
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 46472, Pages 1–23
DOI 10.1155/ASP/2006/46472

Rapid VLIW Processor Customization for Signal
Processing Applications Using Combinational
Hardware Functions

Raymond R. Hoare, Alex K. Jones, Dara Kusic, Joshua Fazekas, John Foster,
Shenchih Tung, andMichael McCloud

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

Received 12 October 2004; Revised 30 June 2005; Accepted 12 July 2005

This paper presents an architecture that combines VLIW (very long instruction word) processing with the capability to introduce
application-specific customized instructions and highly parallel combinational hardware functions for the acceleration of signal
processing applications. To support this architecture, a compilation and design automation flow is described for algorithms written
in C. The key contributions of this paper are as follows: (1) a 4-way VLIW processor implemented in an FPGA, (2) large speedups
through hardware functions, (3) a hardware/software interface with zero overhead, (4) a design methodology for implementing
signal processing applications on this architecture, (5) tractable design automation techniques for extracting and synthesizing
hardware functions. Several design tradeoffs for the architecture were examined including the number of VLIW functional units
and register file size. The architecture was implemented on an Altera Stratix II FPGA. The Stratix II device was selected because it
offers a large number of high-speed DSP (digital signal processing) blocks that execute multiply-accumulate operations. Using the
MediaBench benchmark suite, we tested our methodology and architecture to accelerate software. Our combined VLIW processor
with hardware functions was compared to that of software executing on a RISC processor, specifically the soft core embedded
NIOS II processor. For software kernels converted into hardware functions, we show a hardware performance multiplier of up to
230 times that of software with an average 63 times faster. For the entire application in which only a portion of the software is
converted to hardware, the performance improvement is as much as 30X times faster than the nonaccelerated application, with a
12X improvement on average.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

In this paper, we present an architecture and design method-
ology that allows the rapid creation of application-specific
hardware accelerated processors for computationally inten-
sive signal processing and communication codes. The tar-
get technology is suitable for field programmable gate arrays
(FPGAs) with embedded multipliers and for structured or
standard cell application-specific integrated circuits (ASICs).
The objective of this work is to increase the performance of
the design and to increase the productivity of the designer,
thereby enabling faster prototyping and time-to-market so-
lutions with superior performance.

The design process in a signal processing or communica-
tions product typically involves a top-down design approach
with successively lower level implementations of a set of op-
erations. At the most abstract level, the systems engineer de-
signs the algorithms and control logic to be implemented in a
high level programming language such as Matlab or C. This

functionality is then rendered into a piece of hardware, ei-
ther by a direct VLSI implementation, typically on either an
FPGA platform or an ASIC, or by porting the system code to
a microprocessor or digital signal processor (DSP). In fact, it
is very common to perform a mixture of such implementa-
tions for a realistically complicated system, with some func-
tionality residing in a processor and some in an ASIC. It
is often difficult to determine in advance how this separa-
tion should be performed and the process is often wrought
with errors, causing expensive extensions to the design cy-
cle.

The computational resources of the current generation
of FPGAs and of ASICs exceed that of DSP processors. DSP
processors are able to execute up to eight operations per
cycle while FPGAs contain tens to hundreds of multiply-
accumulate DSP blocks implemented in ASIC cells that have
configurable width and can execute sophisticated multiply-
accumulate functions. For example, one DSP block can
execute A ∗ B ± C ∗ D + E ∗ F ± G ∗ H in two cycles on

2 EURASIP Journal on Applied Signal Processing

9-bit data or it can execute A ∗ B + C on 36-bit data in two
cycles. An Altera Stratix II contains 72 such blocks as well
as numerous logic cells [1]. Xilinx has released preliminary
information on their largest Virtex 4 that will contain 512
multiply-accumulate ASIC cells, with 18x18-bit multiply and
a 42-bit accumulate, and operate at a peak speed of 500MHz
[2]. Lattice Semiconductor has introduced a low-cost FPGA
that contains 40 DSP blocks [3]. From our experiments, a
floating point multiplier/adder unit can be created using 4 to
8 DSP blocks, depending on the FPGA.

Additionally, ASICs can contain more computational
power than an FPGA but consume much less power. In
fact, there are many companies, including the FPGA vendors
themselves, that will convert an FPGA design into an equiv-
alent ASIC and thereby reduce the unit cost and power con-
sumption.

In spite of these attractive capabilities of FPGA architec-
tures, it is often intractable to implement an entire applica-
tion in hardware. Computationally complex portions of the
applications, or computational kernels, with generally high
available parallelism are often mapped to these devices while
the remaining portion of the code is executed with a sequen-
tial processor.

This paper introduces an architecture and a design
methodology that combines the computational power of
application-specific hardware with the programmability of a
software processor.

The architecture utilizes a tightly coupled general-
purpose 4-way very long instruction world (VLIW) proces-
sor with multiple application-specific hardware functions.
The hardware functions can obtain a performance speedup
of 10x to over 100x, while the VLIW can achieve a 1x to 4x
speedup, depending on the available instruction level paral-
lelism (ILP). To demonstrate the validity of our solution, a
4-way VLIW processor (pNIOS II) was created based on the
instruction set of the Altera NIOS II processor. A high-end
90nm FPGA, an Altera Stratix II, was selected as the target
technology for our experiments.

For the design methodology, we assume that the design
has been implemented in strongly typed software language,
such as C, or utilizes a mechanism that statically indicate the
data structure sizes, like vectorized Matlab. The software is
first profiled to determine the critical loops within the pro-
gram that typically consume 90% of the execution time. The
control portion of each loop remains in software for execu-
tion on the 4-way VLIW processor. Some control flow from
loop structures is removed by loop unrolling. By using pred-
ication and function inlining, the entire loop body is con-
verted into a single data flow graph (DFG) and synthesized
into an entirely combinational hardware function. If the loop
does not yield a sufficiently large DFG, the loop is considered
for unrolling to increase the size of the DFG. The hardware
functions are tightly integrated into the software processor
through a shared register file so that, unlike a bus, there is no
hardware/software interface overhead. The hardware func-
tions are mapped into the processor’s instruction stream as
if they are regular instructions except that they require mul-
tiple cycles to compute. The exact timing of the hardware

functions is determined by the synthesis tool using static tim-
ing analysis.

In order to demonstrate the utility of our proposed de-
sign methodology, we consider several representative prob-
lems that arise in the design of signal processing systems in
detail. Representative problems are chosen in the areas of (1)
voice compression with the G.721, GSM 06.10, and the pro-
posed CCIIT ADPCM standards; (2) image coding through
the inverse discrete cosine transform (IDCT) that arise in
MPEG video compression; and (3) multiple-input multiple-
output (MIMO) communication systems through the sphere
decoder [4] employing the Fincke-Pohst algorithm [5].

The key contributions of this work are as follows.

(i) A complete 32-bit 4-way VLIW soft core processor in an
FPGA. Our pNIOS II processor has been tested on a
Stratix II FPGA device and runs at 166MHz.

(ii) Speedups over conventional approaches through hard-
ware kernel extraction and custom implementation in
the same FPGA device.

(iii) A hardware/software interface requiring zero cycle over-
head. By allowing our hardware functions direct access
to the entire register file, the hardware function can
operate without the overhead of a bus or other bot-
tlenecks. We show that the additional hardware cost to
achieve this is minimal.

(iv) A design methodology that allows standard applications
written in C to map to our processor using a VLIW
compiler that automatically extracts available paral-
lelism.

(v) Tractable design automation techniques for mapping
computational kernels into efficient custom combina-
tional hardware functions.

The remainder of the paper is organized as follows: we
provide some motivation for our approach and its need in
signal processing in Section 2. In Section 3, we describe the
related work to our architecture and design flow. Our archi-
tecture is described in detail in Section 4. Section 5 describes
our design methodology including our method for extract-
ing and synthesizing hardware functions. Our signal process-
ing applications are presented in Section 6 including an in
depth discussion of our design automation techniques us-
ing these applications as examples. We present performance
results of our architecture and tool flow in Section 7. Fi-
nally, Section 8 describes our conclusions with planned fu-
ture work.

2. MOTIVATION

The use of FPGA and ASIC devices is a popular method
for speeding up time critical signal processing applications.
FPGA/ASIC technologies have seen several key advance-
ments that have led to greater opportunity for mapping
these applications to FPGA devices. ASIC cells such as DSP
blocks and block RAMs within FPGAs provide an efficient
method to supplement increasing amounts of programmable
logic within the device. This trend continues to increase the
complexity of applications that may be implemented and

Raymond R. Hoare et al. 3

the achievable performance of the hardware implementa-
tion.

However, signal processing scientists work with software
systems to implement and test their algorithms. In general,
these applications are written in C and more commonly in
Matlab. Thus, to supplement the rich amount of hardware
logic in FPGAs, vendors such as Xilinx and Altera have re-
leased both FPGAs containing ASIC processor cores such as
the PowerPC enabled Virtex II Pro and the ARM-enabled
Excalibur, respectively. Additionally, Xilinx and Altera also
produce soft core processors Microblaze and NIOS, each of
which can be synthesized on their respective FPGAs.

Unfortunately, these architectures have several deficien-
cies that make them insufficient alone. Hardware logic is
difficult to program and requires hardware engineers who
understand the RTL synthesis tools, their flow, and how to
design algorithms using cumbersome hardware description
languages (HDLs). Soft core processors have the advantage
of being customizable making it easy to integrate software
and hardware solutions in the same device. However, these
processors are also at the mercy of the synthesis tools and of-
ten cannot achieve necessary speeds to execute the software
portions of the applications efficiently. ASIC core processors
provide much higher clock speeds; however, these processors
are not customizable and generally only provide bus-based
interfaces to the remaining FPGA device creating a large data
transfer bottleneck.

Figure 1 displays application profiling results for the
SpecInt, MediaBench, and NetBench suites, with a group of
selected security applications [5]. The 90/10 rule tells us that
on average, 90% of the execution time for an application is
contained within about 10% of the overall application code.
These numbers are an average of individual application pro-
files to illustrate the overall tendency of the behavior of each
suite of benchmarks. As seen in Figure 1, it is clear that the
10% of code referred to in the 90/10 rule refers to loop struc-
tures in the benchmarks. It is also apparent that multime-
dia, networking, and security applications, this includes sev-
eral signal processing benchmark applications, exhibit even
higher propensity for looping structures to make a large im-
pact on the total execution time of the application.

Architectures that take advantage of parallel computation
techniques have been explored as ameans to support compu-
tational density for the complex operations required by dig-
ital processing of signals and multimedia data. For example,
many processors contain SIMD (single instruction multiple
data) functional units for vector operations often found in
DSP and multimedia codes.

VLIW processing improves upon the SIMD technique
by allowing each processing element parallelism to execute
its instructions. VLIW processing alone is still insufficient
to achieve significant performance improvements over se-
quential embedded processing. When one considers a tradi-
tional processing model that requires a cycle for operand-
fetch, execute, and writeback, there is significant overhead
that occupies what could otherwise be computation time.
While pipelining typically hides much of this latency, mis-
prediction of branching reduces the processor ILP. A typical

100%

80%

60%

40%

20%

0%

E
xe
cu
ti
on

ti
m
e
of

lo
op

s

Speclnt MediaBench Security NetBench

Average for benchmark suite

Loop 1

Loop 4

Loop 2

Loop 5

Loop 3

Loops 6-10

Figure 1: Execution time contained within the top 10 loops in
the code averaged across the SpecInt, MediaBench, and NetBench
suites, as well as selected security applications [5].

software-level operation can take tens of instructions more
than the alternative of a single, hardware-level operation
that propagates the results from one functional unit to the
next without the need for write-back, fetch, or performance-
affecting data forwarding.

Our technique for extracting computational kernels in
the form of loops from the original code for no overhead
implementation in combinational hardware functions allows
the opportunity for large speedups over traditional or VLIW
processing alone. We have mapped a course-grain compu-
tational structure on top of the fine-grain FPGA fabric for
implementation of hardware functions. In particular, this
hardware fabric is coarse-grained and takes advantage of ex-
tremely low-latency DSP (multiply-accumulate) blocks im-
plemented directly in silicon. Because the fabric is combi-
national, no overhead from nonuniform or slow datapath
stages is introduced.

For implementation, we selected an Altera Stratix II
EP2S180F1508C4 in part for its high density of sophisticated
DSPmultiply-accumulate blocks and the FPGA’s rapidly ma-
turing tool flow that eventually permits fine grain control
over routing layouts of the critical paths. The FPGA is useful
beyond prototyping, capably supporting deployment with a
maximum internal clock speed of 420MHz dependent on
the interconnect of the design and on-chip resource utiliza-
tion. For purposes of comparing performance, we compare
our FPGA implementation against our implementation of
the Altera NIOS II soft core processor.

3. RELATEDWORK

Manual hardware acceleration has been applied to count-
less algorithms and is beyond enumeration here. These
systems generally achieve significant speedups over their
software counterparts. Behavioral and high-level synthesis
techniques attempt to leverage hardware performance from
different levels of behavioral algorithmic descriptions. These

4 EURASIP Journal on Applied Signal Processing

different representations can be from hardware description
languages (HDLs) or software languages such as C, C++,
Java, and Matlab.

The HardwareC language is a C-like HDL used by the
Olympus synthesis system at Stanford [6]. This system uses
high-level synthesis to translate algorithms written in Hard-
wareC into standard cell ASIC netlists. Esterel-C is a system-
level synthesis language that combines C with the Esterel lan-
guage for specifying concurrency, waiting, and pre-emption
developed at Cadence Berkeley Laboratories [7]. The SPARK
synthesis engine from the UC Irvine translates algorithms
written in C into hardware descriptions emphasizing extrac-
tion of parallelism in the synthesis flow [8, 9]. The PACT be-
havioral synthesis tool from Northwestern University trans-
lates algorithms written in C into synthesizable hardware de-
scriptions that are optimized for low-power as well as perfor-
mance [10, 11].

In industry, several tools exist which are based on be-
havioral synthesis. The Behavioral Compiler from Synop-
sys translates applications written in SystemC into netlists
targeting standard cell ASIC implementations [12, 13]. Sys-
temC is a set of libraries designed to provide HDL-like func-
tionality within the C++ language for system level synthe-
sis [14]. Synopsys cancelled its Behavioral Compiler because
customers were unwilling to accept reduced quality of re-
sults compared to traditional RTL synthesis [15]. Forte De-
sign Systems has developed the Cynthesizer behavioral syn-
thesis tool that translates hardware independent algorithm
descriptions in C and C++ into synthesizable hardware de-
scriptions [16]. Handel-C is a C-like design language from
Celoxica for system level synthesis and hardware software
co-design [17]. Accelchip provides the AccelFPGA product,
which translates Matlab programs into synthesizable VHDL
for synthesis on FPGAs [18]. This technology is based on
the MATCH project at Northwestern [19]. Catapult C from
Mentor Graphics Corporation translates a subset of untimed
C++ directly into hardware [20].

The difference between these projects and our technique
is that they try to solve the entire behavioral synthesis prob-
lem. Our approach utilizes a 4-wide VLIW processor to ex-
ecute nonkernel portions of the code (10% of the execution
time) and utilizes tightly coupled hardware acceleration us-
ing behavioral synthesis of kernel portions of the code (90%
of the execution time). We match the available hardware re-
sources to the impact on the application performance so that
our processor core utilizes 10% or less of the hardware re-
sources leaving 90% or more to improve the performance of
the kernels.

Our synthesis flow utilizes a DFG representation that in-
cludes hardware predication: a technique to convert control
flow based on conditionals into multiplexer units that select
from two inputs from this conditional. This technique is sim-
ilar to assignment decision diagram (ADD) representation
[21, 22], a technique to represent functional register transfer
level (RTL) circuits as an alternative to control and data flow
graphs (CDFGs). ADDs read from a set of primary inputs
(generally registers) and compute a set of logic functions.
A conditional called an assignment decision then selects an

appropriate output for storage into internal storage elements.
ADDs are most commonly used for automated generation of
test patterns for circuit verification [23, 24]. Our technique
is not limited to decisions saved to internal storage, which
imply sequential circuits. Rather, our technique applies hard-
ware predication at several levels within a combinational (i.e.,
DFG) representation.

The support of custom instructions for interface with co-
processor arrays and CPU peripherals has developed into a
standard feature of soft-core processors and those which are
designed for DSP and multimedia applications. Coprocessor
arrays have been studied for their impact on speech coders
[25, 26], video encoders [27, 28], and general vector-based
signal processing [29–31].

These coprocessor systems often assume the presence and
interface to a general-purpose processor such as a bus. Ad-
ditionally, processors that support custom instructions for
interface to coprocessor arrays are often soft-core and run
a significantly slower clock rates than hard-core processors.
Our processor is fully deployed on an FPGA system with
detailed post place-and-route performance characterization.
Our processor does not have the performance bottleneck as-
sociated with a bus interconnect but directly connects the
hardware unit to the register file. There is no additional over-
head associated with calling a hardware function.

Several projects have experimented with reconfigurable
functional units for hardware acceleration. PipeRench [32–
36] and more recently HASTE [37] have explored imple-
menting computational kernels on coarse-grained reconfig-
urable fabrics for hardware acceleration. PipeRench utilizes a
pipeline of subword ALUs that are combined to form 32-bit
operations. The limitation of this approach is the require-
ment of pipelining as more complex operations require mul-
tiple stages and, thus, incur latency. In contrast, we are us-
ing non-clocked hardware functions that represent numer-
ous 32-bit operations. RaPid [38–42] is a coarse-grain re-
configurable datapath for hardware acceleration. RaPid is a
datapath-based approach and also requires pipelining. Ma-
trix [43] is a coarse-grained architecture with an FPGA like
interconnect. Most FPGAs offer this coarse-grain support
with embedded multipliers/adders. Our approach, in con-
trast, reduces the execution latency and, thus, increases the
throughput of computational kernels.

Several projects have attempted to combine a reconfig-
urable functional unit with a processor. The Imagine pro-
cessor [44–46] combines a very wide SIMD/VLIW processor
engine with a host processor. Unfortunately, it is difficult to
achieve efficient parallelism through high ILP due to many
types of dependencies. Our processor architecture differs as
it uses a flexible combinational hardware flow for kernel ac-
celeration.

The Garp processor [47–49] combines a custom recon-
figurable hardware block with a MIPS processor. In Garp,
the hardware unit has a special purpose connection to the
processor and direct access to the memory. The Chimaera
processor [50, 51] combines a reconfigurable functional unit
with a register file with a limited number of read and write
ports. Our system differs as we use a VLIW processor instead

Raymond R. Hoare et al. 5

of a single processor and our hardware unit connects directly
to all registers in the register file for both reading and writ-
ing allowing hardware execution with no overhead. These
projects also assume that the hardware resource must be re-
configured to execute a hardware-accelerated kernel, which
may require significant overhead. In contrast, our system
configures the hardware blocks prior to runtime and uses
multiplexers to select between them at runtime. Addition-
ally, our system is physically implemented in a single FPGA
device, while it appears that Garp and Chimaera were studied
in simulation only.

In previous work, we created a 64-way and an 88-way
SIMD architecture and interconnected the processing ele-
ments (i.e., the ALUs) using a hypercube network [52]. This
architecture was shown to have a modest degradation in per-
formance as the number of processors scaled from 2 to 88.
The instruction broadcasting and the communication rout-
ing delay were the only components that degraded the scala-
bility of the architecture. The ALUs were built using embed-
ded ASICmultiply-add circuits and were extended to include
user-definable instructions that were implemented in FPGA
gates. However, one limitation of a SIMD architecture is the
requirement for regular instructions that can be executed in
parallel, which is not the case for many signal processing ap-
plications. Additionally, explicit communications operations
are necessary.

Work by industry researchers [53] shows that coupling
a VLIW with a reconfigurable resource offers the robustness
of a parallel, general-purpose processor with the accelerat-
ing power and flexibility of a reprogrammable systolic grid.
For purposes of extrapolation, the cited research assumes the
reconfiguration penalty of the grid to be zero and that de-
sign automation tools tackle the problem of reconfiguration.
Our system differs because the FPGA resource can be pro-
grammed prior to execution, giving us amore realistic recon-
figuration penalty of zero. We also provide a compiler and
automation flow to map kernels onto the reconfigurable de-
vice.

4. ARCHITECTURE

The architecture we are introducing is motivated by four fac-
tors: (1) the need to accelerate applications within a single
chip, (2) the need to handle real applications consisting of
thousands of lines of C source code, (3) the need to achieve
speedup when parallelism does not appear to be available,
and (4) the size of FPGA resources continues to grow as does
the complexity of fully utilizing these resources.

Given these needs, we have created a VLIW processor
from the ground-up and optimized its implementation to
utilize the DSP Blocks within an FPGA. A RISC instruction
set from a commercial processor was selected to validate the
completeness of our design and to provide a method of de-
termining the efficiency of our implementation.

In order to achieve custom hardware speeds, we enable
the integration of hardware and software within the same
processor architecture. Rather than adding a customized co-
processor to the processor’s I/O bus that must be addressed

Instr. RAM

Instruction
decoder

Controller

Register file

ALU Cust.
instr.

MUX

ALU Cust.
instr.

MUX

ALU Cust.
instr.

MUX

· · ·

Figure 2: Very long instruction word architecture.

through a memory addressing scheme, we integrated the
execution of the hardware blocks as if it was a custom in-
struction. However, we have termed the hardware blocks as
hardware functions because they perform the work of tens to
hundreds of assembly instructions. To eliminate data move-
ment, our hardware functions share the register file with the
processor and, thus, the overhead involved in calling a hard-
ware function is exactly that of an inlined software functions.

These hardware functions can be multiple cycles and
are scheduled as if it were just another software instruc-
tion. The hardware functions are purely combinational (i.e.,
not internally registered) and receive their data inputs from
the register file and return computed data to the regis-
ter file. They contain predication operations and are the
hardware equivalent of tens to hundreds of assembly in-
structions. These features enable large speedup with zero-
overhead hardware/software switching. The following three
subsections describe each of the architectural components in
detail.

From Amdahl’s Law of speedup, we know that even if we
infinitely speedup 90% of the execution time, we will have a
maximum of 10X speedup if we ignore the remaining 10%
of the time. Thus, we have taken a VLIW architecture as the
baseline processor and sought to increase its width as much
as possible within an FPGA. An in-depth analysis and perfor-
mance results show the limited scalability of a VLIW proces-
sor within an FPGA.

4.1. VLIW processor

To ensure that we are able to compile any C software codes,
we implemented a sequential processor based on the NIOS
II instruction set. Thus, our processor, pNIOS II, is binary-
code-compatible to the Altera NIOS II soft-core processor.
The branch prediction unit and the register windowing of
the Altera NIOS II have not been implemented at the time of
this publication.

In order to expand the problem domains that can be im-
proved by parallel processing within a chip, we examined the
scalability of a VLIW architecture for FPGAs. As shown in
Figure 2, the key differences between VLIWs and SIMDs or
MIMDs are the wider instruction stream and the shared reg-
ister file, respectively. The ALUs (also called PEs) can be iden-
tical to that of their SIMD counterpart. Rather than having
a single instruction executed each clock cycle, a VLIW can
execute P operations for a P processor VLIW.

We designed and implemented a 32-bit, 6-stage pipelined
soft-core processor that supports the full NIOS II instruction
set including custom instructions. The single processor was

6 EURASIP Journal on Applied Signal Processing

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU F FU FU FU FU F FU FU FU FU FU

FU FU FU FU FU F FU FU FU FU U FU FU F FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU U FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU FU

Shared register fileInstr. RAM

Instruction
decoder

Controller

ALU
Cust.
instr.

MUX

ALU
Cust.
instr.

MUX

ALU
Cust.
instr.

MUX

ALU
Cust.
instr.

MUX

Hardware function Hardware function Hardware function

Hardware
function

Hardware
function

Hardware function Hardware function Hardware function

Figure 3: The VLIW processor architecture with application-specific hardware functions.

then configured in a 4-wide VLIW processor using a shared
register file. The shared 32-element register file has 8 read
ports and 4 write ports.

There is also a 16KB dual-ported memory accessible to
2 processing elements (PEs) in the VLIW, and a single 128-
bit wide instruction ROM. An interface controller arbitrates
between software and hardware functions as directed by the
custom instructions.

We targeted our design to the Altera Stratix II EP2-
S180F1508C4 FPGA with a maximum internal clock rate
of 420MHz. The EP2S180F has 768 9-bit embedded DSP
multiply-adders and 1.2MB of available memory. The single
processor was iteratively optimized to the device based on
modifications to the critical path. The clock rate sustained
increases to its present 4-wide VLIW rate of 166MHz.

4.2. Zero-cycle overhead hardware/software interface

In addition to interconnecting the VLIW processors, the reg-
ister file is also available to the hardware functions, as shown
by an overview of the processor architecture in Figure 3 and
through a register file schematic in Figure 4. By enabling the
compiler to schedule the hardware functions as if they were

software instructions, there is no need to provide an addi-
tional hardware interface. The register file acts as the data
buffer as it normally does for software instructions. Thus,
when hardware function needs to be called, its parameters
are stored in the register file for use by the hardware func-
tion. Likewise, the return value of the hardware function is
placed back into the register file.

The gains offered by a robust VLIW supporting a large
instruction set come at a price to the performance and area
of the design. The number of ports to the shared register file
and instruction decode logic have shown in our tests to be
the greatest limitations to VLIW scalability. A variable-sized
register file is shown in.

In Figure 4, P processing elements interface to N regis-
ters. Multiplexing breadth and width pose the greatest hin-
drances to clock speed in a VLIW architecture. We tested the
effect of multiplexers by charting performance impact by in-
creasing the number of ports on a shared register file, an ex-
pression of increasing VLIW width.

In Figure 5, the number of 32-bit registers is fixed to
32 and the number of processors is scaled. For each pro-
cessor, two operands need to be read and one written per
cycle. Thus, for P processors there are 2P read ports and

Raymond R. Hoare et al. 7

O (P − 1)· · · O (P − 1)· · · O (P − 1)· · ·

Wr sel0
WrMUX0

Wr sel1
WrMUX1

Wr sel(N − 1)
WrMUX(N − 1)

Reg0 Reg1 Reg(N − 1)
Wr En0 Wr En1 Wr En(N − 1)

RdMUX0 RdMUX1 RdMUX(P − 1)
Rd Sel0 Rd Sel1 Rd Sel(P − 1)

O (N − 1)· · · O (N − 1)· · · O (N − 1)· · ·

Scalable
register file

PE0 PE1 PE(P − 1)

· · ·

· · ·

· · ·

Figure 4: N-element register file supporting P-wide VLIW with P read ports and P write ports.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

N
or
m
al
iz
ed

u
n
it

2 4 8 16

Number of processors
two read ports, one write port per processor

Area∗ VLIW∗

Performance VLIW∗∗

Area VLIW + super CISC∗

Performance VLIW + super CISC∗∗

257MHz

226MHz

197MHz

249MHz

12840ALUT
(7%)

24.228ALUT
(16%) 23.088ALUT

(16%)

91MHz
69MHz

2622ALUT
(1%)

5187ALUT
(3%)

4662ALUT
(3%)

90MHz

11.149ALUT (7%)
111MHz

2593ALUT
(1%)

32-element register file performance and area

Figure 5: Scalability of a 32-element register file for P processors having 2P read and P write ports. Solid lines are for just a VLIW
while dashed lines include access for SuperCISC hardware functions. (∗Area normalized as percentage of area of 16 processor register file;
∗∗performance normalized as percentage of performance of 2 processor register file.)

P write ports. As shown, the performance steadily drops
and the number of processors is increased. Additionally, the
routing resources and logic resources required also increa-
ses.

From an analysis of the benchmarks we examined, we
found an average ILP between 1 and 2 and concluded that
a 4-way VLIW was more than sufficient for the 90% of the
code that requires 10% of the time. We also determined that
critical path within the ALU was limited to 166MHz as seen
in Table 1. The performance is limited by the ALU and not

the register file. Scaling to 8 or 16-way VLIW would decrease
the clock rate of the design, as shown in Figure 5.

The multiplexer is the design unit that contributes most
to performance degradation of the register file as the VLIW
scales. Wemeasured the impact of a single 32-bit P-to-1mul-
tiplexer on the Stratix II EP2S180. As the width P doubled,
the area increased by a factor of 1.4x times the width. The
performance took the greatest hit of all our scaling tests, los-
ing an average of 44MHz per doubling, as shown in Figure 6.
The performance degrades because the number of P-to-1

8 EURASIP Journal on Applied Signal Processing

Table 1: Performance of instructions (Altera Stratix II FPGA EP2S180F1508C4).

Post-place and route results for ALU modules on EP2S180F1508C4

ALUTs % Area Clock Latency

Adder/subtractor/comparator 96 < 1 241MHz 4ns

32-bit integer multiplier (1 cycle) 0 + 8 DSP units < 1 322MHz 3ns

Logical unit (AND/OR/XOR) 96 < 1 422MHz 2ns

Variable left/right shifter 135 < 1 288MHz 4ns

Top ALU (4 modules above) 416+ DSP units < 1 166MHz 6ns

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

N
or
m
al
iz
ed

u
n
it

4 8 16 32 64 128 256

Number (P) of 32-bit inputs for a single P-to-1multiplexer

Area∗

Performance∗∗

422MHz
406MHz

340MHz

279MHz

211MHz 708ALUT
(< 1%)

193
MHz

156
MHz

171ALUT
(< 1%)

187ALUT
(1%)

256ALUT
(< 1%)

361ALUT
(< 1%) 578ALUT

(< 1%)

1326ALUT
(< 1%)

P-to-1 multiplexer (32 bits) performance and area

Figure 6: Scalability of a 32-bit P-to-1 multiplexer on an Altera
Stratix II (EP2S180F1508C4). (∗Area normalized as percentage of
256-to-1 multiplexer area; ∗∗performance normalized as percent-
age of 4-to-1 multiplexer performance.)

multiplexers increases to implement the read and write ports
within the register file.

For an N-wide VLIW, the limiting factor will be the reg-
ister file which in turn requires 2N R : 1 multiplexer as each
processor reads two registers from a register file with R reg-
isters. For the write ports, each of the R registers requires
an a N : 1 multiplexer. However, as shown in Figure 5, the
logic required for a 4-wide VLIW with 32 shared registers of
32-bits each, only achieved 226MHz while the 32 : 1 multi-
plexer achieved 279MHz. What is not shown is the routing.
These performance numbers should be taken as minimums
and maximums for the performance of the register file. We
were able to scale our VLIW with 32 shared registers up to
166MHz 4-way.

One technique for increasing the performance of shared
register files for VLIW machines is partitioned register files
[54]. This technique partitions the original register file into
banks of limited connectivity register files that are accessi-
ble by a subset of the VLIW processing elements. Busses are
used to interconnect these partitions. For a register to be ac-
cessed by a processing element outside of the local partition,
the data must be moved over a bus using an explicit move
instruction. While we considered this technique, we did not
employ register file partitioning in our processing scheme for
several reasons: (1) the amount of ILP available from our

VLIW compiler was too low to warrant more than a 4-way
VLIW, (2) the nonpartitioned register file approach was not
the limiting factor for performance in our 4-way VLIW im-
plementation, and (3) our VLIW compiler does not support
partitioned register files.

4.3. Achieving speedup through hardware functions

By using multicycle hardware functions, we are able to place
hundreds of machine instructions into a single hardware
function. This hardware function is then converted into logic
and synthesized into hardware. The architecture interfaces
an arbitrary number of hardware functions to the register
file while the compiler schedules the hardware functions as
if they were software.

Synchronous design is by definition inefficient. The en-
tire circuit must execute at the rate of the slowest component.
For a processor, this means that a simple left-shift requires as
much time as a multiply. For kernel codes, this effect is mag-
nified.

As a point of reference, we have synthesized various arith-
metic operations for a Stratix II FPGA. The objective is not
the absolute speed of the operations but the relative speed.
Note that a logic operation can execute 5x faster than the
entire ALU. Thus, by moving data flow graphs directly into
hardware, the critical path from input to output is going to
achieve large speedup. The critical path through a circuit is
unlikely to contain only multipliers and is expected to be a
variety of operations and, thus, will have a smaller delay than
if they were executed on a sequential processor.

This methodology requires amoderate sized data flow di-
agram. There are numerous methods for achieving this and
will be discussed again in the following section. One method
that requires hardware support is the predication operation.
This operation is a conditional assignment of one register to
another based on whether the contents of a third register is a
“1.” This simple operation enables the removal of jumps for
if-then-else statements. In compiler terms, predication en-
ables the creation of large data flow diagrams that exceed the
size of basic blocks.

5. COMPILATION FOR THE VLIW PROCESSOR
WITH HARDWARE FUNCTIONS

Our VLIW processor with hardware functions is designed to
assist in creating a tractable synthesis tool flow which is out-
lined in Figure 7. First, the algorithm is profiled using the

Raymond R. Hoare et al. 9

C program

Behavioral
synthesis

Profiling C program Trimaran IR
Noise II
VLIW
backend

Assembly
Noise II
VLIW

assembler
Machine code

Loops RTL
synthesisHDL/DFG Bitstream

Figure 7: Tool flow for the VLIW processor with hardware functions.

Shark profiling tool from Apple Computer [4] that can pro-
file programs compiled with the gcc compiler. Shark is de-
signed to identify the computationally intensive loops.

The computational kernels discovered by Shark are prop-
agated to a synthesis flow that consists of two basic stages.
First, a set of well-understood compiler transformations in-
cluding function inlining, loop unrolling, and code motion
are used to attempt to segregate the loop control and mem-
ory accesses from the computation portion of the kernel
code. The loop control and memory accesses are sent to the
software flow while the computational portion is converted
into hardware functions using a behavioral synthesis flow.

The behavior synthesis flow converts the computational
kernel code into a CDFG representation. We use a tech-
nique called hardware predication to merge basic blocks in
the CDFG to create a single, larger DFG. This DFG is di-
rectly translated into equivalent VHDL code and synthesized
for the Stratix II FPGA. Because control flow dependencies
between basic blocks are converted into data dependencies
using hardware predication, the result is an entirely combi-
national hardware block.

The remainder of the code, including the loop control
and memory access portions of the computational kernels, is
passed through the Trimaran VLIW Compiler [55] for exe-
cution on the VLIW processor core. Trimaran was extended
to generate assembly for a VLIW version of the NIOS II in-
struction set architecture. This code is assembled by our own
assembler into machine code that directly executes on our
processor architecture. Details on the VLIW NIOS II back-
end and assembler are available in [56].

5.1. Performance code profiling

The Shark profiling tool is designed to discover the loops that
contribute the most to the total program execution time. The
tool returns results such as those seen in Algorithm 2. These
are the top two loops from the G.721 MediaBench bench-
mark that total nearly 70% of the total program execution
time.

After profiling, the C program is modified to include di-
rectives within the code to signal which portions of the code
had been detected to be computational kernels during the
profiling. As seen in Algorithm 1, the computational kernel
portions are enclosed with the #pragma HW START and
#pragma HW END directives to denote the beginning and
ending of the kernel, respectively. The compiler uses these
directives to identify the segments of code to implement in
custom hardware.

predictor zero()
0.80% for (i = 1; i < 6; i++) /∗ ACCUM ∗/
34.60 sezi += fmult (state ptr−>b[i] >> 2,

state ptr−>dq[i]);
- -
35.40%

quan()
14.20% for (i = 0; i < size; i++)
18.10% if (val < ∗table++)
1.80% break;
- -
33.60%

Algorithm 1: Excerpt of profiling results for the G.721 benchmark.

1. predictor zero()
2. #pragma HW START
3. for (i = 1; i < 6; i++) /∗ ACCUM ∗/
4. sezi += fmult(state ptr−>b[i] >> 2,

state ptr−>dq[i]);
5. #pragma HW END

6. quan()
7. #pragma HW START
8. for (i = 0; i < size; i++)
9. if (val < ∗table++)
10. break;
11. #pragma HW END

Algorithm 2: Code excerpt from Algorithm 1 after insertion of
directives to outline computational kernels that are candidates for
custom hardware implementation.

5.2. Compiler transformations for synthesis

Synthesis from behavioral descriptions is an active area of
study with many projects that generate hardware descrip-
tions from a variety of high-level languages and other behav-
ioral descriptions, see Section 3. However, synthesis of com-
binational logic from properly formed behavioral descrip-
tions is significantly more mature than the general case and
can produce efficient implementations. Combinational logic,
by definition, does not contain any timing or storage con-
straints but defines the output as purely a function of the

10 EURASIP Journal on Applied Signal Processing

Kernel (AST)

DU
analysis

AST +
data flow

Inlining
unrolling

AST + DF
32 loads
16 stores

Code
motion

AST, DF,
32/16 L/S

DFG window

HW/SW
partitioning

Outer loop shell
includes L/S
(software)

CDFG
generation

CDFG
(hardware)

Hardware
predication

DFG with HW
predication

Generate
HDL

Combinational
hardware
description

Figure 8: Description of the compilation and synthesis flow for
portions of the code selected for custom hardware acceleration.
Items on the left side are part of phase 1, which uses standard com-
piler transformations to prepare the code for synthesis. Items on the
right side manipulate the code further using hardware predication
to create a DFG for hardware implementation.

inputs. Sequential logic, on the other hand, requires knowl-
edge of timing and prior inputs to determine the output val-
ues.

Our synthesis technique only relies on combinational
logic synthesis and creates a tractable synthesis flow. The
compiler generates data flow graphs (DFGs) that correspond
to the computational kernel and, by directly translating these
DFGs into a hardware description language like VHDL,
these DFGs can be synthesized into entirely combinational
logic for custom hardware execution using standard synthe-
sis tools.

Figure 8 expands the behavioral synthesis block from
Figure 7 to describe in more detail the compilation and
synthesis techniques employed by our design flow to gen-
erate the hardware functions. The synthesis flow is com-
prised of two phases. Phase 1 utilizes standard compiler tech-
niques operating on an abstract syntax tree (AST) to decou-
ple loop control and memory accesses from the computa-
tion required by the kernel, which is shown on the left side
of Figure 8. Phase 2 generates a CDFG representation of the

1. fmult(int an, int srn) {
2. short anmag, anexp, anmant;
3. short wanexp, wanmag, wanmant;
4. short retval;
5. anmag = (an > 0) ? an: ((−an) & 0x1FFF);
6. anexp = quan(anmag, power2, 15) −6;
7. anmant = (anmag == 0) ? 32:

(anexp >= 0) ? anmag >> anexp:
anmag << −anexp;

8. wanexp = anexp + ((srn >> 6) & 0xF) −13;
9. wanmant = (anmant∗(srn & 077)+0x30) >> 4;
10. retval = (wanexp >= 0) ?

((wanmant << wanexp) & 0x7FFF):
(wanmant >> −wanexp);

11. return (((anˆsrn) < 0) ? −retval:
retval);

12. }

Algorithm 3: Fmult function from G.721 benchmark.

computational code alone and uses hardware predication to
convert this into a single DFG for combinational hardware
synthesis.

5.2.1. Compiler transformations to restructure code

The kernel portion of the code is first compiled using the
SUIF (Stanford University Intermediate Format) Compiler.
This infrastructure provides an AST representation of the
code and facilities for writing compiler transformations to
operate on the AST. The code is then converted to SUIF2,
which provides routines for definition-use analysis.

Definition-use (DU) analysis, shown as the first oper-
ation in Figure 8, annotates the SUIF2 AST with informa-
tion about how the symbol (e.g., a variable from the original
code) is used. Specifically, a definition refers to a symbol that
is assigned a new value (i.e., a variable on the left-hand side
of an assignment) and a use refers to an instance in which
that symbol is used in an instruction (e.g., in an expression
or on the right-hand side of an assignment). The lifetime of
a symbol consists the time from the definition until the final
use in the code.

The subsequent compiler pass, as shown in Figure 8, in-
lines functions within the kernel code segment to eliminate
artificial basic block boundaries and unrolls loops to increase
the amount of computation for implementation in hard-
ware. The first function from Algorithm 2, predictor zero(),
calls the fmult() function shown in Algorithm 3. The fmult()
function calls the quan() function which was also one of
our top loops from Shark. Even though quan() is called (in-
directly) by predictor zero(), Shark provides execution for
each loop independently. Thus, by inlining quan(), the sub-
sequent code segment includes nearly 70% of the program’s
execution time. The computational kernel after function
inlining is shown in Algorithm 4. Note that the local symbols
from the inlined functions have been renamed by prepend-
ing the function name to avoid conflicting with local symbols
in the caller function.

Raymond R. Hoare et al. 11

1. for (i = 0; i < 6; i++) {
2. // begin fmult
3. fmult an = state ptr−>b[i] >> 2;
4. fmult srn = state ptr−>dq[i];
5. fmult anmag = (fmult an > 0) ? fmult an:

((−fmult an) & 0x1FFF);
6. // begin quan
7. quan table = power2;
8. for (quan i = 0; quan i < 15; quan i++)
9. if (fmult anmag < ∗quan table++)
10. break;
11. fmult anexp = quan i;
12. // end quan
13. fmult anmant = (fmult anmag == 0) ? 32:

(fmult anexp >= 0) ?
fmult anmag >> fmult anexp:
fmult anmag << −fmult anexp;

14. fmult wanexp = fmult anexp +
((fmult srn >> 6) & 0xF) −13;

15. fmult wanmant = (fmult anmant∗

(srn & 077)+0x30) >> 4;
16. fmult retval = (fmult wanexp>= 0) ?

((fmult wanmant<<fmult wanexp) & 0x7FFF):
(fmult wanmant >> −fmult wanexp);

17. sezi += (((fmult anˆfmult srn)< 0) ?
−fmult retval : fmult retval);

18. // end fmult
19. }

Algorithm 4: G.721 code after function inlining.

Once function inlining is completed, the inner loop is ex-
amined for implementation in hardware. By unrolling this
loop, it is possible to increase the amount of code that can
be executed in a single iteration of the hardware function.
The number of loop iterations that can be unrolled is lim-
ited by the number of values that must be passed into the
hardware function through the register file. In the example
fromAlgorithm 4, each loop iteration requires a value loaded
frommemory, ∗quan table, and a comparison with the sym-
bol fmult anmag. Because there are 15 iterations, complete
unrolling results in a total of 16 reads from the register file.
The resulting unrolled loop is shown in Algorithm 5. Once
the inner loop is completely unrolled, the outer loop may be
considered for unrolling. In the example, several values such
as the array reads must be passed through the register file be-
yond the 16 required by the inner loop, preventing the outer
loop from being unrolled. However, by considering a larger
register file or special registers dedicated to hardware func-
tions, this loop could be unrolled as well.

After unrolling and inlining is completed, there is a max-
imum of 32 values that can be read from the register file and
16 values that can be written to the register file. The next
phase of the compilation flow uses code motion to move all
memory loads to the beginning of the hardware function and
move all memory stores to the end of the hardware function.
This is done so as not to violate any data dependencies dis-
covered during definition-use analysis. The loads from the

if (fmult anmag < ∗quan table)
quan i = 0;

else if (fmult anmag < ∗(quan table + 1))
quan i = 1;

else if (fmult anmag < ∗(quan table + 2))
quan i = 2;

. . .
else if (fmult anmag < ∗(quan table + 14)

quan i = 14;

Algorithm 5: Unrolled inner loop of inlined G.721 hardware ker-
nel.

for (i = 0; i < 6; i++){
quan table array 0 = ∗quan table;

quan table array 1 = ∗(quan table + 1);
. . .
quan table array 14 = ∗(quan table + 14);

state pointer b array i = state ptr−>b[i];
state pointer dq array i = state ptr−>dq[i];
// Begin Hardware Function
fmult an = state pointer b array i >> 2;
fmult srn = state pointer dq array i;
if (fmult anmag < quan table array 0)
quan i = 0;

else if (fmult anmag < quan table array 1)
quan i = 1;

else if (fmult anmag < quan table array 2)
quan i = 2;

. . .
else if (fmult anmag < quan table array 14)
quan i = 14;

. . .
// End Hardware Function

}

Algorithm 6: G.721 benchmark after inlining, unrolling, and code
motion compiler transformations. (Hardware functionality is in
plain text with VLIW software highlighted with gray background.)

unrolled code in Algorithm 5 are from the array quan table
that is defined prior to the hardware kernel code. Thus, load-
ing the first 15 elements of quan table array can be moved
to the beginning of the hardware function code and stored
in static symbols mapped to registers which the loops in the
unrolled inner loop code. This is possible for all array ac-
cesses within the hardware kernel code for G.721. The hard-
ware kernel code after code motion is shown in Algorithm 6.

As shown in Algorithm 6, the resulting code after DU
analysis, function inlining, loop unrolling, and code motion
is partitioned between hardware and software implementa-
tion. The partitioning decision is made statically such that
all code required to maintain the loop (e.g., loop induction
variable calculation, bounds checking and branching) and
code required to do memory loads and stores is executed in

12 EURASIP Journal on Applied Signal Processing

software while the remaining code is implemented in hard-
ware. This distinction is shown in Algorithm 6, where soft-
ware code is highlighted with a gray background.

5.2.2. Synthesis of core computational code

Once hardware and software partitioning decisions are made
as described in Section 5.2.1, the portion of the code for im-
plementation in hardware is converted into a CDFG rep-
resentation. This representation contains a series of basic
blocks interconnected by control flow edges. Thus, each basic
block boundary represents a conditional branch operation
within the original code. Creation of a CDFG representation
from a high level language is a well studied technique beyond
the scope of this paper. However, details on creation of these
graphs can be found in [6].

In order to implement the computation contained within
the computational kernel, the control portions of the CDFG
must be converted into data flow dependencies. This al-
lows basic blocks, which were previously separated by con-
trol flow dependency edges to be merged into larger basic
blocks which larger DFGs. If all the control flow dependen-
cies can be successfully converted into data flow dependen-
cies, the entire computational portion of the kernel can be
represented as a single DFG. As a result, the DFG can be triv-
ially transformed into a combinational hardware implemen-
tation, in our case using VHDL, and can be synthesized and
mapped efficiently into logic within the target FPGA using
existing synthesis tools.

Our technique for converting these control flow depen-
dencies into data flow dependencies is called hardware pred-
ication. This technique is similar to ADDs developed as an
alternate behavioral representation for synthesis flows, see
Section 3. Consider a traditional if-then-else conditional con-
struct written in C code. In hardware, an if-then-else con-
ditional statement can be implemented using a multiplexer
acting as a binary switch to predicated output datapaths. To
execute the same code in software, an if-then-else statement
is implemented as a stream of six instructions composed
of comparisons and branch statements. Figure 9 shows sev-
eral different representations of a segment of the kernel code
from the ADPCM encoder benchmark. Figure 9(a) lists the
assembly code, Figure 9(b) shows the corresponding CDFG
representation of the code segment, and Figure 9(c) presents
a data flow diagram for a 2 : 1 hardware predication (e.g.,
multiplexer) equivalent of the CDFG from Figure 9(b).

In the example from Figure 9, the then part of the code
from Figure 9(a) is converted into the then basic block
Figure 9(b). Likewise the statements from the else portion
in Figure 9(a) are converted in into the else basic block in
Figure 9(b). The CDFG in Figure 9(b) shows that the control
flow from the if-then-else construction creates basic block
boundaries with control flow edges. The hardware predica-
tion technique converts these control flow dependencies into
data flow dependencies allowing the CDFG in Figure 9(b)
to be transformed into the DFG in Figure 9(c). Each sym-
bol with a definition in either or both of the basic blocks
following the conditional statement (i.e., the then and else
blocks from Figure 9(b)) must be predicated by inserting a

If (bufferstep){
delta = inputbuffer & 0xf;

} else {
inputbuffer =∗inp++
delta = (inputbuffer >> 4) & 0xf;

}
(a)

Bufferstep

! = 0x0

If basic block

Input buffer
0xF

&
Delta

Then basic block

∗Inp Inp

Input buffer

0xF >> 0x4

& ++
Delta Inp

Else basic block

(b)

Inp

Input bufferBuffer step

Input buffer

∗Inp

0xF 0xF >> 0x4

++ ! = 0x0 & &

T/1 F/0

2 : 1MUX 2 : 1MUX

Inp

T/1 F/0

Delta

(c)

Figure 9: Software code, CDFG, and DFG with predicated hard-
ware example for control flow in ADPCM encoder.

multiplexer. For example, in Figure 9, the symbol delta is de-
fined in both blocks and these definitions become inputs to
a rightmost selection multiplexer in Figure 9(c). The symbol
inp is updated in the else basic block only in Figure 9(b). This
requires the leftmost multiplexer in Figure 9(c), where the
original value from prior to the condition and the updated
value from the else block become inputs. All of the multi-
plexers instantiated due to the conversion of these control
flow edges into data flow edges are based on the conditional
operation from the if basic block in Figure 9(b).

By implementing the logic in this manner, the six clock
cycles required for execution in the processor can be reduced
to two levels of combinational logic in hardware. Consider-
ing the example of Figure 9, the assembly code requires as
many as nine (9) cycles if the else path is selected, but the
hardware version can be implemented as two levels of com-
binational logic (constant shifts are implemented as wires).

Raymond R. Hoare et al. 13

In many cases, this type of hardware predication works
in the general case and creates efficient combinational logic
for moderate performance results. However, in some spe-
cial cases, control flow can be further optimized for combi-
national hardware implementation. In C, switch statements,
sometimes called multiway branches, can be handled spe-
cially. While this construct can be interpreted in sequence
to execute the C code, directly realizing this construct with
multiplexing hardware containing as many inputs as cases
in the original code allows entirely combinational, parallel
execution. A second special case exists for the G.721 exam-
ple described in Section 5.2.1. Consider the unrolled inner-
most loop shown in Algorithm 6. This code follows the con-
struction if (cond), else if (cond2), . . . , else if (condN). This
is similar to the behavior of a priority encoder in combina-
tional hardware where each condition has a priority, such as
high bit significance overriding lower bit significance. For ex-
ample, in a one-hot priority encoder, if the most significant
bit (MSB) is “1”, then all other bits are ignored and treated
as zeros. If the MSB is “0” and the next MSB is “1”, then all
other bits are assumed “0.” This continues down into the least
significant bit. When this type of conditional is written in a
similar style in synthesizable HDL, synthesis tools will im-
plement a priority encoder, just like a case statement in HDL
implements a multiplexer. Thus, for the cases where this type
of code is present for either the multiplexer or the priority
encoder, this structure is retained.

5.3. Interfacing hardware and software

A hardware function can be called with no additional over-
head requirements versus that of executing the code directly
in software. The impact of even a small hardware/software
overhead can dramatically reduce the speedup that the kernel
achieves. In essence, some of the speed benefit gained from
acceleration is lost due to the interface overhead.

Consider (1), β is the hardware speedup defined as the
ratio of software to hardware execution time. This equation
only considers hardware acceleration and does not equate di-
rectly to kernel speedup. In (2), α is the actual kernel speedup
as this considers the portion of the kernel that cannot be
translated to hardware. This is labeled as overhead (OH).
This definition is actually a misnomer as it implies that there
is an added overhead for running our kernel hardware. In
fact, this “overhead” is actually the same loads and stores that
would be run in the software only solution. No additional
computation is added,

β = tsw
thw

, (1)

α = tsw
tOH + thw

= β

tOH/thw + 1
. (2)

Figure 10 shows the effect of adding 0 to 128 cycles of
hardware/software overhead on a set of hardware accelerated
kernels. We explain how these speedups are achieved later on
in this paper and focus here on the impact of data movement
overhead. A zero overhead is the pure speedup of the hard-
ware versus the software. Note that even 2 software cycles of

250

200

150

100

50

0

R
ea
ls
pe
ed
u
p
(N

)x

0 2 4 8 16 32 64 128

Hardware overhead latency in cycles

g721, 273x
IDCT column, 76x
IDCT row, 44x

ADPCM encode, 18x
ADPCM decode, 17x

Hardware interface latency versus real speedup

Figure 10: Real speedup of hardware benchmark functions com-
pared to software execution given varying interface latencies.

Table 2: Execution profile of benchmarks.

Execution time of

Benchmark Kernel 1 Kernel 2 Total

ADPCM decode 99.9% N/A 99.9%

ADPCM encode 99.9% N/A 99.9%

G.721 decode 70.5% N/A 70.5%

GSM decode 71.0% N/A 71.0%

MPEG 2 decode 21.5% 21.4% 42.9%

overhead, perhaps caused by a single I/O write and one I/O
read, causes the effective kernel speedup to be cut down by
a half. For a bus-based system, tens of processor cycles of la-
tency dramatically diminish the benefit of hardware acceler-
ation. Thus, by enabling direct data sharing through the reg-
ister file, our architecture does not incur any penalty.

6. BENCHMARKS

To evaluate the effectiveness of our approach for signal pro-
cessing applications, we selected a set of core signal process-
ing benchmarks. We examine algorithms of interest in sig-
nal processing from three categories: voice compression, im-
age and video coding, and wireless communication. The fol-
lowing sections describe selected benchmarks in these do-
mains and specifically examine benchmark codes selected
from each domain. Except for the so-called sphere decoder,
the software codes examined in the following sections were
taken from the MediaBench benchmark suite [57].

Table 2 shows the execution time contribution of the
computational kernels from signal processing oriented
benchmarks from MediaBench. For example, ADPCM en-
code and decode kernels contribute nearly the entirety of the
application execution time. Both the G.721 and GSM bench-
marks top kernel requires over 70% of the execution time

14 EURASIP Journal on Applied Signal Processing

Table 3: Instruction level parallelism (ILP) extracted using the Tri-
maran compiler.

Instruction level parallelism

Benchmark Kernel 1 Kernel 2 Nonkernel Avg

ADPCM decode

4-way VLIW 1.13 N/A 1.23 1.18

Unlimited VLIW 1.13 N/A 1.23 1.18

ADPCM encode

4-way VLIW 1.28 N/A 1.38 1.33

Unlimited VLIW 1.28 N/A 1.38 1.33

G.721 decode

4-way VLIW 1.25 N/A 1.32 1.28

Unlimited VLIW 1.41 N/A 1.33 1.37

GSM decode

4-way VLIW 1.39 N/A 1.25 1.32

Unlimited VLIW 1.39 N/A 1.25 1.32

MPEG 2 decode

4-way VLIW 1.68 1.40 1.41 1.54

Unlimited VLIW 1.84 1.50 1.46 1.67

and MPEG 2 decoder requires two separate loop kernels to
achieve between less than 50% of the execution times.

The ILP of the benchmarks is shown in Table 3. The ILP
numbers are broken into three groups, the first being the ILP
for the computational kernel of highest complexity (kernel
1), the second for the next highest kernel (kernel 2), which is
only necessary for the MPEG 2 benchmark, the ILP of the
nonkernel software code, and finally, a nonweighted aver-
age ILP for the entire application. All numbers were reported
for both a standard 4-way VLIW processor as implemented
in our system and compared with numbers for a theoretical
unlimited-way VLIW processor.

This limited ILP shows that VLIW processing alone can
only provide a nominal performance improvement. The
range of speedups possible will be of 20–60% overall, which
is far below our target for these applications. To discover how
speedups can be achieved through hardware functions in our
system, we begin by examining our algorithms, specifically
the computational kernel codes below.

6.1. Voice compression algorithms

We chose three representative voice compression algorithms
as benchmarks. These were drawn from various applica-
tion areas in voice compression and reflect quite different
coding algorithms. In each case, the C-language implemen-
tation benchmark came from the MediaBench suite. We
have purposefully chosen well-established implementations
to demonstrate the practical performance gains immediately
available to the system designer through our approach.

The first system we examined was the International Con-
sultative Committee on Telegraphy and Telephony (CCITT)

G.721 standard, which employs adaptive differential pulse
code modulation (ADPCM) to compress toll quality audio
signals down to 32 kpbs [57]. The G.721 audio compression
standard is employed in most European cordless telephones.

We next consider CCITT-ADPCM, a different ADPCM
implementation that is recommended by the IMA Digital
Audio Technical Working Group. The algorithm takes 16 bit
PCM samples and compresses them to four bit ADPCM sam-
ples, generating a compression ratio of 4 : 1.

The last speech compression algorithm we consider is the
GSM 06.10 standard specified for use with the global system
for mobile telecommunication (GSM) wireless standard. In
the GSM 06.10 standard, residual pulse excitation/long term
prediction (RPELTP) is used to encode the speech signal at
a compression ratio of 8 : 1. The linear prediction engine
runs Schur recursions, which was argued by the package de-
signer to yield some performance advantages over the usual
Levinson-Durbin algorithm when parallelized [58].

One of the significant bottlenecks of increasing algorith-
mic execution is control flow requirements (e.g., determin-
ing the next operation to execute based on the result of pre-
vious operations). Algorithms high in control flow map very
well to sequential processors as these processors are highly
optimized to execute these sequential codes by achieving
high throughputs and clock speeds through techniques like
pipelined execution.

When implementing heavily control-oriented codes in
hardware, sequential structures such as finite state machines
(FSMs) are often used for this purpose. Unfortunately, these
FSMs do not allow significantly more parallelism than run-
ning this code in a processor. To achieve a speedup using a
VLIW processor it is necessary to attempt to remove the con-
trol flow dependencies to allow parallel execution. In sequen-
tial processors, predication is used to convert many types of
control flow to data flow dependencies.

Consider the ADPCM encoder shown in Algorithm 7.
The for loop in the example consumes nearly 100% of the
execution time (see Table 2). Excluding the control flow as-
sociated with the for loop, this code segment contains nine
(9) conditional executions. These statements are candidates
for predication.

To allow predicated execution in a processor, one ormore
predication registers are used. Conditional branch instruc-
tions are traditionally used to execute if statements. To use
predication, these branch instructions are replaced by con-
ditional operations followed by predicated instructions. For
example, in Algorithm 7, line 7, the subtraction operation is
only executed if diff >= step. Thus, the conditional is cal-
culated and the result is stored in a predication register. The
subtraction instruction can be issued and the result will only
be saved if the conditional is true. The same predication reg-
ister can also be used for the addition operation in line 8. This
type of predication allows increased ILP and reduces stalls in
pipelined execution.

One of the restrictions we place on our hardware func-
tions is that they consist entirely of combinational logic (e.g.,
they do not require sequential execution). As a result, we use
a technique related to predication called parallel execution.

Raymond R. Hoare et al. 15

1. for (; len > 0; len–) {
2. val = ∗inp++;
3. delta = 0;
4. vpdiff = (step >> 3);
5. if (diff >= step) {
6. delta = 4;
7. diff − = step;
8. vpdiff += step;
9. }
10. step >>= 1;
11. if (diff >= step) {
12. delta | = 2;
13. diff − = step;
14. vpdiff += step;
15. }
16. step >>= 1;
17. if (diff >= step) {
18. delta | = 1;
19. vpdiff += step;
20. }
21. if (sign) valpred − = vpdiff ;
22. else valpred += vpdiff ;
23. if (valpred > 32767)
24. valpred = 32767;
25. else if (valpred < −32768)
26. valpred = −32768;
27. delta | = sign;
28. index += indexTable[delta];
29. if (index < 0) index = 0;
30. if (index > 88) index = 88;
31. step = stepsizeTable[index];
32. if (bufferstep) {
33. outputbuffer = (delta << 4) & 0xf0;
34. } else {
35. ∗outp++ = (delta & 0x0f) | outputbuffer;

36. }
37. bufferstep = !bufferstep;
38. }

Algorithm 7: ADPCM encoder kernel C code. (Hardware func-
tionality is in plain text with VLIW software highlighted with gray.)

For an if statement, both the then and else parts of the state-
ment are executed and propagated down the DFG based on
the result of the conditional. For example, the ADPCM en-
coder from Algorithm 7 was translated into the DFG shown
in Figure 11. The blocks labelled MUX implement the com-
binational parallel execution. The conditional operation is
used as the selector and the two inputs contain the result of
the “predicated” operation as well as the nonmodified result.

Two other standard automation techniques were used
to convert the code segment into the DFG. First, the load
from memory ∗inp from line 2 and the predicated store
∗outp from line 34 of Algorithm 7 are moved to the begin-
ning and end of the DFG, respectively, using code motion.
This allows the loads and stores to be executed in software.
All code executed in software is highlighted in Algorithm 7.
Secondly the static arrays indexTable and stepsizeTable are

converted into lookup-tables (LUTs) for implementation in
ROM structures.

The computational kernel source code for the G.721
benchmark was used in the prior section to describe the var-
ious design automation phases. The resulting DFG for the
G.721 based on the transformations is displayed in Figure 12.
It should be noted that the completely unrolled loop has been
transformed into a priority encoder in the hardware imple-
mentation. It can also be seen that aside from the encoder,
there is only a moderate amount of computations.

6.2. The discrete cosine transform

We next consider a hardware implementation of the inverse
discrete-time cosine transform (IDCT). The IDCT arises in
several signal processing applications, most notably in im-
age/video coding (see, e.g., the MPEG standard) and in more
general time-frequency analysis. The IDCT is chosen because
there has been a large amount of work on efficient algorithm
design for such transforms. Our results argue that further
gains are possible with relatively little additional design over-
head by employing a mixed architecture.

The IDCT code from the MediaBench suite was ex-
tracted from the MPEG 2 benchmark and specifically from
the MPEG 2 Decoder used in a variety of applications, most
notably for DVD movies. The IDCT actually appears in the
JPEG benchmark; however, the implementation fromMPEG
2 was selected because it has the longer runtime. The imple-
mentation inMPEG 2 decomposes the IDCT into a row-wise
and columnwise IDCT.

The IDCT algorithm does a two-dimesional IDCT
through decomposition. It first executes a one-dimensional
DCT in one dimension (row) followed a one-dimensional
DCT in the other (column). The IDCT columnwise decom-
position kernel with the software portions highlighted is
shown in Algorithm 8.

Like the IDCT row-wise decomposition, the DFG in
Figure 13 again contains a significant number of arithmetic
functional units and shows a significant amount of paral-
lelism.

6.3. The sphere decoder

The last application example we consider is the so-called
sphere decoder, which arises in MIMO communication
systems. The basic MIMO problem is the following: an M-
tuple of information symbols s, drawn from the integer lat-
tice ZM , is transmitted from M transmit antennas to N re-
ceive antennas. We assume that the channel is “flat,” meaning
that the fading parameter connecting transmit antenna m to
receive antenna n, hm,n, can be modeled as a scalar, constant
over the transmission. The model at the output of a bank of
receiver matched filters (one per receive antenna) is simply

y = Hs + n, (3)

where n modeled as zero mean additive white Gaussian
noise (AWGN) arising from receiver electronics noise and
possibly from channel interference. We assume that the re-
ceiver can track the channel coefficients. Note that the use

16 EURASIP Journal on Applied Signal Processing

0x0 Val Valpred Step 0x3 0x1

0x8 − >> >>

− 2 : 1 MUX > + >>

0x4 ! = 2 : 1 MUX

0x2 2 : 1 MUX >= − >= 2 : 1 MUX

|| 2 : 1 MUX >= +

0x1 2 : 1 MUX >= − 2 : 1 MUX >=

|| 2 : 1 MUX >= +

>= 2 : 1 MUX 2 : 1 MUX >= Valpred

Index 0xF0 0x4 Outpbuffer 0x0 || 0xF + −

LUT << Bufstep & 2 : 1 MUX 0x7FFF

0x58 0x0 + & ! = || ∗Outp ! > 2 : 1 MUX 0xffff8000

< 2 : 1 MUX 2 : 1 MUX 2 : 1 MUX 2 : 1 MUX <

> 2 : 1 MUX

LUT

Out0 Out1 Out2 Out3 Out4

Figure 11: Data flow graph for the ADPCM encoder.

of a real-valued channel model loses no generality since any
complex model employing quadrature-amplitude modula-
tion (QAM) at the transmitter can be reduced to a real model
of twice the dimensions (see, e.g., [59]).

At the receiver we seek to find the input b which mini-
mizes the detection norm

ŝ = argmin
s
‖Hs− y‖2, (4)

which is generally an exponentially hard problem (i.e., we
must considerQM possible signals when an alphabet of sizeQ
is employed). The sphere decoder employs the Fincke-Pohst
tree-based search algorithm over ZM to reduce this to a de-
tection rule which is roughly cubic inM for sufficiently large
signal-to-noise ratios [60, 61]. It is expected to form the core
of practical receivers for future MIMO systems.

Unlike the previous algorithms, the spherical decoder
was written in vectorized Matlab rather than C. Matlab is
a popular language for signal processing algorithm develop-
ment because of its native matrix treatment and its built-in
mathematical functions. Vectorized Matlab has another nice
feature; it is easy to use for extracting parallelism, a main
feature for achieving performance improvements by direct
hardware implementation.

The code from Algorithm 9 represents the computa-
tional core of the spherical decoder, by executing a pointwise

vector multiplication, a vector summation, and finally a dis-
tance calculation. The DFG for this function is displayed in
Figure 14 that includes two square functions and a square-
root.

7. RESULTS

To implement our architecture including the hardware func-
tions, several industry computer-aided design tools were
used to accomplish the functional testing and gate-level syn-
thesis tasks of the design flow. We used Mentor Graphics’
FPGA Advantage 6.1 to assist in the generation of VHDL
code used to describe the core processor architecture. The
processor was built up to support all of the operations de-
scribed in the NIOS II instruction set.

We used Synplicity’s Synplify Pro 7.6.1 as the RTL synthe-
sis tool to generate the gate-level netlist targeted to the Altera
Stratix II ES2S180F1508C4 from our VHDL description. The
netlist was then passed to Altera’s Quartus II 4.1 for device-
specific, placement and routing, and bitstream generation. At
this level, post placement and routing results were extracted
for additional manual optimization, timing accurate simula-
tion, and verification. It is at this point that the timing infor-
mation about the hardware functions can be inserted into the
software. Both Altera’s Quartus and Synplicity’s Amplify for

Raymond R. Hoare et al. 17

0 an 1 0x1fff

> −
&

2 : 1 MUX

==

>>

Priority encoder

0 1

−

>= −

0x30 0x4d srn 6 0xf 0xd 4

& >>

+ &

<<

2 : 1 MUX

2 : 1 MUX an srn

0 ∧

<

∗ >= −

+

>>

0

−

0x7fff <<

&

>>

2 : 1 MUX

−
2 : 1 MUX

sezi

Figure 12: Resulting DFG from transformations described in G.721 example.

x2 x3 0x0454
0000

0x0a74
0000

x0 x1 0x0b19
0000

0x0235
0000

x4 x5 0x0649
0000

0x0968
0000

x6 x7

+ + − − + + − + − + +

++

4 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗ ∗ 4

+

− 3 + − 3 + − 3 −

>> >> >> >> >> >>

− + + − − − + +

+ 0xe

>>

blk[7]

+ 0xe

>>

blk[0]

+ 0xb5

0x80

8

∗

+

>>

−

∗

+

>>

+ 0xe 0xe−

>> >>

blk[3] blk[4]

− − + +

>> >>>> >>

blk[6] blk[5] blk[1] blk[2]

0xe 0xe 0xe

Figure 13: IDCT column-wise decomposition data flow graph.

18 EURASIP Journal on Applied Signal Processing

1. if (!((x1 = (blk[8∗ 4] << 8))

2. | (x2 = blk[8∗ 6]) | (x3 = blk[8∗ 2])

3. | (x4 = blk[8∗ 1]) | (x5 = blk[8∗ 7])

4. | (x6 = blk[8∗ 5]) | (x7 = blk[8∗ 3]))){
5. blk[8∗ 0] = blk[8∗ 1] = blk[8∗ 2] = blk[8∗ 3] =
6. blk[8∗ 4] = blk[8∗ 5] = blk[8∗ 6] = blk[8∗ 7] =
7. iclp[(blk[8∗ 0] + 32) >> 6];
8. return;
9. }
10. x0 = (blk[8∗ 0] << 8) + 8192;
11. /∗ first stage ∗/
12. x8 =W7∗ (x4 + x5) + 4;
13. x4 = (x8 + (W1−W7)∗ x4) >> 3;
14. x5 = (x8− (W1 +W7)∗ x5) >> 3;
15. x8 =W3∗ (x6 + x7) + 4;
16. x6 = (x8− (W3−W5)∗ x6) >> 3;
17. x7 = (x8− (W3 +W5)∗ x7) >> 3;
18. /∗ second stage ∗/
19. x8 = x0 + x1;
20. x0 − = x1;
21. x1 =W6∗ (x3 + x2) + 4;
22. x2 = (x1− (W2 +W6)∗ x2) >> 3;
23. x3 = (x1 + (W2−W6)∗ x3) >> 3;
24. x1 = x4 + x6;
25. x4− = x6;
26. x6 = x5 + x7;
27. x5− = x7;
28. /∗ third stage ∗/
29. x7 = x8 + x3;
30. x8− = x3;
31. x3 = x0 + x2;
32. x0− = x2;
33. x2 = (181∗ (x4 + x5) + 128) >> 8;
34. x4 = (181∗ (x4− x5) + 128) >> 8;
35. /∗ fourth stage ∗/

36. blk[8∗ 0] = iclp[(x7 + x1) >> 14] ;

37. blk[8∗ 1] = iclp[(x3 + x2) >> 14] ;

38. blk[8∗ 2] = iclp[(x0 + x4) >> 14] ;

39. blk[8∗ 3] = iclp[(x8 + x6) >> 14] ;

40. blk[8∗ 4] = iclp[(x8− x6) >> 14] ;

41. blk[8∗ 5] = iclp[(x0− x4) >> 14] ;

42. blk[8∗ 6] = iclp[(x3− x2) >> 14] ;

43. blk[8∗ 7] = iclp[(x7− x1) >> 14] ;

Algorithm 8: IDCT column-wise decomposition kernel. (Hard-
ware functionality is in plain text with VLIW software highlighted
with gray.)

FPGA allow manual routing modifications for optimization
of design density and critical paths.

For functional simulation and testing of the design, we
passed the machine code output from the compiler design
flow into the instruction ROM used in modeling our design.
ModelSim SE 5.7 was used to generate the waveforms to con-
firm the functional correctness of our VLIW processor with
hardware function acceleration.

1. k = k − 1;
2. ym(k, k + 1) = y(k)− sum(R(k, k + 1 :M)∗ s(k + 1 :M));
3. r p(k) = sqrt(r p(k + 1)ˆ2− (ym(k + 1, k + 2)−

R(k + 1, k + 1)∗ s(k + 1))ˆ2);

Algorithm 9: Matlab kernel code for the spherical decoder.

Through a series of optimizations to the critical path, we
were able to achieve a maximum clock speed of 166MHz for
our VLIW and clock frequencies ranging from 22 to 71MHz
for our hardware functions equating to combinational de-
lays from 14 to 45ns. We then compared benchmark execu-
tion times of our VLIW both with and without hardware ac-
celeration against the pNIOS II embedded soft-core proces-
sor.

To exercise our processor, we selected core signal process-
ing benchmarks from theMediaBench suite that include AD-
PCM encode and decode, GSM decode, G.721 decode, and
MPEG 2 decode. As described in Section 6, from each of the
benchmarks a single hardware kernel was extracted with the
exception of MPEG 2 decode for which two kernels were ex-
tracted. In the case of GSM and G.721, the hardware kernel
was shared by the encoder and decoder portions of the algo-
rithm.

The performance improvement of implementing the
computational portions of the benchmark on a 4-way VLIW,
an unlimited-way VLIW, and directly in the hardware com-
pared to a software implementation running on pNIOS
II is displayed in Figure 15. The VLIW performance im-
provements were fairly nominal ranging from 2% to 48%
improvement over pNIOS II, a single ALU RISC processor.
The performance improvement of the entire kernel execu-
tion is compared for a variety of different architectures in
Figure 16. The difference between Figures 15 and 16 is that
the loads and stores required to maintain the data in the reg-
ister file are not considered in the former and run in software
in the latter. When the software-based loads and stores are
considered, the VLIW capability of our processor has a more
significant impact. Overall kernel speedups range from about
5X to over 40X.

The width of the available VLIW has a significant im-
pact on the overall performance. In general, the 4-way
VLIW is adequate, although particularly when considering
the IDCT-based benchmark, the unlimited VLIW shows that
not all of the ILP available is being exploited by the 4-way
VLIW.

The performance of the entire benchmark is considered
in Figure 17. We compare execution times for both hardware
and VLIW acceleration and compare them to the pNIOS
II processor execution when the overheads associated with
hardware function calls are included. While VLIW process-
ing alone again provides nominal speedup (less than 2X), by
including hardware acceleration, these speedups range from
about 3X to over 12X and can reach nearly 14X when com-
bined with a 4-way VLIW processor.

Raymond R. Hoare et al. 19

R[k + 1][k + 1] s[k + 1] R[k][k + 1] R[k][k + 3] s[k + 3]

ym[k + 1][k + 2]

y[k] R[k][k + 2] s[k + 2]

r p[k + 1]

∗ ∗

−

−
√

ym[k][k + 2]

∗ ∗ ∗

+

∗ ∗

+

+

−

r[k + 1]

R[k][k + 4] s[k + 4]

Figure 14: Data flow graph for the spherical decoder from Matlab.

350

300

250

200

150

100

50

0

Sp
ee
du

p
ov
er

pN
IO

S
II

ADPCM decoder

ADPCM encoder
GSM decoder

G721 decoder

IDCT row

IDCT col
Spherical decoder

pNIOS II VLIW 4 VLIW Unl

18.33
18.25
9.33
230
37.40
64.80
332.50

18
16
7

184
25.20
51.20
124.13

18
16
7

161.67
25.20
50

123.25

Performance speedup of the computational kernel
over software equivalent on various processors

Figure 15: Performance improvement from hardware acceleration
of computational portion of the hardware kernel.

8. CONCLUSIONS AND FUTUREWORK

In this paper, we describe a VLIW processor with the capabil-
ity of implementing computational kernels in custom com-
binational hardware functions with no additional overhead.
We provide a design methodology to map algorithms written
in C onto this processor and utilize profiling and tractable
behavioral synthesis to achieve application speedups.

We tested our processor with a set of signal processing
benchmarks from theMediaBench suite and achieved a hard-
ware acceleration of 9.3 to 332x with an average of 63X bet-
ter than a single processor, depending on the kernel. For the
entire application, the speedup reached nearly 30X and was
on average 12X better than a single processor implementa-
tion.

VLIW processing alone was shown to achieve very poor
speedups, reaching less than 2X maximum improvement
even for an unlimited VLIW. This is due to a relatively small

45

40

35

30

25

20

15

10

5

0

Sp
ee
du

p
ov
er

pN
IO

S
II

ADPCM decoder

ADPCM encoder

GSM decoder

G721 decoder

IDCT row

IDCT col
Spherical decoder

pNIOS II VLIW 4 VLIW Unl
HW+

pNIOS II
HW+
VLIW 4

HW+
VLIW Unl

1
1
1
1
1
1
1

1.13
1.28
1.39
1.25
1.68
1.40
2.66

1.13
1.28
1.39
1.41
1.84
1.50
2.68

2.93
4

5.41
37.16
10.96
18.95
127.29

4.16
7.67
7.67
44.13
17.53
19.86
127.29

4.16
7.67
7.67
44.13
26.30
24.53
127.29

127 127 127

Performance speedup
computational kernel+load/store setup
over the single processor pNIOS II

Figure 16: Kernel speeds up several architectures when considering
required loads and stores to maintain the register file.

improvement in ILP and, thus, provides relatively small per-
formance improvement. However, when coupled with hard-
ware functions, the VLIW has a significant impact providing,
in some cases, up to an additional 3.6X. It provided an aver-
age of 2.3X over a single processor and hardware alone. This
range falls within the additional predicted 2X to 5X process-
ing capability provided by the 4-way VLIW processor.

The reason for this improvement is due to several fac-
tors. The first is a simplified problem. Because the software
code has been made more regular (just loading and stor-
ing non-data-dependent values), the available ILP for VLIW
processing is potentially much higher than in typical code.
Secondly, we see a new “90/10” rule. The hardware execution

20 EURASIP Journal on Applied Signal Processing

18

16

14

12

10

8

6

4

2

0

Sp
ee
du

p
ov
er

pN
IO

S
II

ADPCM decoder

ADPCM encoder

GSM decoder

G721 decoder
MPEG2 decode

pNIOS II VLIW 4 VLIW Unl
HW+

pNIOS II
HW+
VLIW 4

HW+
VLIW Unl

1
1
1
1
1

1.13
1.28
1.35
1.27
1.39

1.13
1.28
1.36
1.39
1.48

2.92
4

4.02
12.01
3.97

4.15
7.66
5.71
13.95
3.42

4.15
7.66
5.77
16.01
3.95

Benchmark speedup
kernal + nonkernel including function call overhead

over the single processor pNIOS II

Figure 17: Overall performance speedup of the entire application
for several architectures including overheads associated with func-
tion calls.

accelerates a high percentage of the kernel code by 9X or
more leaving the remaining software portion of the code
to dominate the execution time. Improving the remaining
software code execution time through VLIW processing im-
pacts this remaining (and now dominant) execution time,
thus providing magnified improvements for relatively low
ILP (such as the predicted 2–5X).

While the initial results for the VLIW processor with
hardware functions are encouraging, there are several oppor-
tunities for improvement. A significant limiting factor of the
hardware acceleration is the loads and stores that are cur-
rently executed in software. While these operations would
need to be done in software for a single processor execution
and it is possible through transformations that these oper-
ations have become more regular and, thus, exhibit higher
than normal ILP, they still are a substantial bottleneck.

To improve the performance of these operations it should
be possible to overlap load and store operations with the ex-
ecution of the hardware block. One way to do this is to create
“mirror” register files. While the hardware function executes
on one group of registers, the VLIW prepares the mirror reg-
ister file for the next iteration. Another possibility to allow
the hardware direct access to the memories as well as the reg-
ister file.

ACKNOWLEDGMENT

This work was supported in part by the Pittsburgh Digital
Greenhouse.

REFERENCES

[1] Altera Corporation, “Stratix II Device Handbook, Volume 1,”
available on-line: http://www.altera.com.

[2] Xilinx Incorporated, “Virtex-4 Product Backgrounder,” avail-
able on-line: http://www.xilinx.com.

[3] Lattice Semiconductor Corporation, “LatticeECP and EC
Familiy Data Sheet,” available on-line: http://www.latticesemi
.com.

[4] Apple Computer Inc., “Optimizing with SHARK, Big Payoff,
Small Effort”.

[5] D. C. Suresh,W. A. Najjar, F. Vahid, J. R. Villarreal, and G. Stitt,
“Profiling tools for hardware/software partitioning of embed-
ded applications,” in Proceedings of ACM SiGPLAN Confer-
ence on Languages, Compilers, and Tools for Embedded Systems
(LCTES ’03), pp. 189–198, San Diego, Calif, USA, June 2003.

[6] G. De Micheli, D. Ku, F. Mailhot, and T. Truong, “The Olym-
pus synthesis system,” IEEE Design and Test of Computers,
vol. 7, no. 5, pp. 37–53, 1990.

[7] L. Lavagno and E. Sentovich, “ECL: a specification environ-
ment for system-level design,” in Proceedings of 36th Design
Automation Conference (DAC ’99), pp. 511–516, New Orleans,
La, USA, June 1999.

[8] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: a high-
level synthesis framework for applying parallelizing compiler
transformations,” in Proceedings of 16th IEEE International
Conference on VLSI Design (VLSI Design ’03), pp. 461–466,
New Delhi, India, January 2003.

[9] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Using
global code motions to improve the quality of results for high-
level synthesis,” IEEE Transactions On Computer-Aided Design
Of Integrated Circuits and Systems, vol. 23, no. 2, pp. 302–312,
2004.

[10] A. K. Jones, D. Bagchi, S. Pal, P. Banerjee, and A. Choud-
hary, “Pact HDL: compiler targeting ASIC’s and FPGA’s with
power and performance optimizations,” in Power Aware Com-
puting, R. Graybill and R. Melhem, Eds., chapter 9, pp. 169–
190, Kluwer Academic, Boston, Mass, USA, 2002.

[11] X. Tang, T. Jiang, A. K. Jones, and P. Banerjee, “Behavioral syn-
thesis of data-dominated circuits for minimal energy imple-
mentation,” in Proceedings of 18th IEEE International Confer-
ence on VLSI Design (VLSI Design ’05), pp. 267–273, Kolkata,
India, January 2005.

[12] E. Jung, “Behavioral synthesis using systemC compiler,” in
Proceedings of 13th Annual Synopsys Users Group Meeting
(SNUG ’03), San Jose, Calif, USA, March 2003.

[13] D. Black and S. Smith, “Pushing the limites with behavioral
compiler,” in Proceedings of 9th Annual Synopsys Users Group
Meeting (SNUG ’99), San Jose, Calif, USA, March 1999.

[14] K. Bartleson, “A New Standard for System-Level Design,” Syn-
opsys White Paper, 1999.

[15] R. Goering, “Behavioral Synthesis Crossroads,” EE Times Ar-
ticle, 2004.

[16] D. J. Pursley and B. L. Cline, “A practical approach to hard-
ware and software SoC tradeoffs using high-level synthesis for
architectural exploration,” in Proceedings of of the GSPx Con-
ference, Dallas, Tex, USA, March–April 2003.

[17] S. Chappell and C. Sullivan, “Handel-C for Co-Processing and
Co-Design of Field Programmable System on Chip,” Celoxica
White Paper, 2002.

[18] P. Banerjee, M. Haldar, A. Nayak, et al., “Overview of a com-
piler for synthesizing MATLAB programs onto FPGAs,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 12, no. 3, pp. 312–324, 2004.

