdeva S, Jain R: Synthesis and bloodschizontocidal antimalarial activities of 2-substituted/2,5-disubstituted-8quinolinamines and some of their amino acid conjugates. *Bioorg Med Chem* 2004, 12:1003-1010.
- Egan TJ, Combrinck JM, Egan J, Hearne GR, Marques HM, Ntenteni S, Sewell BT, Smith PJ, Taylor D, van Schalkwyk DA, Walden JC: Fate of haem iron in the malaria parasite Plasmodium falciparum. *Biochem J* 2002, 365:343-347.

doi:10.1186/1475-2875-9-S2-P69

Cite this article as: Thanh Thuy *et al.*: **2-tert-butyl-primaquine exhibit potent blood schizontocidal antimalarial activity via inhibition of heme crystallization**. *Malaria Journal* 2010 **9**(Suppl 2):P69.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit