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Abstract

Background: Local adaptation, the differential success of genotypes in their native versus foreign environment,
arises from various evolutionary processes, but the importance of concurrent abiotic and biotic factors as drivers of
local adaptation has only recently been investigated. Local adaptation to biotic interactions may be particularly
important for plants, as they associate with microbial symbionts that can significantly affect their fitness and may
enable rapid evolution. The arbuscular mycorrhizal (AM) symbiosis is ideal for investigations of local adaptation
because it is globally widespread among most plant taxa and can significantly affect plant growth and fitness.
Using meta-analysis on 1170 studies (from 139 papers), we investigated the potential for local adaptation to shape
plant growth responses to arbuscular mycorrhizal inoculation.

Results: The magnitude and direction for mean effect size of mycorrhizal inoculation on host biomass depended
on the geographic origin of the soil and symbiotic partners. Sympatric combinations of plants, AM fungi, and soil
yielded large increases in host biomass compared to when all three components were allopatric. The origin of
either the fungi or the plant relative to the soil was important for explaining the effect of AM inoculation on plant
biomass. If plant and soil were sympatric but allopatric to the fungus, the positive effect of AM inoculation was
much greater than when all three components were allopatric, suggesting potential local adaptation of the plant to
the soil; however, if fungus and soil were sympatric (but allopatric to the plant) the effect of AM inoculation was
indistinct from that of any allopatric combinations, indicating maladaptation of the fungus to the soil.

Conclusions: This study underscores the potential to detect local adaptation for mycorrhizal relationships across a
broad swath of the literature. Geographic origin of plants relative to the origin of AM fungal communities and soil
is important for describing the effect of mycorrhizal inoculation on plant biomass, suggesting that local adaptation
represents a powerful factor for the establishment of novel combinations of fungi, plants, and soils. These results
highlight the need for subsequent investigations of local adaptation in the mycorrhizal symbiosis and emphasize
the importance of routinely considering the origin of plant, soil, and fungal components.
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Background
Local adaptation, the differential success of genotypes in
their native versus foreign environments, is one mechan-
ism that favors population differentiation and may lead
to eventual speciation [1, 2]. Adaptation of populations
to local abiotic factors is well established [2]. However,
biotic factors can also exert strong selective pressures
and may greatly alter an organism’s fitness (the ability of
individuals to contribute descendants to subsequent gen-
erations) in its local environment, leading to coevolution
[2–5]. Although the mechanisms that promote (e.g.,
strong local selective pressure) or suppress (e.g., high
gene flow or reduced genetic variation) local adaptation
may vary spatially and temporally [2], detecting patterns
of local adaptation can provide insight into the evolu-
tionary dynamics of species and their interactions. Such
processes may be particularly important for plants,
which commonly associate with a wide variety of micro-
bial symbionts that can have profound effects on plant
fitness and their evolution [6].
Symbionts are likely to influence plant adaptation be-

cause they have strong effects on multiple dimensions of
plant resource acquisition and defense, both of which
could mediate plant adaptation to their environment.
Moreover, symbionts tend to have large population sizes
and rapid turnover and therefore are likely to evolve
more quickly than their host [7]. This is particularly true
for mycorrhizal fungi, whose non-specific horizontal
transmission increases the genetic variation of symbionts
colonizing host roots [8]. Given that the fitness of host
and symbionts can be independent, there is potential for
local symbionts to enhance or decrease plant local adap-
tation. To tease apart these dynamics, investigations re-
garding local adaptation and mycorrhizal interactions
generally utilize experimental designs with reciprocal
crosses in which the fitness of the host and/or the sym-
biont’s genotypes is compared between sympatric and
allopatric combinations. Such experiments examing local
adaptation of symbionts to their hosts have ranged in
outcome from supporting local adaptation [9, 10] to
maladaptation [11] to failure to find adaptive re-
sponses [12] and even multiple outcomes within the
same study [13]. One way to synthesize such variation
and test broad general predictions regarding local
adaptation is via meta-analysis, which assesses general
predictions by integrating results across studies. Here,
we utilize meta-analysis to explore potential local
adaptation of plants to selective pressures imposed by
arbuscular mycorrhizal (AM) fungi, one of the most
commonly-studied types of mycorrhizal fungi, and
their soil environment. More specifically, we examine
whether the geographic origin of the plant host, their
AM fungal partner (s), and soil alters plant biomass
response to AM inoculation.

AM fungi (from the monophyletic phylum Glomero-
mycota), along with fungi from the phylum Mucoromy-
cotina, are thought to have evolved with the original
land plants 460 mya [14–19]. Although AM fungi are
often beneficial to their host plants, these relationships
vary along a continuum from mutualistic to parasitic
[20, 21]; however, in spite of recent advances [11–18],
the factors that determine such variability are not fully
understood [22, 23]. Futhermore, most studies examin-
ing mycorrhizal ecology neglect the role of local adapta-
tion in shaping the symbiotic outcomes, potentially
limiting our understanding of plant-fungal ecology [22].
AM fungi potentially act as an important selective

force for plants because they occur over broad geo-
graphic scales and across diverse biotic and abiotic gra-
dients. These well studied fungi are obligate biotrophs
and associate with over 80 % of terrestrial plants [24].
They facilitate the exchange of mineral nutrients from
the soil for fixed carbon from the host, thereby provid-
ing novel nutritional pathways for both partners that
fundamentally alter phenotypes and influence fitness
[6]. Given the importance of mycorrhizal fungi to soil
resource uptake and geographic variation in soil char-
acteristics, benefits of mycorrhizal symbioses may be
expected to show evidence of local adaptation. The ex-
change of nutrients is an important avenue by which
plants and mycorrhizal fungi are able to act as recipro-
cal selective forces on one another [25]. Both partners
can vary in their effectiveness as a mutualist. Some ex-
changes are symmetrical and both partners receive
equal and clear benefits; others are asymmetrical where
one partner recieves a greater benefit than the other
(i.e., the presence of “cheaters”). This asymmetry in nu-
trient exchange potentially destabilizes mycorrhizal in-
teractions because selection favors individuals that
provide reduced benefit and incur less cost [26]; how-
ever, interactions may be stabilized if the most benefi-
cial partners exhibit preferential allocation to each
other [27]. Plant-mediated sanctions, which hinder the
growth of mycorrhizal cheaters, have been demonstrated
both empirically [28–30] and theoretically [25, 31–33].
Consequently preferential allocation generates scenarios
such that plant hosts are selecting for better mycorrhizal
fungal mutualists and mycorrhizal fungal mutualists are
selecting for better hosts, but the degree and nature of
such selection is an area of developing research.
Local adaptation may be an important process under-

lying variation in plant response to mycorrhizal inocula-
tion, and soils may mediate this response. For example,
when plants and mycorrhizal fungi are involved in long-
term relationships, mutual cooperation is more likely to
evolve and the response of plants to AM inoculation
may be greater than for novel combinations of plants
and fungi, which do not share the same evolutionary
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history [34]. Plant and fungal adaptation to each other,
plant adaptation to soil, and fungal adaptation to soil
can all influence plant response to AM fungi; therefore,
in order to fully understand patterns of adaptation
within mycorrhizal relationships, it is important to
understand such interactions individually.

Mediation by soil of plant adaptation to arbuscular
mycorrhizal fungi
Previous research emphasizes the direct effect that soil
properties can have as selective agents on plant popula-
tions, whereby the fitness of individuals within popula-
tions increases when they can better tolerate specific soil
conditions [35–37]; however, soil properties may also in-
directly influence plant fitness through its effects on
mycorrhizal interactions. Here, we consider the response
of plants to AM inoculation where a) soils are of the
same origin as the plant, and/or b) soils are of the same
origin as the fungus. Local soil type and fertility are
likely to play a key role in plant adaptation to mycor-
rhizal fungi given the central role of mycorrhizal symbi-
oses in plant nutrient uptake [31, 32, 38–40]. Thus, the
acquisition of water and nutrients from soils can act as a
strong selection pressure, such that plants and their as-
sociated mycorrhizal fungi exert reciprocal selective
forces on each other, leading to local populations defined
by their ability to coexist under existing soil conditions
[13, 41]. For example, two ecotypes of big bluestem
(Andropogon gerardi) each grew comparatively better in
its own soils, but the response to AM fungi was medi-
ated by soil nutrient levels [42]. Overall, both ecotypes
benefited more from AM fungi when grown in soil from
the low-nutrient site versus the higher nutrient site, but
ecotypes originating from low fertility soils were more
responsive to AM fungi than those ecotypes from high
fertility soils [42]. This pattern would be expected from
plants allocating more resources to mycorrhizal fungi
when soil resources are scarce and more resources to
direct resource uptake via roots when soil resources are
plentiful. Consequently, plant response to mycorrhizal
inoculation may vary not only in response to present soil
conditions, but also in response to the soil conditions in
which plant populations have evolved, though the gener-
ality of this pattern has not been tested.
To determine the degree to which local soils influence

the response of plants to mycorrhizal inoculation, we
compared the effect of mycorrhizal inoculation on plant
biomass for instances when the plant origin matched
that of the soil (sympatric) to instances when the plant
origin was different from that of the soil (allopatric). If
the local soil has an important evolutionary influence on
plant response to mycorrhizal fungi, we would expect
to see significant differences in plant response to
mycorrhizal inoculation for sympatric combinations of

the plant and soil compared to allopatric combinations.
For example, if a plant population has evolved in soil
conditions that promote dependence on mycorrhizal
fungi (such as low nutrient conditions), we would ex-
pect individuals from that population to have developed
a higher dependence on their mycorrhizal fungi such
that sympatric combinations stimulate plant biomass
more than allopatric combinations; however, we may
also find maladaptation such that when combinations
are sympatric, plant response to mycorrhizal inocula-
tion is not different from or is lower than when combi-
nations are allopatric.

Plant response to sympatric combinations of mycorrhizal
fungi with their soils
Recent research demonstrates that AM fungi exhibit a
low degree of endemism such that the same taxa are
often identified on multiple continents, but local envir-
onmental conditions are important for determing vari-
ation among sites in the abundance and activity of AM
fungal communities [43]. This conclusion is supported
by transplant studies indicating that AM fungal commu-
nities function best in their native soils [9, 12, 13]. For
example, when AM fungal inoculum is used to inoculate
a foreign soil, the taxonomic composition of the result-
ant spore communities is altered, demonstrating the
importance of environmental filters on fungal commu-
nity composition [44]. More complex manipulations in-
oculating a single host grown in soils from different
geographic locations revealed that the same fungal in-
oculum can generate three different communities in
soils that vary in texture, pH, and nutrient levels, sug-
gesting that a particular AM fungal community may be
better matched to its soil environment than communi-
ties taken from other locations [45]. This divergence in
fungal community composition may reflect interspecific
variation in tolerance to the novel environment, in-
creasing the possibility for local adaptation between the
fungi and soil.
Fungal adaptation to local soils may be a function of

soil resources. If so, we might expect that local fungi
would better help the plant overcome the resource defi-
ciencies of the local soil. This type of local adaptation
would be predicted by biological market theory [31, 32]
and resource stoichiometry [38], as well as by fungal dy-
namics generated via context dependency of plant pref-
erential allocation [27]. For example, in phosphorus
deficient soils, fungi that can efficiently acquire and de-
liver phosphorus may be favored by plants, while nitro-
gen deficient soils may favor fungi with different
resource gathering specializations. Adaptation of AM
fungi to the soils in which they best promote plant
growth has been observed in tall grass prairie systems
[13, 44]. Mycorrhizal fungi may also alter host plant
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fitness by changing soil properties including soil aggre-
gation and structure via changes in soil organic matter,
minerals, and root exudates, leading to significant
changes in plant fitness [46, 47]. Consequently, under-
standing patterns of local adaptation can provide prac-
tical information for aiding species and habitat
management decisions, such as whether inoculation of
plants with local genotypes of mutualistic symbionts like
mycorrhizal fungi is beneficial to enhance ecosystem
services (e.g., food production, restoration of compro-
mised ecosystems, bioremediation, carbon sequestra-
tion) [13, 44]. To test the degree to which plants
benefit from local adaptation of fungi to soils, we com-
pared plant mycorrhizal response when fungi and soils
were of the same geographic origin (sympatric) compared
to when they were of different origins (allopatric).

Local adapation (or maladaptation) of plants to
arbuscular mycorrhizal fungi
The response of plants to mycorrhizal fungi is known to
vary across plant-fungal combinations [34], but the ex-
tent to which plants generally grow better or worse with
their local AM fungi is not known. The intimate nature
of the interaction between plants and their AM fungi
presents the possibility for both adaptation and mal-
adaptation. Given that different species (and genotypes)
of AM fungi have different levels of fitness when grown
with different plant species (and genotypes) [41], the
likelihood of greater plant response to mycorrhizal in-
oculation with local fungi will depend upon the correl-
ation of plant and fungal relative fitness [48]. When the
relative fitness of the plant and fungus are positively cor-
related, positive feedbacks will lead to co-adaption. This
feedback is expected to occur through co-evolutionary
time, thereby leading to local adaptation. In contrast,
when plant and fungal relative fitness are negatively cor-
related, negative feedbacks will lead to maladaptation
[39, 48]. Thus, plants may perform worse with fungi or
soil from their home location because their mycorrhizal
fungi have evolved to take greater advantage of their in-
teractions with plants. This dynamic can be similar to
that observed in host-enemy coevolution where rapidly
evolving enemies often exert more negative effects on
hosts when enemies originate from the same as opposed
to different regions [49–51].
Empirical tests of feedback dynamics in plants provide

evidence of both positive [52] and negative feedbacks
[26, 53]. Negative feedbacks between AM fungi and their
host have been demonstrated experimentally when plant
hosts have responded more positively to AM fungal
communities collected from non-related host plants
than to their own AM fungal communities, largely as a
result of asymmetries in the benefits exchanged [26, 53].
Thus we hypothesize that variation in the geographic

origin of soils, mycorrhizal fungi, and host plants will re-
sult in plant responses to mycorrhizal inoculation that
vary along a continuum from mutualistic to parasitic
[20, 21], as a result of local adaptation or maladaptation
of mycorrhizal fungi and host plants to each other and
their soils. To determine the degree to which origin of
AM fungi influence the response of plants to mycor-
rhizal inoculation, we compared the effect of mycor-
rhizal inoculation on plant biomass for instances when
the plant origin matched that of the fungi (sympatric) to
instances when the plant origin was different from that
of the fungi (allopatric). If adaptation to local fungi has
an important evolutionary influence on plant fitness, we
would expect to see significant differences in plant re-
sponse when paired with sympatric combinations fungi,
as compared to allopatric combinations.
While interactions between host plants, AM fungi, and

soils may result in local adaptation or maladaptation of
plant populations, we do not currently have the predict-
ive capacity to determine how often and under what cir-
cumstances adaptation or maladaptation will occur. In
an attempt to fill in this knowledge gap, we explored
patterns of adaptation in AM relationships by using
meta-analysis to detect variation in plant response to
AM inoculation across a variety of systems and environ-
mental conditions involving plants inoculated with AM
fungi. Previous meta-analyses have examined local adap-
tation across a broad range of taxa including plants, ani-
mals, and fungi [54, 55], but have rarely included
mycorrhizal symbioses, despite their widespread occur-
rence [49]. A recent meta-analysis revealed that variation
in plant biomass due to AM fungal inoculation is influ-
enced by multiple simultaneous factors, including N and
P fertilization, inoculum complexity, and host plant
functional group [23], but the general importance of
local adaptation in response of plants to AM fungi is
largely unknown. With a dataset composed of 1170
studies (from 139 papers), we tested whether variation
among studies in the relative geographic origin of the
plant, mycorrhizal inoculum, and/or soil was important
in altering plant biomass response to AM fungi. To
quantify the effect of local adaptation in altering plant
response to AM inoculation, we utilized plant growth re-
sponse as a fitness proxy for the plant. Plant growth is a
common metric used to assess fitness in mycorrhizal re-
lationships as it directly concerns the vegetative vigor of
the plant [56]. Additionally, we estimated variation in
local adaptation of plants to AM fungi and their soils
across a smaller subset of the studies that varied the geo-
graphic origin of the plant, AM inoculum, and/or soil
within the same published paper (referred to here as
within-paper analyses), which represents a more direct
test of potential local adaptation since a metric of local
adaptation can be calculated for each individual study.

Rúa et al. BMC Evolutionary Biology  (2016) 16:122 Page 4 of 15



We primarily aimed to address whether, and to what de-
gree, plant response to AM fungi may be influenced by
local adaptation between plants, fungi, and soil.

Results
Our objective was to explore the potential role of local
adaptation in shaping AM fungal relationships with their
plant hosts (Table 1, Additional file 1: Table S2). Here
we report results for both between-study analyses of
studies in which the plant, fungal partner, and soil ori-
gin were all known (Analysis Group 1: Between-study
Analyses; Fig. 1), and results from analyses of a smaller
subset of the studies that varied the geographic origin
of the plant, AM fungal inoculum, and/or soil within
the same published papers (Analysis Group 2: Within-
paper Analyses; Fig. 1). For Analysis Group 1, analyses
were conducted for all available studies (‘Full Dataset’)
and for two subsets, one in which only a single fungal
species was used as inoculum (‘Single Species’) and one
in which studies were only conducted in the laboratory
(‘Lab Studies’: greenhouses, growth chambers, lathe
houses, or shade houses).
For Analysis Group 1, the effect size compared plant

growth with versus without mycorrhizal inoculation.
Local adaptation in this set of analyses was assessed by
comparing this effect size metric among studies differing
in whether plants, fungi, and/or soils were sympatric or
allopatric in origin. For Analysis Group 2, the effect size
compared plant response to mycorrhizal inoculation in
sympatric versus allopatric pairings, and thus was a dir-
ect assessment of local adaptation or maladaptation.
For Analysis Group 1, we used the five-level variable
ORIGIN to assess the degree and nature of local adap-
tation for plant-mycorrhizal relationships. Specifically,
this allowed us to investigate whether ‘Sympatric’ (all

components are from the same geographic location),
‘Allopatric’ (all components are from different geo-
graphic locations), ‘Fungi-Soil Sympatric’ (fungus and
soil sympatric but allopatric to the plant), ‘Plant-Fungi
Sympatric’ (plant and fungus sympatric but allopatric
to the soil), and ‘Plant-Soil Sympatric’ (plant and soil
sympatric but allopatric to the fungus) forms of the
symbiosis differ in plant response to mycorrhizal inocu-
lation. A significant effect of ORIGIN was not enough
to determine whether local adaptation was responsible
for altering plant response to mycorrhizal inoculation;

Table 1 The eight categorical predictor variables that were explored in our random-effects meta-analyses

Name Levels

Origin* 5 ‘Sympatric’ (all components are from the same geographic location), ‘Allopatric’
(all components are from different geographic locations), ‘Fungi-Soil Sympatric’
(fungus and soil sympatric but allopatric to the plant), Plant-Fungi Sympatric
(plant and fungus sympatric but allopatric to the soil), Plant-Soil Sympatric
(plant and soil sympatric but allopatric to the fungus)

Plant Functional Group 6 C4 grasses, C3 grasses, N-fixing forbs, non-N-fixing forbs, N-fixing woody plants,
non-N-fixing woody plants

Inoculum Complexity 3 Whole soil inoculum, multiple species inoculum, single species inoculum

Sterility 2 Sterilized (background soil was sterilized prior to the experiment), not sterilized

Microbe Control 3 Microbial wash (application of aqueous filtrate of non-mycorrhizal microbes),
other microbial addition (non-mycorrhizal microbes added via other avenues
such as rhizosphere soil from non-mycorrhizal culture plants), no added
non-mycorrhizal microbes

Experimental set-up: 2 Laboratory (greenhouse, growth chamber, lathe house or shade house), field

N-fertilization,
P-fertilization

2 Fertilized or not

Seven variables were used previously in Hoeksema et al. [23] and one variable was unique to our analyses (as indicated by asterisk)

Fig. 1 Available studies for all components of local adaptation.
Number of studies (and associated papers) in which origin is
reported for pairwise investigations of local adaptation as well as all
three components of local adaptation. The number of studies (and
associated papers) in which allopatric and sympatric pairings are in
the same paper are in bold
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rather, effect sizes greater than all allopatric combina-
tions indicate some degree of local adaptation while ef-
fect sizes smaller than allopatric combinations indicate
some degree of maladaptation. Effect sizes that do not
differ from all allopatric combinations indicate a lack of
signal for any adaptive relationship.

Analysis Group 1: Between-study analyses
Regardless of whether the plant, fungal partner, and/or
soil originated in sympatry or allopatry, the mean effect
size of AM inoculum on host biomass was consistently
greater than zero (mean estimate ± standard error) for
the Full Dataset (0.537 ± 0.219, k = 213), Single Species
(0.488 ± 0.463, k = 115), and Lab Studies (0.427 ± 0.375,
k = 182). The overall effect was largest in the Full Dataset
but was also slightly positive in the Single Species and Lab
Studies analyses (Additional file 2: Figure S1).
The first question we addressed was whether sympat-

ric versus allopatric origins of the plant, fungal partner
and soil affected host plant response to the AM symbi-
osis. ORIGIN was significant for explaining plant bio-
mass response to AM inoculation for all three datasets:
the Full Dataset (QM (df4) = 11.6, p = 0.021), Single Spe-
cies (QM (df4) = 10.1, p = 0.039), and Lab Studies (QM

(df4) = 9.38, p = 0.052, Table 2). The results for this
grouping variable revealed three patterns which were
consistent across all three datasets. First, the effect of
AM inoculation on plant biomass was higher when the
plant, AM fungal partner, and soil were all sympatric
compared to when they were all allopatric (Fig. 2), indi-
cating local adaptation of the plant and fungi to one an-
other and the soil. Second, when the plant and fungal
partner were from the same origin, but allopatric to the
soil, there was no difference in the effect of AM inocula-
tion as the effect size did not differ from all allopatric or

all sympatric combinations, suggesting no adapative rela-
tionship. Finally, the relationship of either the fungi or
the plant to the soil was important for explaining the ef-
fect of AM inoculation on plant biomass (Fig. 2). Specif-
ically, if the plant and soil were from the same origin
(but allopatric to the fungal partner) the effect of AM in-
oculation was much greater than when all three compo-
nents were allopatric, indicating potential local
adaptation of the plant to the soil; however, if AM fungi
and soil were from the same origin (but allopatric to the
plant), the effect of AM inoculation was not different
from the effect of allopatric combinations of the plant,
soil, and fungal partner, indicating a lack of adaptation
of the fungi to the soil (Fig. 2). Furthermore, the effect
of inoculation on plant biomass did not differ when 1)
the plant, AM fungal partner, and soil were all from the
same origin (sympatric), 2) only the plant and soil were
from the same origin (and allopatric to the fungus), and
3) only the fungal partner and soil were sympatric (allo-
patric to the plant; Fig. 2).
Finally, for analyses when multiple species of fungi were

used as inocula, INOCULUM COMPLEXITY (single spe-
cies, multiple species, or whole soil inoculum) was signifi-
cant for explaining plant biomass response to AM
inoculation for the Full Dataset (QM (df2) = 7.11, p =
0.027) and tended to be important for Lab Studies (QM

(df2) = 5.35, p = 0.069, Table 2). Specifically, the effect of
AM inoculation was greater when the AM inocula con-
tained multiple species than when it contained a single
species or the whole soil (Additional file 3: Figure S2).

Analysis Group 2: Within-Paper Analyses
Our final analyses examined direct studies of putative
local adaptation where sympatric and allopatric origin of

Table 2 Test statistics for categorical effects in models for each dataset

Full dataset Single species inocula Lab studies only

QE(df198) = 952.7
p < 0.0001

QE(df102) = 519
p < 0.0001

QE(df166) = 897.7
p < 0.0001

QM df p value QM df p value QM df p value

Plant Functional Group 3.69 5 0.595 4.25 5 0.515 3.347 5 0.647

Inoculum Complexity 7.11 2 0.029 – – – 5.347 2 0.069

Sterility – – – – – – 0.510 1 0.475

Microbe Control – – – – – – 0.551 1 0.458

Experimental Set-Up 0.842 1 0.359 0.251 1 0.627 – – –

P Fertilization 0.036 1 0.849 2.04 1 0.154 0.011 1 0.916

N Fertilization 0.007 1 0.936 2.26 1 0.132 0.115 1 0.734

Plant-Fungal-Soil Origin 11.6 4 0.021 10.1 4 0.039 9.38 4 0.052

Values are obtained from models for between-study Analyses (Analysis Group 1) for all datasets including: Full Dataset, Single Species Inocula, and Lab Studies
Only). Q statistics are approximately χ2 distributed with degrees of freedom (df). Dashed lines indicated explanatory variables which were not included in that
analysis group. Bold values represent p values < 0.05 and italicized values represent p values > 0.05 and < 0.1
QE: test statistic for the test of residual heterogeniety
QM: test statistic for the omnibus test of coefficients
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the plant, AM fungi and/or soil were manipulated within
the same study.
Plant-Fungal: We were able to calculate within-paper

effect sizes of plant-fungal local adaptation for 254 la-
boratory studies (from 7 papers) of AM fungi with steril-
ized background soil (Fig. 1). While the overall
estimated effect size for this model was negative, it did
not significantly differ from zero (mean estimate ± stand-
ard error: −0.534 ± 0.550, k = 254), indicating no average
difference in the effect of AM inoculation on plant bio-
mass when the plant and fungal partner originated in
sympatry compared to when they originated in allopatry,
and thus no significant overall effect of local adaptation
or maladaptation. For this analysis, INOCULUM
COMPLEXITY was the only significant predictor of
plant local adaptation to AM fungi (QM(df1) = 4.78, p

value = 0.029, Table 3), with allopatric combinations
outperforming sympatric combinations for multiple
species inocula and no difference between sympatric
and allopatric combinations for single species inocula
(Fig. 3a).
Fungal-Soil: We were able to calculate within-paper ef-

fect sizes of potential fungal-soil local adaptation for 217
laboratory studies (from 5 papers) of AM fungi with
sterilized background soil. The overall estimated effect
size for this model was negative, but not different from
zero (mean estimate ± standard error: −0.820 ± 0.738, k =
217), indicating no overall significant of local adaptation
or maladaptation. Similar to plant-fungal adaptation,
INOCULUM COMPLEXITY was the only significant
predictor of local adaptation (QM(df1) = 3.89, p = 0.049,
Table 3, Fig. 3), with allopatric combinations of the fun-
gus and soil outperforming sympatric combinations for
multiple species inocula and no difference between
sympatric and allopatric combinations for single species
inocula (Fig. 3b).
Plant-Soil: We were able to calculate within-paper ef-

fect sizes of plant-soil local adaptation for 28 laboratory
studies (from 3 papers) of AM fungi with sterilized back-
ground soil; however, our model was severely limited by
the available data. Consequently, the data available for
this analysis were relatively homogenous and the vari-
ability in the model was larger than expected based on
sampling variability alone (QE(df26) = 27.6, p = 0.379,
Table 3). While the overall estimated effect size for this
model was positive, it did not significantly differ from zero
(mean estimate ± standard error: 0.1189 ± 0.327, k = 28),
indicating no overall local adaptation or maladaptation.
Plant-Fungal-Soil: No papers in our dataset had both

allopatric and sympatric pairings of plant-fungal-soil
combinations.

Discussion
Previous research has emphasized the role of abiotic fac-
tors in driving local adaptation of organisms to their
local environment, but biotic factors may also greatly
alter an organism’s fitness in their local environment
[2–5]. Moreover, in a symbiotic interaction, particularly
in the case of an obligate symbiosis, understanding co-
adaptation between symbionts and between them and
the local environments is essential for local adaptation.
Although limited by the amount of available data, our
results represent an important first step in addressing
local adaptation of a symbiosis. Specifically, our results
highlight the complexity of the patterns and processes
behind local adaptation of plants to mycorrhizal fungi,
suggesting that studying plant responses to AM inocu-
lation without considering the geographic origin of the
symbionts, plant and soil is neglecting key elements of
the interaction.

Fig. 2 Plant-Fungal-Soil Adaptation. When the plant, fungal inocula,
and soil were sympatric, the change in plant biomass due to
inoculation with mycorrhizal fungi tended to be greater than when
all three were allopatric. Values shown are weighted mean effect
sizes ± standard error for arbuscular mycorrhizal fungi from the Full
Dataset (a) Single Species Inocula (b) and Lab Studies (c). The
dotted line indicates no response, values above the line indicate
positive response to mycorrhizal inoculation (mutualism), and values
below the line indicate negative response to mycorrhizal inoculation
(parasitism). Symbols indicate differences from sympatric combinations
of the plant, soil, and fungal inocula based on planned contrasts.
Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘·’ 0.1
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Evidence for local adaptation in mycorrhizal symbioses
in our meta-analysis is best illustrated by analyses of
variation among studies for which the origin of all three
components of the mutualism were known. Across data-
sets, geographic origin was always a significant predictor
in describing plant biomass response to AM inoculation
(Table 1) and sympatric pairings tended to produce
more positive host plant responses than allopatric pair-
ings across all datasets (Fig. 2). This pattern was especially
evident when considering studies with only single species
inoculum (Fig. 2b). Interestingly, in the more direct test of
local adaptation, the within-paper analyses, we did not see
this result (Figs. 4, Additional file 4: Figure S3), but this
may be a consequence of the small number of studies
available for those analyses, as average effect sizes in those
analyses were in the direction of local adaptation.
While the importance of matching fungal, soil, and
plant origin for increasing plant response to AM fungi
has been demonstrated in a select number of grassland

species [13, 34, 42], the results presented here represent
a more extensive exploration of this phenomenon and
thus have important implications for both the ecology
and conservation biology of mycorrhizas.
To more fully understand the patterns and processes

that may shape plant and fungal adaptation to one an-
other and their local soils, we also explored pairwise
components of the symbiosis so that we could evaluate
plant response to mycorrhizal inoculation when only
two of the three components of the mutualism (plant,
fungal partner, or soil) were in sympatry but in allopatry
relative to the third component of the mutualism. These
explorations indicated that the relationship of either the
fungi or the plant to the soil is important in explaining
the effect of AM inoculation on plant biomass (Fig. 2).
In our study, when the plant and soil were from the
same origin (but allopatric to the fungus) the effect of
AM inoculation was much greater than when all three
components were allopatric (but not different from

Table 3 Within paper analysis test statistics for categorical effects

Plant-fungal Fungal-soil Plant-soil

QE(df247) = 1238.4,
p < 0.0001

QE(df210) = 1229.5,
p <0 .0001

QE(df26) = 27.6,
p = 0.379

QM df p value QM df p value QM df p value

Plant Functional Group 2.36 3 0.501 2.09 2 0.352 0.712 1 0.399

Inoculum Complexity 4.78 1 0.029 3.89 1 0.049 – – –

Microbe Control 0.031 1 0.860 0.544 1 0.461 – – –

P Fertilization 0.053 1 0.818 0.798 1 0.372 – – –

N Fertilization – – – 0.743 1 0.389 – – –

Models represent the Analysis Group 2: Between Study analyses. Q statistics are approximately χ2 distributed with degrees of freedom (df). Dashed lines indicated
explanatory variables which were not included in that analysis group. Bold values represent p values < 0.05 and italicized values represent p values > 0.05 and < 0.1
QE: test statistic for the test of residual heterogeniety
QM: test statistic for the omnibus test of coefficients

Fig. 3 Inoculation Complexity for Within Paper Analyses: When a single species of fungi was used as inocula, the effect of sympatry was greater
than allopatry (although not different than zero) while the reverse was true when the fungal inocula contained multiple species. Values shown
represent the ratio of weighted mean effect sizes (ES) ± standard error for arbuscular mycorrhiza from within paper examinations of Plant and
Fungi (a) and Fungi and Soil (b). The dotted line indicates no response, values above the line indicate positive local adaptation, and values below
the line indicate maladaptation. P values indicate differences based on planned contrasts
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situations in which all three components were sympat-
ric), indicating the potential for local adaptation of
plants to soils to influence how plants respond to AM
fungi; however, if the fungal partner and soil were from
the same origin (but allopatric to the plant) or when the
plant and fungal partner were from the same origin (but
allopatric to the soil) there was no difference in the ef-
fect of AM inoculation compared to allopatric combina-
tions of the plant, soil, and fungal partner (Fig. 2). This
result suggests that local adaptation in AM relationships
may result from their relationship with the soil environ-
ment. These results are exemplified in studies exploring
the adaptive relationship of the obligate mycotrophic
herb Aster amellus to its native soils and native AM
fungi [10, 11]. In this system, a 5-year reciprocal trans-
plant experiment evaluating the relationship between
soil abiotic conditions, AM fungi and plant growth in-
dicated that plants from a region characteristic of low
nutrient availability consistently outperformed plants
from a region characteristic of high nutrient availability,
likely due to their adaptive relationship with AM fungi.
While plants from the low nutrient region had higher
AM colonization levels in both environments, empha-
sizing their dependence on mycorrhizas [11], plants
from the high nutrient region had lower aboveground
biomass with lower AM colonization, suggesting maladap-
tation of the plant to its local AM fungi [10, 11]. In con-
junction with our results, these findings emphasize the

importance of soil factors for for understanding these
interactions.
These results suggest that further work investigating

ecological interactions of AM fungi and their plant hosts
should strive to control for variation in fungal, soil, and
plant origin as well as inform species and habitat man-
agement decisions in order to maximize mycorrhizal ap-
plications [13, 44]. Currently, it is the policy of many
habitat managers to restore land using local seed stock
(because of the presumed importance of local adapta-
tion) but mycorrhizal inoculum associated with these
restoration efforts often comes from inoculum pro-
ducers, creating a mismatch in the relationship between
geographic origin of the plant and soil with the fungal
inoculum. Our results suggest that this policy may be
just as effective as using locally sourced inoculum but
more constrained manipulations are needed.
It is important to note that the effect of mycorrhizal

inoculation on plant biomass was consistently larger
when the plant and soil were sympatric (and allopatric
to the fungus; Fig. 2), but also tended to be high when
the plant and fungal partner were sympatric (and allo-
patric to the soil; Fig. 2). These findings deserve further
controlled investigations but suggest that for mycor-
rhizal relationships, local coadaptation by the plant and
AM fungi amid their soil environment has occurred in a
manner that benefits both symbiotic partners, and that
the alignment of only two of those components can

Fig. 4 Frequency of AM Fungal Effect Sizes for Within Paper Analyses: The frequency of sympatric combinations outperforming allopatric combinations
is greater for the plant and fungus as well as the fungus and soil than for combinations of plants and soil. Values shown represent the ratio of weighted
mean effect sizes (ES) for arbuscular mycorrhiza from within paper examinations of Plant and Fungi (a) Fungi and Soil (b) and Plant and Soil (c). Values
above zero indicate positive local adaptation, and values below zero indicate maladaptation
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generate enough complementarity to alliviate any de-
crease in plant performance induced by the mismatch of
the third component.
If the plant has adapted to its soil environment inde-

pendent of the fungi, the plant’s response to AM fungi
will depend on soil nutrient levels. In higher nutrient
soils, fungi are less likely to provide a significant benefit
to the host plant. Alternatively, plants adapted to low
nutrient soils should benefit from AM inoculation. This
conditioning effect may explain why, in our study, there
was so much variation surrounding combinations in
which AM fungi and soil were sympatric but allopatric
to the plant (Fig. 2). Additionally, we would expect this
outcome to be represented not only by the change in
plant biomass to inoculation but also in terms of fungal
response, as measured either by extraradical hyphal
length, spore production, or root colonization rate [13].
Such a response has been illustrated in prairie soils
where a strong home-soil preference in terms of AM hy-
phal growth was found for two remnant native prairies
but a reconstructed prairie, which had a shorter time for
adaptation, produced equal amounts of extraradical hy-
phae regardless of soil origin [13]. Unfortunately, fungal
responses are not generally well reported within studies,
limiting their utility for meta-analysis.
While these analyses represent a robust and thorough

exploration of the potential importance of local adapta-
tion in shaping mycorrhizal relationships, they could be
made even stronger if more papers reported a full suite
of information necessary for multifactorial meta-analysis.
This study utilized a subset of a larger dataset consisting
of 2984 AM fungal studies from 359 papers [57]. Of the
full AM dataset, only 39 % (1170 studies from 139 pa-
pers) reported the geographic origin of at least two of
the three components of interest: AM fungal inoculum,
host plant, and soil. We had to further cull our analyses
to studies that only examined inoculation with AM fungi
because studies with ectomycorrhizal fungi, the other
major mycorrhizal group represented in our database,
were limited to 489 studies, the majority of which were
lab studies with single species inoculum. This impaired
our ability to interpret the potential effect of local adap-
tation in shaping the effect of mycorrhizal inoculation
on plant biomass. Consequently, future investigations
examining plant responses to mycorrhizal inoculation
should report the geographic origin of their fungal in-
oculum, host plant, and soil. The importance of report-
ing this information is further emphasized when looking
at within paper studies. Of the 1170 studies (from 139
published papers) only 15 were studies that directly ma-
nipulated allopatric and sympatric combinations of the
plant, fungi, or soil in the same study, and no study dir-
ectly manipulated allopatric and sympatric combinations
of all three components of the mutualism at the same

time (Fig. 1). Thus, our ability to interpret our analyses
with respect to within paper manipulations was relatively
limited.

Inoculum complexity
Previous research indicated that the biotic context of
mycorrhizal inoculation is important, such that more di-
verse soil communities lead to a greater effect of mycor-
rhizal inoculation on the plant [23]. This was true across
all of our analyses (Table 1, Table 2). Specifically, inocu-
lum complexity greater than a single taxon (e.g., mul-
tiple fungal taxa, whole soil inoculum) stimulated the
effect of mycorrhizal inoculation on plant biomass com-
pared to when a single fungal taxon was used for inocu-
lation (Additional file 3: Figure S2), but results were
more complex for within paper analyses. In those ana-
lyses, when a single fungal species was used as inoculum,
the effect of sympatry was greater than allopatry, sug-
gesting local adaptation, while the reverse was true when
fungal inocula contained multiple species (Fig. 3). These
results may stem from complementarity among mycor-
rhizal fungal species, which can provide a greater benefit
for the host [58, 59]. Conversely, a more complex inocu-
lum has the potential to provide a greater benefit to the
host across a broader range of environments, possibly as
a result of a diversity of foraging strategies which may
allow for a greater ability to adapt to a new environment.
For example, external hyphal architecture, which ap-
pears to be linked to unique functions within each hy-
phal type, can differ greatly according to fungal species
[60]. Such functions may be directly related to differ-
ences in the benefit the plant receives from the fungi in
a given environment. Consequently, inoculum that con-
tains more fungal species may also provide benefits
across a wider range of abiotic conditions.
The fact that diverse inoculum increases plant re-

sponse to mycorrhizal inoculation (Tables 1 and 2) un-
derscores the importance of multiple AM fungal species
for shaping the role of local adaptation in altering plant
response to mycorrhizal inoculation (Fig. 3); however,
our study is limited in exploring the effects of other soil
organisms for altering such relationships. Our analysis
includes any study that added inoculum, regardless of
whether it was pure culture inoculum or not, indicating
that other components in the inoculum such as non-
AM fungal microorganisms could be contributing to
plant responses to inoculation; however, it is likely that
the presence of other AM species (single species vs.
multiple species) is having a larger impact in altering
plant response to mycorrhizal inoculation and mediating
the role of local adaptation in altering this relationship.
This conclusion is supported by our results which indi-
cate that neither the addition of supplementary microbes
(MICROBE CONTROL), sterilization of the background
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soil (STERILITY), nor EXPERIMENTAL SET-UP (la-
boratory vs. field study) significantly altered plant re-
sponse to mycorrhizal inoculation for any of the
analyses. If non-AM fungal microorganisms in the inoc-
ula were important drivers in altering plant response to
mycorrhizal inoculation, we would expect that at least
one of these variables would be significant. Conse-
quently, it is more likely that the presence of other
mycorrhizal species and not of other soil micoorganisms
is the important driver for the patterns we found here.

Conclusions
Our meta-analysis represents one of the first broad ex-
plorations of the potential role of local adaptation in de-
termining the outcome of mycorrhizal relationships. Our
results suggest that when the origin of the plant, AM
fungi, and soil is known, local adaptation may be import-
ant for describing the effect of mycorrhizal inoculation
on host biomass. Specifically, sympatric relationships of
the plant, fungus, and soil tend to outperform allopatric
relationships. Of the sympatric relationships, when plant
and fungi were sympatric (but allopatric to the soil),
there is a less positive response by the host plant, sug-
gesting that fungi adapt to the soil environment in such
a way as to be less mutualistic to novel host plants.
These results have wide ranging implications for future
ecological, evolutionary, and applied studies, and suggest
that local adaptation of the plant and the fungi to one
another and to their soil environment should be consid-
ered specifically when designing experiments, preparing
restoration campaigns or selecting specific mycorrhizal
assemblages for use as inoculants.

Methods
Literature search
Our analyses utilize MycoDB, a database of 4010 studies
from 445 papers in which plants were inoculated with
mycorrhizal fungi and plant growth was measured [57].
Our study focused on only AM fungi (2984 studies from
359 papers), and included any study that added inocu-
lum, regardless of whether it was pure culture inoculum
or not. To facilitate our exploration of local adaptation
using this database, all studies were screened to identify
whether the source location was given for at least two of
the three components of interest: fungal inoculum, host
plant, and soil. This screen yielded a total of 1170 indi-
vidual studies from 139 published papers. Each study
was classified as to whether plant and soil, fungus and
soil, or fungus and plant were sympatric (i.e., derived
from the same location) or allopatric (i.e., derived from
different locations) (see Additional file 5: Methods S1,
Additional file 6: Table S1).

Dataset construction
From each study we extracted information on plant bio-
mass with and without mycorrhizal inoculation. The
question of an appropriate fitness proxy is a long-
standing one, not only for plants but other species as
well [see 61]. In general, fitness proxies are associated
with survival, fecundity, or mating success. In plants,
such proxies may include seed production, survival, or
more commonly, plant size (for example, biomass,
height) [62]. In mycorrhizal relationships, the main fac-
tors determining plant fitness can be classified as those
enabling the organism to reach the reproductive state
(“indirect” factors) and those contributing in a “direct”
manner by influencing quality and quantity of the seeds
themselves. Thus plant fitness in the context of mycor-
rhizal relationships can take the form of fecundity (seed
number and quality) or indirect measures concerning
the ability of the plant to regenerate or vegetative vigor
(such as physiological state or the ability to acquire re-
sources) [56]. Unfortunately, very few studies in our
database report direct measures of plant fitness (such as
survival or seed production) so we chose to utilize plant
biomass, which is widely reported, as a proxy for plant
fitness even though it is an indirect measure of plant
fitness. While plants can benefit from mycorrhizal in-
oculation without increasing in biomass [63, 64], these
studies are relatively rare and not sufficient in number
for meta-analysis.
Our analysis consisted of studies that fit into two

groups. The first set of studies, Analysis Group 1, exam-
ined the potential for local adaptation to alter the effect
of mycorrhizal inoculation on host biomass between
studies while the second set of studies, Analysis Group
2, directly tested for local or maladaptation by utilizing
studies which manipulated sympatric and allopatric pair-
ings in the same study. We constructed 13 explanatory
variables (either categorical or continuous) for each
study, 12 of which were previously used in Hoeksema et
al. [23]. One variable, ORIGIN was unique to our ana-
lyses, and was used to test for local adaptation in
between-studies analyses (Analysis Group 1). ORIGIN is
a five-level categorical variable which allows us to ex-
plore how plant response to mycorrhizal inoculation is
altered when individual components of the mutualism
are sympatric or allopatric to one another. We defined
allopatric combinations as originating from distances
greater than 6 km from one another while sympatric
combinations originated less than 1.5 km from one an-
other (no combinations occurred between 1.5 km and
6 km apart). Levels of the ORIGIN variable are: ‘Sympat-
ric’ (all components are from the same geographic loca-
tion), ‘Allopatric’ (all components are from different
geographic locations), ‘Fungi-Soil Sympatric’ (fungus and
soil sympatric but allopatric to the plant), Plant-Fungi

Rúa et al. BMC Evolutionary Biology  (2016) 16:122 Page 11 of 15



Sympatric (plant and fungus sympatric but allopatric to the
soil), and Plant-Soil Sympatric (plant and soil sympatric
but allopatric to the fungus). We could not investigate the
degree to which distance between plant, fungal, or soil ori-
gin was directly responsible for shaping the effect of
mycorrhizal inoculation on plant biomass because we
could not appropriately calculate distances for all allopatric
combinations in which all three components of the symbi-
osis are from different geographic locations. Thus, this ana-
lyses was beyond the scope of our current analyses.
Although local adaptation was the focus of the ana-

lyses and results presented here, the additional explana-
tory variables (besides ORIGIN) were included in analyses
to account for unexplained variation in effect sizes and to
obtain the most accurate estimates of local adaptation ef-
fects. Nine of the explanatory variables (outlined in
Table 1) were treated as fixed effects. The remaining three
random effect variables were categorical variables: plant
taxonomy (PLANT SPECIES), a unique variable for each
observation (EXPERIMENTID), and a unique variable for
each set of observations that share a non-inoculated con-
trol (CTRLSETID). Additionally, when only a single spe-
cies of fungal inocula was used, we used a random effect
variable to control for the effect of fungal genus
(FUNGALGENERA).
For between study analyses (Analysis Group 1), four

overlapping sets of data were initially created to analyze
the potential effect of local adaptation between each pair
of the three components of interest: ‘Plant-Fungal’
which contained all studies with information about
both the plant origin and the fungus origin, ‘Fungal-Soil’
which contained all studies with information about
both the fungus and soil origin, ‘Plant-Soil’ which con-
tained all studies with information about both the plant
and soil origin, and ‘Plant-Fungal-Soil’ which only con-
tained studies with information about the plant, fungus,
and soil origins. Figure 1 is an overview of the available
studies (and papers) for each of these datasets. To ac-
curately evaluate the full extent to which local adapta-
tion among plants, fungi, and soils plays in altering
plant response to mycorrhizal inoculation, our analysis
focused on those studies in which information about
the plant, fungus, and soil origin was known (‘Plant-
Fungal-Soil’). This dataset was parsed into smaller sub-
sets to examine studies that contained (1) all available
studies, (2) single species inocula only and (3) labora-
tory studies only. See Additional file 1: Table S2 for a
full outline of which explanatory variables were in-
cluded for each analysis subset. All data was deposited
into Dryad: http://dx.doi.org/10.5061/dryad.723m1.

Calculation of effect sizes and within-study variances
Plant response to mycorrhizal inoculation was quantified
from data on whole plant biomass when it was available;

otherwise, response was quantified with shoot biomass
only. Separate analyses were conducted using total plant
biomass and shoot biomass only, and results were sub-
stantively the same, so we report results from a com-
bined analysis of both metrics of plant biomass. For
Analysis Group 1, the effect size of inoculation was
quantified using a standardized, unitless measure of
performance in inoculated treatments relative to non-
inoculated controls [23], the log response ratio of inocu-
lated to non-inoculated plant biomass: ln(Xinoc/Xctl)
where Xinoc is the mean biomass in an inoculated treat-
ment and Xctl is the mean biomass in a non-inoculated
control. Positive values of this metric indicate beneficial
effects of mycorrhizal inoculation on plant biomass and
negative values indicate detrimental effects of mycor-
rhizal inoculation on plant biomass.
Because 78 % of studies failed to report measures of

dispersion for treatment means (e.g., variances or stand-
ard errors) we approximated the within-study variance
associated with each effect size based on levels of repli-
cation in inoculated and non-inoculated treatments. The
within-study variance used in our weighted regressions
was estimated as:

σ2 ¼ 1
ninoc

þ 1
nctl

where ninoc and nctl are the number of replicates in inoc-
ulated and non-inoculated treatments.

Calculation of within-paper effect sizes
Analysis Group 2, which consisted of studies that com-
pare sympatric and allopatric pairings within a single
study, allowed us to directly test the effect of local adap-
tation for altering plant response to mycorrhizal inocula-
tion. Specifically, we compiled a subset of papers that
studied both sympatric and allopatric combinations of
plants and soil, plants and fungi, or fungi and soil. For
this subset, we calculated the log response ratio of sym-
patric to allopatric effect sizes:

Within Paper Effect Size ¼ log
Xinoc; sym

Xctl; sym

� �
− log

Xinoc; allo

Xctl; allo

� �

where ‘sym’ indicates sympatric pairings and ‘allo’ indi-
cates allopatric pairings. Thus, when this effect size is
positive, the relationship between the two components
of interest (fungus, soil, plant) indicates local adaptation,
and when the metric is negative, the components of
interest indicate maladaptation. The estimated variance
for this metric was calculated by combining the variance
components for sympatric and allopatric pairings, which
were calculated using the same variance estimator given
above for the between-studies effect size. Explanatory
variables were then checked to see how many
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observations per level remained and the dataset was al-
tered as follows. All studies in this analysis were con-
ducted in laboratories with sterilized background soil.
When assessing plant-fungal adaptation we could only
consider 254 studies (from 7 papers) of AM fungi with
the explanatory variables PLANT FUNCTIONAL
GROUP, INOCULUM COMPLEXITY, MICROBIAL
AMENDMENT (none vs. wash), and FERTILIZATION
(yes vs. no). When assessing fungal-soil adaptation we
could only consider 217 studies (from 5 papers) of AM
fungi with the explanatory variables PLANT FUNC-
TIONAL GROUP, INOCULUM COMPLEXITY, MICRO-
BIAL CONTROL, and FERTILIZATION. When assessing
plant-soil adaptation we could only consider 28 studies
(from 3 papers) of AM fungi inoculated with a single spe-
cies of fungi with the explanatory variables PLANT
FUNCTIONAL GROUP and FERTILIZATION (yes vs.
no).

Mixed multi-factor meta-analysis
All analyses were done with R statistical software, ver-
sion 3.1.3 [65]. Meta-analyses were conducted using the
rma.mv function from the metafor package [66] with
maximum likelihood estimation of parameters. When
moderators were significant, differences between levels
were determined using planned contrasts and the glht
function from the multcomp package [67]. Marginal
means for significant moderators and the overall model
estimate were calculated using the predict function of
the stats package [65].
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