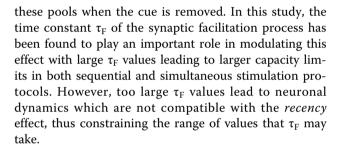
Balagué and Dempere-Marco *BMC Neuroscience* 2015, **16**(Suppl 1):P58 http://www.biomedcentral.com/1471-2202/16/S1/P58

POSTER PRESENTATION

The neurodynamical basis of multi-item working memory capacity: sequential vs simultaneous stimulation paradigms

Marta Balagué^{1,2*}, Laura Dempere-Marco²


From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

When investigating multi-item WM, and in contrast to single item experiments, a decision must be made regarding a key aspect of the stimulation protocol: how the memory set is presented to the subject simultaneously or sequentially. It is worth noting that most studies investigating multi-item WM do not address this issue and focus either in simultaneous stimulation protocols (e.g. [1,2]) or in sequential stimulation protocols (e.g. [3]) without confronting the two situations. This is nevertheless an aspect which provides a benchmark to probe and compare the different theories regarding how resources are allocated among the different items of a memory set [4,5]. In this study, we explore a biophysically-realistic attractor model of visual working memory (VWM) endowed with synaptic facilitation and investigate what are the effects of varying the dynamics of the facilitation process. We find that: 1) it is possible to reproduce experimentally observed effects such as the recency effect in sequential stimulation protocols (i.e. items presented in the final positions of a sequence are more likely to be retained in WM), and 2) WM capacity is boosted in both sequential and stimulation protocols when endowing the attractor network with synaptic facilitation.

Conclusions

In agreement with our previous results [2], synaptic facilitation boosts the WM capacity limit by effectively increasing the synaptic strengths just for those pools to which a cue is applied, and then maintaining the synaptic facilitation by the continuing neuronal firing in only

¹Moisès Broggi Hospital, Consorci Sanitari Integral, Sant Joan Despí, 08970, Spain

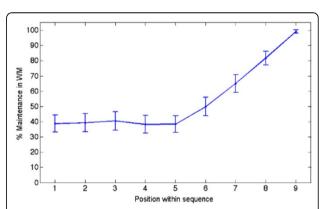


Figure 1 Maintenance of an item in WM memory as a function of its position within a sequence. The results are derived from computational simulations (100 blocks of 100 trials) of a delayed match-to-sample task (same stimulation protocol as in [3] and test item assimilated to a delayed match-to-sample task) with 9 selective neural assemblies sequentially stimulated. Maintenance in WM is estimated by assuming that an item is held in memory when its associated selective pool shows a mean persistent activity $v \ge 30$ Hz during a period of 500 ms 2 s after the end of the last stimulation. The network parameters can be found in [2] and τ_F =750 ms in this example.

© 2015 Balagué and Dempere-Marco This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: laura.dempere@upf.edu

Full list of author information is available at the end of the article

Acknowledgements

The authors acknowledge funding from the research project TIN2013-40630-R (Spanish Ministry of Economy and Competitiveness)

Authors' details

¹Moisès Broggi Hospital, Consorci Sanitari Integral, Sant Joan Despí, 08970, Spain. ²Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain.

Published: 18 December 2015

References

- Dempere-Marco L, Melcher DP, Deco G: Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network. PLoS One 2012, 7(8):e42719.
- Rolls ET, Dempere-Marco L, Deco G: Holding Multiple Items in Short Term Memory: A Neural Mechanism. PLoS One 2013, 8(4):e61078.
- Amit D, Bernacchia A, Yakovlev V: Multiple-object working memory a model for behavioral performance. *Cereb Cortex* 2003, 3:435-443.
- Bays P, Husain M: Dynamic shifts of limited working memory resources in human vision. Science 2008, 321:851-854.
- 5. Zhang W, Luck S: Discrete fixed-resolution representations in visual working memory. *Nature* 2008, **453**:233-235.

doi:10.1186/1471-2202-16-S1-P58

Cite this article as: Balagué and Dempere-Marco: The neurodynamical basis of multi-item working memory capacity: sequential vs simultaneous stimulation paradigms. *BMC Neuroscience* 2015 16(Suppl 1): P58.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit