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Abstract This study examines the consequences of using an estimated aggregate
measure as an explanatory variable in linear regression. We show that neglecting the
seemingly small sampling error in the estimated regressor could severely contaminate
the estimates. We propose a simple statistical framework to account for the error. In
particular, we apply our analysis to two aggregate indicators of economic develop-
ment, the Gini coefficient and sex ratio. Our findings suggest that the impact of the
estimated regressor could be substantially underestimated, when the sampling error is
not accounted for.
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1 Introduction

Empirical studies often encounter the following situation: A regressor in the linear
regression needs to be estimated before it is included in the regression analysis. Such
a regressor could be an aggregate measure, which is unavailable but can be estimated
withmicro data. Examples of an estimated regressor include thewidely usedGini coef-
ficient for economic inequality and sex ratio for gender imbalance, see, e.g., Atkinson
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and Brandolini (2001), Alesina and Angeletos (2005), Edlund et al. (2009), Jin et al.
(2011) and Wei and Zhang (2011).

When an estimated regressor is subject to sampling error, the ordinary least squares
(OLS) estimator is potentially biased. Nevertheless, the data used to estimate this
regressor can be employed to infer the error.With the inferred information, we propose
an adjusted version of the OLS estimator, which accounts for sampling error in the
estimated regressor. We find that the OLS estimator without accounting for sampling
error could severely underestimate the effect of the estimated regressor.

The situation under consideration is closely related to the setup of measurement
error or generated regressors (e.g., predicted values or residuals of linear regression
as regressors), both of which have been well studied in the existing literature (see,
e.g., Hausman 2001; Murphy and Topel 1985). However, the situation considered in
this paper and that in existing studies exhibit subtle differences. First, the sampling
error associatedwith an estimated regressor is typically heteroscedastic with a nonzero
mean, whereas the classical measurement error is assumed to be homoscedastic with
a zero mean. Second, each observation of an estimated regressor is usually computed
independent of the other observations, and the method to estimate the regressor might
also vary across observations. By contrast, generated regressors typically result from
a common functional form that holds across observations. These subtle differences
imply that existing methods, such as the classical errors-in-variables estimator and the
adjustment inMurphy and Topel (1985), are no longer suitable to correct the sampling
error in an estimated regressor.

The sampling error associated with an estimated regressor can be dealt with by
the instrumental variable (IV) approach. However, the sampling error of an estimated
regressor is often neglected in practice for two reasons. First, finding variables that
can serve as valid instruments may be difficult. Second, one may think that the sam-
pling error is small and thus negligible, particularly when the sample size is large.
Assuming that neglecting the small sampling error will not severely bias the estimates
is sometimes tempting.

In this paper, we show that the cost of neglecting the sampling error in an estimated
regressor could be substantial, even when the error is small. The underlying reason
is that if the variation of the estimated regressor itself is also small, the seemingly
small sampling error could lead to a large difference in the estimates. We illustrate this
difference by comparing the OLS estimator with its adjusted version that accounts for
the sampling error. The proposed adjustment relies on the data used to estimate the
regressor and does not turn to IV or the generalized method of moments (GMM).

We use the Gini coefficient and sex ratio as examples of estimated regressors.
A large body of literature in development economics uses Gini as an indicator of
economic inequality and sex ratio as a measure of gender imbalance. Although the
Gini coefficient and sex ratio are typically estimated by large survey data sets with a
small sampling error, their own variation is also small, see, e.g., Deininger and Squire
(1996) and Barro (2008) on the relatively small variation of Gini, so their seemingly
small sampling error is generally non-negligible. We illustrate the non-negligibility
of the sampling error with two empirical examples. Using the same data as in Jin
et al. (2011) and Wei and Zhang (2011), we find evidence that the OLS estimator is
substantially different from its adjusted version that takes sampling error into account.
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Linear regression with an estimated regressor 301

For example, using the data in Jin et al. (2011), we find that the OLS point estimate
of the effect of Gini increases (in absolute value) by over 170% when sampling error
is accounted for.

Although the Gini coefficient and sex ratio are used as our main examples, the mes-
sage conveyed here also applies to other aggregate indicators of economic development
that are associated with sampling error and that serve as regressors. These aggregate
indicators include per capita income, infant mortality, and literacy rate, to name a few.
If sampling error of an estimated regressor appears comparable with the variation of
the estimated regressor, then the empirical findings related to this regressor generally
need careful reexamination, because the estimates can be severely underestimated as
a result of ignorance of the sampling error.

The rest of this paper is organized as follows. In Sect. 2, we describe a linear
regression model with an estimated regressor, and propose an adjusted version of
the OLS estimator that accounts for the sampling error associated with the estimated
regressor. Section 3 includes two empirical applications to illustrate the improvement
made by the proposed adjustment for the sampling error. Section 4 concludes. Further
details and the Monte Carlo evidence are presented in the Appendix.

2 Model and adjustment

2.1 Linear regression with an estimated regressor

Consider a linear regression that captures the relationship of economic variables for
N groups:

yi = αi · β + Δ′
iγ + εi , i = 1, 2, . . . , N . (1)

where yi is an economic variable of interest, αi denotes some population measure
(such as the Gini coefficient and sex ratio) for the i th group, Δi is a vector of control
variables, and εi is the exogenous error. β and γ denote the parameters. In particular,
β is the parameter of interest. N is the total number of groups for this model.

2.1.1 Example I: Gini

Such a linear regression model often appears in the vast literature on economic growth
and income inequality. In this literature, yi denotes the economic growth of the i th
nation or province/state (or in a panel data setup, the i th intersection of nation and time),
whereas income inequality is usually measured by the Gini coefficient, corresponding
to αi in the model above. The parameter β is of interest, see, e.g., Barro (2000).

Besides the effect of income inequality on economic growth, this model is similarly
applied to analyze the effect of inequality on consumption, investment, migration, and
health, see, e.g., Atkinson and Brandolini (2001), Alesina and Angeletos (2005) and
Jin et al. (2011). In all of these studies, the population Gini coefficient is unknown,
so empirical researchers have to work with the sample Gini coefficient denoted as α̂i ,
which is an estimator for the population Gini αi in the i th group.
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2.1.2 Example II: Sex ratio

Such a linear regression is also widely applied in the literature on gender inequality.
For example, Wei and Zhang (2011) relate the savings rate in a region to its sex ratio
(men over women). yi denotes the savings rate in region i , and αi is the sex ratio in this
region. Wei and Zhang (2011) hypothesize that β is positive, i.e., high sex ratios lead
to high savings rates. Similarly, Edlund et al. (2009) relate high sex ratios to crime
rates.

In both Edlund et al. (2009) and Wei and Zhang (2011), the sex ratio in a region is
estimated by the genders of individuals sampled in this region, i.e., the estimated sex
ratio α̂i is used as a regressor, instead of the population sex ratio αi in the empirical
analysis.

2.2 Sampling error with a nonzero mean

For the model described by (1), the data for yi and Δi are generally readily available,
but αi is unknown and needs to be estimated by its sample counterpart α̂i . If αi is the
population Gini coefficient for nation i , then it is unknown but can be estimated by,
e.g., some sampled individual income data from this nation. Similarly, if αi denotes
the sex ratio in region i , it also needs to be estimated by the sampled individuals.

Because α̂i differs from αi as a result of sampling error, we write

α̂i = αi + ui (2)

where the difference between α̂i and αi , denoted by ui , is the sampling error. Conse-
quently, the actual model faced by empirical researchers is as follows:

yi = α̂i · β + Δ′
iγ + ε̃i , where ε̃i = εi − ui · β. (3)

When β �= 0, ε̃i is correlated with α̂i . The estimated regressor α̂i thus suffers from
endogeneity because of its sampling error, which jeopardizes the OLS estimator
for β.

However, neglecting the sampling error ui associated with the estimated regressor
α̂i is common practice, particularly when the size of the data used to compute α̂i is
large. For instance, the standard error associated with the estimated Gini coefficient
is seldom reported in empirical studies, and the endogeneity of Gini in the linear
regression is often not addressed, e.g., in Deininger and Squire (1998), Kremer and
Chen (2002), Alesina andAngeletos (2005) and Jin et al. (2011). The sampling error of
sex ratio is similarly neglected in Edlund et al. (2009). Asymptotically, neglecting the
sampling error ui is not completely unreasonable. As the sample used for computing
α̂i increases, ui will decrease to zero, so the OLS estimator for β is expected to
be consistent under regularity conditions. However, we will highlight in this paper
that the cost of neglecting the sampling error ui in (3) can be high in finite sample
applications, even when ui appears small. We then propose a method to adjust for this
error.
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Linear regression with an estimated regressor 303

Note that our model of (1)–(3) effectively describes an errors-in-variables problem,
or a measurement error problem. That is, the unknown regressor αi is contaminated
by measurement error ui , according to (2). Consequently, the empirical findings are
contaminated if the measurement error is not treated, see, e.g., Hausman (2001).

Different from the classical errors-in-variablesmodel, where themeasurement error
is assumed to be homoscedastic with a zeromean, our model allows the sampling error
ui to be heteroscedastic with a nonzero mean. This characteristic corresponds to two
facts. First, the estimator α̂i for αi could be biased, and this induces the nonzero mean
of ui . Second, for a different group, its population measure αi may be estimated by
α̂i with a different sample size, which naturally induces possibly different variances
of the sampling error ui , for i = 1, 2, . . . , N .

Therefore, our model can be viewed as a natural extension of the classical mea-
surement error model. Assuming that the estimator α̂i has finite variance σ 2

i , we can
thus rewrite its associated sampling error ui as follows:

ui = bi + σiτi (4)

where bi ≡ E(̂αi )−αi denotes the bias of the estimator α̂i , and τi is a random variable
with a zero mean and unit variance. In the classical setup where ui is homoscedastic
with a zero mean, (4) reduces to ui = σuτi , where σ 2

u is the same variance of ui , for
i = 1, 2, . . . , N .

Furthermore, unlike the classical measurement error, whose distribution is typically
unknown, the distribution of sampling error can be derived or approximated. The
reason is that deriving or approximating the distribution of the estimator α̂i is usually
possible. Consequently, we can infer the distribution of ui because ui = α̂i − αi ,
and αi is a fixed parameter for a given i . When the data used for computing α̂i is
available, we may also use the data to approximate its associated bias bi and standard
error σi . For instance, if α̂i stands for the estimated Gini coefficient, Deltas (2003) and
Langel and Tillé (2013) show how to use individual income data to approximately
derive the bias and standard error of α̂i .

2.3 Relation to existing literature

Before proceeding to the adjustment for the sampling error of the estimated regressor,
we first show how our model is related to the existing econometric literature.

So far, we have explained that our model is not fully nested by the classical mea-
surement error model, although they are closely related. Similarly, our model is also
closely related to, but not nested by, the existing literature of generated regressors,
see, e.g., Murphy and Topel (1985) and Hoffman (1987) for an early discussion of this
topic.

From the perspective of generated regressors, our model corresponds to a two-step
procedure: In the first step, the regressor α̂i is generated or estimated; in the second
step, the generated or estimated regressor α̂i is included in the regression analysis.1

1 Two approaches coexist to handle the problem induced by generated regressors. One approach (see, e.g,
Murphy and Topel 1985) is to adjust the variance of the OLS estimator in the second step to account for the
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We assume that the first-step estimation in ourmodel is independent of the second-step
main regression, i.e., the sampling error ui is independent of the dependent variable
yi , the controls Δi and the structural error εi .

However, our model of (1)–(4) does not fully fit into the existing literature of
generated regressors. As in Murphy and Topel (1985) and Hoffman (1987), generated
regressors typically result from a common functional form with certain (unknown)
parameters. By contrast, in our model of estimated regressors, each α̂i is computed
independently, for i = 1, 2, . . . , N ; in addition, we allow the way of computing α̂i to
vary, i.e., α̂i and α̂ j may result from two different procedures, when i �= j . In other
words, a common functional form with the same parameters that can describe how
α̂i is generated does not exist,2 for i = 1, 2, . . . , N . Based on the argument above,
the existing methods from the literature on generated regressors are not suitable to
account for the independent and heterogeneous sampling error in our model.

To handle the endogeneity problemdescribed in (1)–(4), a potential solution is to use
an instrumental variable for α̂i and conduct the IV estimation. Generally, when more
instrumental variables or identification conditions are available, the GMM approach
can also be adopted. However, the availability of a good instrumental variable in every
empirical application is not guaranteed. Furthermore, even when such an instrumen-
tal variable is available, it may suffer from the so-called weak instrument problem
examined in Stock et al. (2002), who warn that the IV and the GMM estimator are
still unreliable if the statistical quality of instruments is weak. Consequently, having a
method other than IV/GMM is useful to bypass the endogeneity because of sampling
error.

To summarize, we have described a model for the sampling error associated with an
estimated regressor, as in (1)–(4). Although the model setup appears similar to that of
the measurement error or generated regressors, some subtle differences exists, so that
the current methods in the literature of measurement error and generated regressors
cannot be directly applied to our model. In addition, we do not intend to resolve
the sampling error problem by turning to IV or GMM, both of which call for extra
requirements. In the remaining part of the paper, we show that if the bias and standard
error associated with the estimated regressor α̂i can be approximated, then the OLS
estimator for β can be directly adjusted to account for the sampling error of α̂i . As
detailed below, the proposed adjustment is a modified version of the classical errors-
in-variables estimator.

Footnote 1 continued
sampling error associated with the generated regressors in the first-step estimation. The other approach (see,
e.g, Hoffman 1987) is to consider a system that includes both the first and the second step and simultaneously
apply some estimation method (e.g., generalized least squares, maximum likelihood) to the system of both
steps to avoid the error associated with generated regressors.
2 Although the formula or expression to compute α̂i can be the same for every i , the data used for the
formula are usually drawn from a different underlying distribution for a different i . For example, even if
the way of computing Gini is the same for every country, the income data of different countries are drawn
from different income distributions, which cannot be described by the same functional form with the same
parameters.
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2.4 Adjustment for the sampling error

We start the econometric discussion with the OLS estimator of β, denoted by β̂OLS:

β̂OLS = α̂′MΔY
α̂′MΔα̂

(5)

where α̂ = (̂α1, α̂2, . . . , α̂N )′, MΔ = I − Δ(Δ′Δ)−1Δ′, Δ = (Δ1,Δ2, . . . ,ΔN )′, I
is the identity matrix, and Y = (y1, y2, . . . , yN )′.

To account for the sampling error associated with the estimated regressor α̂i , we
propose an adjusted version of β̂OLS, denoted by β̂

adj
OLS below:

β̂
adj
OLS = β̂OLS

1 − α̂′MΔb̂+σ̂ ′σ̂
α̂′MΔα̂

(6)

where b̂ = (b̂1, b̂2, . . . , b̂N )′, σ̂ = (σ̂1, σ̂2, . . . , σ̂N )′. b̂i and σ̂i are the approximated
bias and standard error of α̂i , respectively.

For a clear illustration of (6), let us consider a simple case that corresponds to the
classical measurement error setup. Assume that the mean of ui is zero, and its variance
σ 2
i = σ 2

u , for i = 1, 2, . . . , N . This simplification thus requires that the estimated
regressor α̂i is unbiased with the same variance σ 2

u for each i . In this simplified
case, (6) reduces to the classic errors-in-variables estimator with b̂ = 0 and σ̂ =
(σ̂u, σ̂u, . . . , σ̂u)

′. In other words, (6) is a modified version of the classical errors-in-
variables estimator, and the modification corresponds to the heterogenous feature of
sampling error associated with the estimated regressor.

Notably, the ratio α̂′MΔb̂+σ̂ ′σ̂
α̂′MΔα̂

in (6) helps explain why the possibly small sampling
error of α̂i may not be negligible. Although the bias and standard error of the estimated
regressor may be small, the cross-sectional variation of α̂i after the control variables
are projected out, α̂′MΔα̂, may also be small. If so, α̂′MΔb̂ + σ̂

′
σ̂ and α̂′MΔα̂ may

probably have similar magnitudes, which induce the malfunction of β̂OLS.
The difference between (5) and (6) indicates that β̂adj

OLS takes the sampling error into

account, whereas β̂OLS does not. Consequently, β̂
adj
OLS is expected to outperform β̂OLS,

particularlywhen the sampling error is sizeable.When the sampling error is negligible,
i.e., α̂′MΔb̂+σ̂

′
σ̂ has amuch smallermagnitude than α̂′MΔα̂, β̂adj

OLS is similar to β̂OLS.

For statistical inference, we also provide an expression for the standard error of β̂adj
OLS:

s.e.
(

β̂
adj
OLS

)

=
{

(

α̂′MΔα̂
)−1

[

(

α̂′MΔε̂
)′ (

α̂′MΔε̂
)

]

(

α̂′MΔα̂
)−1

}1/2

1 − α̂′MΔb̂+σ̂ ′σ̂
α̂′MΔα̂

(7)

which is a scaled version of the standard error of β̂OLS,with ε̂ = MΔ[Y−(̂α−b̂)β̂
adj
OLS].

Similarly, when sampling error is negligible, this standard error reduces to the square
root of the classical variance estimator of White (1980).
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For brevity, the derivation of β̂
adj
OLS, as well as the Monte Carlo evidence for its

validity and usefulness, is shown in the Appendix.

3 Application

In this section, we use two empirical examples to show that the proposed adjustment
in (6) can cause a substantial difference, once the seemingly small sampling error is
accounted for. In particular, we choose theGini coefficient and sex ratio as examples of
estimated regressors. This choice is motivated by the sizeable literature on economic
inequality and gender imbalance, where Gini and sex ratio are widely used.

3.1 Application I: Gini coefficient

As the leading measure of economic inequality, the Gini coefficient widely serves as
a regressor in empirical studies. For example, Barro (2000, 2008) relate a nation’s
economic growth to its Gini coefficient; Alesina and Angeletos (2005) study whether
Gini and social belief affect tax and welfare policies; and Jin et al. (2011) argue that
high inequality measured by Gini induces less consumption.

However, the accuracy of Gini coefficient used in empirical studies has long been
under doubt. Both instrumental variable estimation and the generalized method of
methods have been adopted to address the endogeneity of Gini, see, e.g., Forbes (2000)
and De La Croix and Doepke (2003). Nevertheless, dealing with the endogeneity of
Gini in linear regression analysis is not commonplace yet, and themeasurement error of
Gini appears to still be ignored inmost empirical studies. For instance, the endogeneity
of Gini is not addressed in Deininger and Squire (1998), Kremer and Chen (2002),
Alesina and Angeletos (2005) and Jin et al. (2011).

The common ignorance of the measurement error of Gini coefficient could result
from the belief that this error is small and thus negligible. However, as suggested in
the previous section, even the small sampling error of Gini could severely contaminate
empirical findings, particularly when the variation of Gini is also small.3 Given that the
sampling error is among various errors that can contaminate Gini, if the sampling error
itself can severely contaminate empirical findings, then it implies that themeasurement
error of Gini generally deserves serious consideration in future studies.

We use the existing methods in the broad literature to compute the Gini coefficient,
as well as its associated bias and standard error. αi now denotes the population Gini
coefficient for income (or wealth, expenditure, etc.) inequality in the i th group (or
nation, region, etc.), which is defined as twice the area between the 45◦-line and the
Lorenz (1905) curve. Mathematically, αi can be written as (see, e.g., Langel and Tillé
2013):

αi = 2

μi

∫ ∞

0
xFi (x)dFi (x) − 1 (8)

3 e.g., The standard error of Gini in Barro (2008) is reported to be around 0.10, before control variables
are projected out.
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where Fi (x) is the cumulative distribution function (c.d.f.) of income in the i th group,
μi = ∫ ∞

0 xdFi (x).
With some random sample of income drawn within the i th group, the commonly

used expression for estimating the population Gini coefficient αi is as follows (see,
e.g., Sen 1973; Ogwang 2000):

α̂i = 2
∑ni

j=1 j xi j

ni
∑ni

j=1 xi j
− ni + 1

ni
(9)

where α̂i denotes the (estimated) sample Gini coefficient of the i th group, based on
the ni observations of income, xi1 ≤ xi2 ≤ · · · ≤ xini , xi j is the j th observation of
income from the i th group after sorting. The expression of (9) results from replacing
the population c.d.f. in (8) with its sample counterpart.

The bias associated with α̂i is known to have the leading term −αi/ni (see, e.g.,
Deltas 2003; Davidson 2009), so it can be approximated by

b̂i = − α̂i

ni − 1
(10)

The standard error σ̂i associated with α̂i is often derived by the jackknife method:

σ̂i =
⎡

⎣

ni − 1

ni

ni
∑

j=1

(

α̂i( j) − α̂i(·)
)2

⎤

⎦

1/2

(11)

where α̂i( j) denotes the sample Gini coefficient computed after the j th observation
in the i th group is deleted, and α̂i(·) = 1

ni

∑ni
j=1 α̂i( j), see, e.g., Sandström et al.

(1988), Ogwang (2000), Modarres and Gastwirth (2006) and Langel and Tillé (2013)
for further discussions on the jackknife method for Gini.

To compute b̂i and σ̂i , we need the data set that contains the individual income.
This requirement, however, significantly limits our choices of the empirical example,
because recovering all the income data used to compute the Gini coefficient that
appears in empirical studies is almost impossible. For instance, if we conduct a cross-
country study as in Barro (2000, 2008), then wewould need to have individual income
data used to compute the Gini coefficient for each country. Although such income data
might be available, the reliability and comparability of cross-country data sets are under
doubt, as stated by Atkinson and Brandolini (2001).

Considering the above reasons, we choose Jin et al. (2011) to illustrate the proposed
adjustment in this paper. Instead of computing theGini coefficient for each country, Jin
et al. (2011) use the income data in China to compute the Gini for each peer group that
is defined by the interaction of province and age group. The availability of income data
to compute Gini in Jin et al. (2011) thus makes our adjustment of the OLS estimator
feasible.

To quickly illustrate why the sampling error of Gini might be non-negligible in Jin
et al. (2011), we present the summary statistics of the sample Gini and its associated
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Table 1 Summary statistics—Gini

Mean SD Min Max

α̂i 0.277 0.041 0.116 0.396

b̂i −0.001 0.001 −0.011 −0.000

σ̂i 0.014 0.006 0.006 0.087

α̂i stands for the sample Gini coefficient; b̂i is the estimated bias associated with α̂i ; and σ̂i is the standard
error of sampling error associated with α̂i . The data are the same as those in Jin et al. (2011) (the benchmark
result reported in the second column of their Table 1)

Table 2 Regressing consumption on Gini

Jin et al. (2011) (I) β̂OLS (II) β̂
adj
OLS

β −0.387 −0.238 −0.660

s.e. (0.121) (0.056) (0.156)

The estimate and standard error for β, the parameter of Gini in Jin et al. (2011) (the second column of their

Table 1), are re-calculated in two ways: (I) β̂OLS, as in (5), and (II) β̂
adj
OLS, as in (6). For brevity, we omit

the estimation outcome of control variables

bias and standard error in Table 1, with the use of the same data for a benchmark
result reported in Jin et al. (2011). Two numbers are of particular interest in Table 1.
First, the variation of Gini used in Jin et al. (2011) is not very large, as indicated
by the reported standard deviation of 0.041. Second, the sampling error associated
with the sample Gini is not very small, as indicated by the reported mean 0.014 for
the standard error of the sampling error. These two numbers are thus comparable in
magnitude. In addition, once control variables are projected out, the variation of Gini
is expected to be further reduced: In fact, the standard deviation of Gini will reduce
to 0.019 after controls are projected out, and this value is only slightly above 0.014.
Consequently, theOLSestimate using the data of Jin et al. (2011) is likely to be severely
distorted.

The benchmark regression result reported in Jin et al. (2011) is replicated and
presented in the first column of Table 2. For this regression, the dependent variable is
the log consumption of the peer group, and the Gini of the peer group is the regressor
of interest, whereas the control variables include age, family size, and income, among
other variables, see Jin et al. (2011) for further details. To be consistent with our model
setup, we do not consider the potential measurement error problem of the dependent
variable or control variables. Furthermore, the estimation results of control variables
are not included in Table 2, because our interest lies in β, the coefficient of Gini. The
reported result for β in the first column of Table 2 is the same as that in Jin et al.
(2011), where the estimate of β is roughly −0.387 with s.e. 0.121, by our replication.

The estimation conducted in Jin et al. (2011), however, uses the weight and cluster
option4 for the linear regression analysis. For our purpose of comparing the OLS

4 In Jin et al. (2011), peer groups are weighted by size, and clustered by province and age.
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estimatorwith its adjusted version,we simply re-estimate theirmodelwith the classical
OLS method without any further option. The outcome by OLS is reported in Column
(I) of Table 2, and it is qualitatively consistent with the results reported in Jin et al.
(2011): The OLS estimate of β is found to be negative and significantly different from
zero, so a high degree of inequality seems to suggest low consumption, as stated in
Jin et al. (2011). However, neither the estimation in Jin et al. (2011) nor the classical
OLS method takes the sampling error of Gini into consideration, so the corresponding
empirical findings are under doubt.

Column (II) β̂adj
OLS of Table 2 presents the adjusted OLS outcome, with the use of our

proposedmethod to account for the sampling error ofGini.As expected,wefind that the
point estimate of β after adjustment ismuch larger than its OLS counterpart in absolute
value. The difference between Column (I) and (II) conveys the main message of this
paper that ignoring the sampling error of estimated regressors is not cost free, even if
the sampling error appears small. If we compare the point estimate−0.238 in Column
(I) with its adjusted counterpart −0.660 in Column (II), then the relative difference is
found to exceed 170%. In other words, in this example, taking the sampling error of
Gini into consideration increases the OLS estimate by more than 170% in absolute
value. This change in the OLS estimate is sizeable, especially if the estimate is adopted
for economic policymaking. In addition, the point estimate −0.238 in Column (I)
does not lie in the 95% confidence interval of β as implied by Column (II), so the
resulting difference from the adjustment for the sampling error of Gini also appears
significant.

Note that our sole objective of adopting Jin et al. (2011) as an example is to illustrate
the substantial change made from the adjustment of the sampling error of Gini. Other
than this objective, we do not intend to make any other point out of this example: e.g.,
we do not propose that reducing Gini by 0.01 will increase consumption by approx-
imately 0.66%, as Column (II) of Table 2 seems to suggest. Overall, this example
indicates that the seemingly small sampling error is not necessarily negligible, and
our proposed adjustment could make a substantial difference.

3.2 Application II: Sex ratio

We now turn to another example, where sex ratio serves as the leading regressor in
the regression analysis. αi now stands for the sex ratio in the i th group, and α̂i is the
computed sex ratio based on observations drawn from the i th group.

Specifically, for the i th group, if the fraction of men is denoted by pi , then the sex
ratio in this group is

αi = pi
1 − pi

(12)

Suppose ni individuals are sampled from the i th group, with ni,m men and ni − ni,m
women, then the sample sex ratio is

α̂i = ni,m
ni − ni,m

(13)
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By Taylor’s expansion, the bias of α̂i can be approximated by:

b̂i = ni,m
(

ni − ni,m
)2 (14)

Furthermore, by the Delta Method, the standard error of α̂i can be approximated by:

σ̂i =
[

nini,m
(

ni − ni,m
)3

]1/2

(15)

To illustrate how our proposed adjustment can outperform the unadjusted OLS
estimator, we consider two estimators for sex ratio in this application for a clear
illustration. The first estimator is the same as that used in Wei and Zhang (2011),
and it is computed by the full sample of the 2,000 Population Census in China,
with around 107 observations to calculate the sex ratio in each group. By contrast,
the other estimator for sex ratio is computed by the 0.5% sample of the same cen-
sus, with around 5 × 104 observations to compute each sex ratio. Consequently,
the first estimator is expected to be very close to the population sex ratio, whereas
the sampling error problem is expected to be more severe for the second estima-
tor, than for the first one; the error problem also results from reasonably large data
sets.

Table 3 presents the summary statistics of the two sample sex ratios and their
associated bias and standard error. As expected, Table 3 shows that if the sex ratio
results from the 0.5% sample (Panel B), then the sampling error problem is likely to
be severe. For example, in Panel B, the variation of sex ratio is not very large (standard
deviation ≈ 0.06), whereas the sampling error associated with the sample sex ratio is
not very small (e.g., the reportedmean is around 0.01 for its standard deviation). These
two numbers are thus comparable. By contrast, Panel A indicates that the sampling
error problem is negligible under the full sample.

Table 3 Summary statistics—sex ratio

Mean SD Min Max

Panel A (full sample of 2,000 Census)

α̂i 1.075799 0.048227 0.925735 1.227102

b̂i 4.46e−07 5.41e−07 6.34e−08 3.21e−06

σ̂i 0.000852 0.000449 0.000350 0.002583

Panel B (0.5% of full sample)

α̂i 1.059553 0.058870 0.916331 1.225672

b̂i 0.000097 0.000121 0.000014 0.000713

σ̂i 0.012432 0.006671 0.005129 0.038288

α̂i stands for the sample sex ratio; b̂i is the estimated bias associated with α̂i ; and σ̂i is the standard error
of sampling error associated with α̂i . The data are from Wei and Zhang (2011), and they correspond to the
results reported in their Table 14
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Table 4 Regressing savings
rate on sex ratio

We use two ways to recalculate
the estimate and standard error
for β, the parameter of sex ratio
in six specified linear models of
Wei and Zhang (2011) (Column
1–6 of their Table 14): (I) β̂OLS,
where the sex ratio is from the
0.5% sample of the 2,000
Population Census, instead of
the sex ratio from the full sample
in Wei and Zhang (2011); (II)

β̂
adj
OLS, the adjusted version of

β̂OLS. For brevity, we omit the
estimation outcome of control
variables

Specification Wei and Zhang (2011) (I) β̂OLS (II) β̂
adj
OLS

1. 0.282 0.219 0.272

(0.052) (0.041) (0.046)

2. 0.576 0.261 0.399

(0.178) (0.142) (0.137)

3. 0.735 0.544 0.667

(0.154) (0.117) (0.081)

4. 0.282 0.219 0.270

(0.051) (0.041) (0.046)

5. 0.320 0.232 0.302

(0.062) (0.046) (0.055)

6. 0.239 0.161 0.216

(0.068) (0.052) (0.063)

Table 4 presents the linear regression outcome, which corresponds to six model
specifications inWei and Zhang (2011) (see Column 1–6 in their Table 14 for details).
The dependent variable is the savings rate,whereas the sex ratio is the leading regressor.
The six specifications differ in the choice of control variables. The first column of
Table 4 by our replication is the same as the outcome reported in Wei and Zhang
(2011), where sex ratio results from the full sample of the census.

For Column (I) β̂OLS of Table 4, we replace the sex ratio used in Wei and Zhang
(2011) with its counterpart based on the 0.5% sample of the 2,000 Census. Under this
alternative sex ratio, all OLS estimates of β are found to decrease by at least 20%.5

This decrease should not be surprising, because the sampling error tends to bias the
OLS estimator toward zero. However, the exercise in Column (I) suggests that the
impact of gender imbalance could be severely underestimated in empirical studies
where each sex ratio is estimated by around 5 × 104 or fewer observations, see, e.g.,
Angrist (2002), Edlund et al. (2009), if the sampling error is ignored.

Column (II) β̂adj
OLS of Table 4 presents the adjusted OLS outcome, with the use of our

proposedmethod to account for the sampling error of the sex ratio used for Column (I).
As expected, we find that the point estimate of β after adjustment is much larger than
its OLS counterpart, and the relative improvement is roughly 20–50%. In particular,
the adjusted outcome in Column (II) is comparable with the result in the first column
of Table 4 by Wei and Zhang (2011), and it does not suffer from a severe sampling
error.6

Overall, Table 4 shows that our empirical framework that adjusts for the sampling
error works as expected. When the sampling error of sex ratio is sizeable, the adjusted

5 We repeatedly randomly draw the 0.5% sample from the census data 10 times, and the reported numbers
are the resulted sample averages.
6 Our adjusted estimates in Column (II) appear close to but slightly smaller than those reported in Wei and
Zhang (2011), and this difference could be caused by, e.g., the 0.5% sample we used not being an ideal
representative of the full sample used in Wei and Zhang (2011).
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OLS estimator tends to converge to the baseline estimate for which the sampling
error is negligible. Nevertheless, for both applications, we emphasize that we do not
claim that our adjusted estimates are free of bias. Strictly speaking, in both models,
the Gini coefficient and sex ratio may suffer from various sources of endogeneity,
whereas our proposed adjustment only targets the sampling error. Our proposed strat-
egy works best when the sampling error is the single most important source of bias in
the aggregate indicator. Conceivably, when the regressor is contaminated with other
important sources of bias, e.g., omitted variables, a formal identification strategy (e.g.,
instrumental variables) is needed to remove all the biases.7

4 Conclusion

This study targets a commonpractice in empirical studies: estimate an unknown regres-
sor with large survey data sets, then include the estimated regressor in the linear
regression analysis without accounting for its sampling error. A seemingly reasonable
argument for neglecting the sampling error associated with the estimated regressor is
that, this error is small, because the data set used to estimate the regressor is large.

We demonstrate in this study that even when sampling error is small, neglecting
it may still severely contaminate the regression analysis if the variation of the esti-
mated regressor is also small. We propose an adjustment to account for this error. The
proposed adjustment is a modified version of the classical errors-in-variables estima-
tor, because the sampling error is heteroscedastic with a nonzero mean. We use the
Gini coefficient and sex ratio as two examples of estimated regressors, and we show
that their sampling error is generally non-negligible, by presenting evidence that the
OLS estimator may substantially change after the seemingly small sampling error is
accounted for.

To conclude, this study highlights that the sampling error of estimated regressors
deserves serious consideration, even when these regressors are estimated by large data
sets. In addition, the sampling error can be easily accounted for without extra require-
ments, as long as the data sets used to estimate regressors are available. Alternatively,
if bias and the standard errors associated with the estimated regressors are reported
in practice, the sampling error can also be addressed without accessing the full data
sets. From an empirical perspective, this study also suggests that the existing findings
relating the Gini coefficient or sex ratio to other economic variables should be taken
with caution, if the measurement error problem is not treated. The real effect of eco-
nomic inequality or gender imbalance could be much stronger than that reflected by
the OLS estimator, if this estimator is not adjusted for measurement error.

Acknowledgments We thank the editor and two anonymous referees for helpful comments and sugges-
tions. Lingsheng Meng acknowledges the financial support from the National Natural Science Foundation
of China (Project No. 71303131).

7 For example, the instrumental variables estimates forβ inWei and Zhang (2011) aremuch larger (between

0.61 and 1.17 in their Table 16) than our adjusted OLS estimates, β̂adj
OLS, reported in Table 4, which indicates

that there are other sources of bias other than sampling error in the sex ratio.
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5 Appendix

The derivation of β̂
adj
OLS is presented here, together with some Monte Carlo evidence.

5.1 β̂
adj
OLS

For convenience, assumeall finitemoments of randomvariables exist, andobservations
are i.i.d.. Note that

β̂OLS = α̂′MΔY
α̂′MΔα̂

Plug Y = αβ + Δγ + ε, the vector/matrix version of Eq. (1) with
α = (α1, α2, . . . , αN )′, ε = (ε1, ε2, . . . , εN )′, into the equation above, we obtain

β̂OLS = α̂′MΔα

α̂′MΔα̂
β + α̂′MΔε

α̂′MΔα̂
=

(

1 − α′MΔU + U′MΔU
α̂′MΔα̂

)

β + op(1)

where α̂ = α + U, U = (u1, u2, . . . , uN )′, and α̂′MΔε/α̂′MΔα̂ is of order op(1).
The vector notation of (4) reads U = b + τ 	 σ , where b = (b1, b2, . . . , bN )′,

τ = (τ1, τ2, . . . , τN )′, σ = (σ1, σ2, . . . , σN )′, 	 denotes element-by-element multi-
plication. To approximate β̂OLS, we write α′MΔU/N andU′MΔU/N as follows, after
substituting b + τ 	 σ for U:

α′MΔU
N

= α′MΔb
N

+ op(1)

where α′MΔ(τ 	 σ )/N is of order op(1), and similarly,8

U′MΔU
N

= b′MΔb
N

+ (τ 	 σ )′MΔ(τ 	 σ )

N
+ op(1) = b′MΔb

N
+ σ ′σ

N
+ op(1)

Consequently, β̂OLS can be written as

β̂OLS =
[

1 − (α + b)′MΔb + σ ′σ
α̂′MΔα̂

]

β + op(1)

which further suggests an adjusted version of β̂OLS, denoted by β̂
adj
OLS below:

β̂
adj
OLS = β̂OLS

1 − α̂′MΔb̂+σ̂ ′σ̂
α̂′MΔα̂

8 Here we use the independence of τi and τ j , when i �= j .
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where b̂ = (b̂1, b̂2, . . . , b̂N )′, σ̂ = (σ̂1, σ̂2, . . . , σ̂N )′, and b̂i and σ̂i are the approxi-
mated bias and standard error of α̂i , respectively.

5.2 Monte Carlo

5.2.1 Gini

The toy model we adopt for the Monte Carlo experiment is

yi = αi + εi , i = 1, 2, . . . , N = 1,000.

where αi stands for the population Gini coefficient for the i th group.
To mimic the small cross-sectional variation of Gini after control variables are

projected out, the N values of αi are specified in the following manner: αi is equally
distributed between 0.35 and 0.45, i.e., αi = 0.35 + i−1

10(N−1) . εi is drawn from a
normal distribution with a zero mean and a variance equal to the sample variance of
αi . yi is generated by the equation above.

For each αi , the corresponding income data are randomly drawn from the Pareto
distributionwith the parameter λi = (α−1

i +1)/2. Doing so is based on the fact that the
c.d.f. of the Pareto distribution with parameter λi is F(x) = 1 − x−λi , which implies
that the population Gini coefficient is 1/(2λi − 1), according to the definition of Gini.

For convenience, the sample size of income data is fixed for every i , i.e., n is the
number of observations used to compute α̂i , for every i . Note that choosing the same
sample size in our Monte Carlo experiment does not imply that the sampling error
of Gini is made homoscedastic: As i changes, both αi and the income distribution
function vary; consequently, the variance of sampling error is not fixed. The choice of
n is listed in the first column of Table 5. With the simulated income data, we compute
each sample Gini coefficient α̂i , the associated bias b̂i and standard error σ̂i .

Finally, we compute three estimators of β, the parameter associatedwithGini that is
set to 1 in the toy model: (i) β̂OLS is computed by regressing yi on α̂i with an intercept;
(ii) β̂adj

OLS is the proposed adjusted version of β̂OLS that accounts for the sampling error;

(iii) β̂EIV is the errors-in-variables estimator, which corresponds to β̂
adj
OLS but with zero

bias and the same standard error across groups.9 With 1,000 replications, we report
the bias and mean squared error (MSE) for the three estimators in Table 5.

As expected, Table 5 shows that β̂
adj
OLS performs better than the unadjusted β̂OLS:

both bias (in absolute value) and mean squared error of β̂
adj
OLS appear substantially

smaller than those of β̂OLS. As the sample size n increases, β̂OLS is found to move
toward β, as indicated by the decreasing values of bias and mean squared error. This is
because the estimated sample Gini coefficient α̂i becomes closer to the true population
Gini coefficient αi as the sample size increases. Similarly, the performance of β̂

adj
OLS is

also improved as the sample size increases. Overall, β̂adj
OLS consistently performs better

than β̂OLS as well as β̂EIV that ignores the heterogenous feature of sampling error.

9 We use 1
N

∑N
i=1 σ̂i as the standard error associated with Gini for β̂EIV.
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Table 5 Bias and MSE of β̂
adj
OLS by Monte Carlo–Gini

n β̂OLS β̂
adj
OLS β̂EIV

Bias MSE Bias MSE Bias MSE

500 −0.773 0.599 0.189 0.112 −0.555 0.313

750 −0.724 0.524 0.139 0.055 −0.495 0.250

1,000 −0.684 0.469 0.107 0.037 −0.452 0.210

1,500 −0.623 0.390 0.078 0.019 −0.391 0.159

2,000 −0.575 0.332 0.057 0.013 −0.351 0.131

5,000 −0.421 0.181 0.033 0.005 −0.241 0.065

10,000 −0.311 0.100 0.021 0.003 −0.171 0.035

Bias = E(β̂ − β), MSE = E(β̂ − β)2. β̂OLS ignores sampling error, β̂adj
OLS accounts for sampling error,

while β̂EIV is the errors-in-variables estimator that (incorrectly) assumes sampling error has zero mean and
the same standard error across groups. The reported numbers result from the average of 1,000 Monte Carlo
replications. n is the number of observations used to estimate the unknown regressor αi in yi = αi · β + εi
where β is set to 1

Table 5 also highlights that β could be severely underestimated by β̂OLS, even when
the sample size to compute the estimated regressor is large. For example, when the
sample size is 10,000, the bias of β̂OLS is found to be around −0.311. This implies
that β is underestimated by roughly 31.1% because β equals 1 in the Monte Carlo
experiment.10

5.2.2 Sex ratio

We similarly conducted a Monte Carlo experiment for sex ratio, and it also supports
our adjusted OLS estimator. We omit the detailed description of the experiment here,
and codes are available by request.
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