[19] P. Banerjee, N. Shenoy, A. Choudhary, et al., “AMATLAB com-
piler for distributed, heterogeneous, reconfigurable comput-
ing systems,” in Proceedings of 8th Annual IEEE International

http://www.altera.com
http://www.xilinx.com
http://www.latticesemi.com
http://www.latticesemi.com

Raymond R. Hoare et al. 21

Symposium on FPGAs for CustomComputingMachines (FCCM
’00), pp. 39–48, Napa Valley, Calif, USA, April 2000.

[20] S. McCloud, “Catapult C Synthesis-Based Design Flow:
Speeding Implementation and Increasing Flexibility,” Mentor
Graphics White Paper, 2004.

[21] V. Chaiyakul and D. D. Gajski, “Assignment decision diagram
for high-level synthesis,” Tech. Rep. #92-103, University of
California, Irvine, Calif, USA, December 1992.

[22] V. Chaiyakul, D. D. Gajski, and L. Ramachandran, “High-level
transformations for minimizing syntactic variances,” in Pro-
ceedings of 30th Design Automation Conference (DAC ’93), pp.
413–418, Dallas, Tex, USA, June 1993.

[23] I. Ghosh and M. Fujita, “Automatic test pattern generation for
functional RTL circuits using assignment decision diagrams,”
in Proceedings of 37th Design Automation Conference (DAC
’00), pp. 43–48, Los Angeles, Calif, USA, June 2000.

[24] L. Zhang, I. Ghosh, and M. Hsiao, “Efficient sequential ATPG
for functional RTL circuits,” in Proceedings of IEEE Interna-
tional Test Conference (ITC ’03), vol. 1, pp. 290–298, Charlotte,
NC, USA, September–October 2003.

[25] V. A. Chouliaras and J. Nunez, “Scalar coprocessors for accel-
erating the G723.1 and G729A speech coders,” IEEE Transac-
tions on Consumer Electronics, vol. 49, no. 3, pp. 703–710, 2003.

[26] E. Atzori, S. M. Carta, and L. Raffo, “44.6% processing cy-
cles reduction in GSM voice coding by low-power recon-
figurable co-processor architecture,” IEE Electronics Letters,
vol. 38, no. 24, pp. 1524–1526, 2002.

[27] J. Hilgenstock, K. Herrmann, J. Otterstedt, D. Niggemeyer,
and P. Pirsch, “A video signal processor for MIMD multipro-
cessing,” in Proceedings of 35th Design Automation Conference
(DAC ’98), pp. 50–55, San Francisco, Calif, USA, June 1998.

[28] R. Garg, C. Y. Chung, D. Kim, and Y. Kim, “Boundary mac-
roblock padding in MPEG-4 video decoding using a graph-
ics coprocessor,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 12, no. 8, pp. 719–723, 2002.

[29] C. N. Hinds, “An enhanced floating point coprocessor for em-
bedded signal processing and graphics applications,” in Pro-
ceedings of Conference Record 33rd Asilomar Conference on
Signals, Systems, and Computers, vol. 1, pp. 147–151, Pacific
Grove, Calif, USA, October 1999.

[30] J. C. Alves and J. S. Matos, “RVC-a reconfigurable coprocessor
for vector processing applications,” in Proceedings of 6th IEEE
Symposium on FPGAs for CustomComputingMachines (FCCM
’98), pp. 258–259, Napa Valley, Calif, USA, April 1998.

[31] T. Bridges, S. W. Kitchel, and R. M. Wehrmeister, “A CPU uti-
lization limit for massively parallel MIMD computers,” in Pro-
ceedings of 4th Symposium on the Frontiers of Massively Parallel
Computation, pp. 83–92, McLean, Va, USA, October 1992.

[32] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R.
Taylor, “PipeRench: A virtualized programmable datapath in
0.18 micron technology,” in Proceedings of IEEE Custom Inte-
grated Circuits Conference (CICC ’02), pp. 63–66, Orlando, Fla,
USA, May 2002.

[33] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
and R. R. Taylor, “PipeRench: a reconfigurable architecture
and compiler,” Computer, vol. 33, no. 4, pp. 70–77, 2000.

[34] S. C. Goldstein, H. Schmit, M. Moe, et al., “PipeRench: a co-
processor for streaming multimedia acceleration,” in Proceed-
ings of 26th IEEE International Symposium on Computer Archi-
tecture (ISCA ’99), pp. 28–39, Atlanta, Ga, USA, May 1999.

[35] S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, and D. E.
Thomas, “Managing pipeline-reconfigurable FPGAs,” in Pro-
ceedings of 6th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA ’98), pp. 55–64, Monterey,
Calif, USA, February 1998.

[36] H. Schmit, “Incremental reconfiguration for pipelined appli-
cations,” in Proceedings of 5th Annual IEEE Symposium on FP-
GAs for Custom Computing Machines (FCCM ’97), pp. 47–55,
Napa Valley, Calif, USA, April 1997.

[37] B. A. Levine and H. Schmit, “Efficient application represen-
tation for HASTE: hybrid architectures with a single, trans-
formable executable,” in Proceedings of 11th Annual IEEE Sym-
posium on FPGAs for Custom Computing Machines (FCCM
’03), pp. 101–110, Napa Valley, Calif, USA, April 2003.

[38] C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD - re-
configurable pipelined datapath,” in Proceedings of 6th Inter-
national Workshop on Field-Programmable Logic and Applica-
tions (FPL ’96), pp. 126–135, Darmstadt, Germany, September
1996.

[39] C. Ebeling, D. C. Cronquist, P. Franklin, and C. Fisher, “RaPiD
- a configurable computing architecture for compute-intensive
applications,” Tech. Rep. TR-96-11-03, University of Washing-
ton, Department of Computer Science & Engineering, Seattle,
Wash, USA, 1996.

[40] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G.
Berg, “Mapping applications to the RaPiD configurable archi-
tecture,” in Proceedings of 5th Annual IEEE Symposium on FP-
GAs for Custom Computing Machines (FCCM ’97), pp. 106–
115, Napa Valley, Calif, USA, April 1997.

[41] D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebeling, “Spec-
ifying and compiling applications for RaPiD,” in Proceedings
of 6th IEEE Symposium on FPGAs for Custom Computing Ma-
chines (FCCM ’98), pp. 116–125, Napa Valley, Calif, USA, April
1998.

[42] D. C. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C.
Ebeling, “Architecture design of reconfigurable pipelined dat-
apaths,” in Proceedings of 20th Anniversary Conference on Ad-
vanced Research in VLSI, pp. 23–40, Atlanta, Ga, USA, March
1999.

[43] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable com-
puting architecture with configurable instruction distribution
and deployable resources,” in Proceedings of 4th IEEE Sympo-
sium on FPGAs for Custom Computing Machines (FCCM ’96),
pp. 157–166, Napa Valley, Calif, USA, April 1996.

[44] U. J. Kapasi,W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany,
“The imagine stream processor,” in Proceedings of IEEE Inter-
national Conference on Computer Design: VLSI in Computers
and Processors, pp. 282–288, Freiberg, Germany, September
2002.

[45] B. Khailany, W. J. Dally, U. J. Kapasi, et al., “Imagine: media
processing with streams,” IEEE Micro, vol. 21, no. 2, pp. 35–
46, 2001.

[46] J. D. Owens, S. Rixner, U. J. Kapasi, et al., “Media processing
applications on the Imagine stream processor,” in Proceedings
of IEEE International Conference on Computer Design: VLSI
in Computers and Processors, pp. 295–302, Freiberg, Germany,
September 2002.

[47] J. R. Hauser and J.Wawrzynek, “Garp: aMIPS processor with a
reconfigurable coprocessor,” in Proceedings of 5th Annual IEEE
Symposium on FPGAs for CustomComputingMachines (FCCM
’97), pp. 12–21, Napa Valley, Calif, USA, April 1997.

[48] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp ar-
chitecture and C compiler,” Computer, vol. 33, no. 4, pp. 62–
69, 2000.

[49] T. Callahan, “Kernel formation in Garpcc,” in Proceedings of
11th Annual IEEE Symposium on FPGAs for CustomComputing

22 EURASIP Journal on Applied Signal Processing

Machines (FCCM ’03), pp. 308–309, Napa Valley, Calif, USA,
April 2003.

[50] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The Chi-
maera reconfigurable functional unit,” in Proceedings of 5th
Annual IEEE Symposium on FPGAs for CustomComputingMa-
chines (FCCM ’97), pp. 87–96, Napa Valley, Calif, USA, April
1997.

[51] S. Hauck, M. M. Hosler, and T. W. Fry, “High-performance
carry chains for FPGAs,” in Proceedings of ACM/SIGDA In-
ternational Symposium on Field Programmable Gate Arrays
(FPGA ’98), pp. 223–233, Monterey, Calif, USA, February
1998.

[52] R. Hoare, S. Tung, and K. Werger, “A 64-way SIMD processing
architecture on an FPGA,” in Proceedings of 15th IASTED In-
ternational Conference on Parallel and Distributed Computing
and Systems (PDCS ’03), vol. 1, pp. 345–350, Marina del Rey,
Calif, USA, November 2003.

[53] S. Dutta, A. Wolfe, W. Wolf, and K. J. O’Connor, “Design is-
sues for very-long-instruction-word VLSI video signal proces-
sors,” in Proceedings of IEEE Workshop on VLSI Signal Pro-
cessing, IX, pp. 95–104, San Francisco, Calif, USA, October–
November 1996.

[54] A. Capitanio, N. Dutt, and A. Nicolau, “Partitioned register
files For VLIWs: a preliminary analysis of tradeoffs,” in Pro-
ceedings of 25th Annual International Symposium on Microar-
chitecture (MICRO ’92), pp. 292–300, Portland, Ore, USA, De-
cember 1992.

[55] “Trimaran, An Infrastructure for Research in Instruction-
Level Parallelism,” 1998, http://www.trimaran.org.

[56] A. K. Jones, R. Hoare, I. S. Kourtev, et al., “A 64-way
VLIW/SIMD FPGA architecture and design flow,” in Proceed-
ings of 11th IEEE International Conference on Electronics, Cir-
cuits and Systems (ICECS ’04), pp. 499–502, Tel Aviv, Israel,
December 2004.

[57] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Me-
diaBench: a tool for evaluating and synthesizing multime-
dia and communications systems,” in Proceedings of 30th An-
nual IEEE/ACM International Symposium onMicroarchitecture
(MICRO ’97), pp. 330–335, Research Triangle Park, NC, USA,
December 1997.

[58] J. Degener and C. Bormann, “GSM 06.10 lossy speech com-
pression library,” available on-line: http://kbs.cs.tu-berlin.de/
∼jutta/toast.html.

[59] G. Golub and C. F. V. Loan, Matrix Computational, Johns
Hopkins University Press, Baltimore, Md, USA, 1991.

[60] B. Hassibi and H. Vikalo, “On sphere decoding algorithm. I.
Expected complexity,” submitted to IEEE Transactions on Sig-
nal Processing, 2003.

[61] B. Hassibi and H. Vikalo, “On sphere decoding algorithm. II.
Examples,” submitted to IEEE Transactions on Signal Process-
ing, 2003.

[62] Y. Chobe, B. Narahari, R. Simha, andW. F. Wong, “Tritanium:
augmenting the trimaran compiler infrastructure to support
IA64 code generation,” in Proceedings of 1st Annual Workshop
on Explicitly Parallel Instruction Computing Architectures and
Compiler Techniques (EPIC ’01), pp. 76–79, Austin, Tex, USA,
December 2001.

Raymond R. Hoare is an Assistant Profes-
sor of Electrical Engineering at the Univer-
sity of Pittsburgh. He received his Bachelor
of Engineer degree from Steven’s Institute of
Technology in 1991. He obtained the Mas-
ter’s degree from the University of Mary-
land and his Ph.D. from Purdue University
in 1994 and 1999, respectively. Dr. Hoare
teaches hardware design methodologies at
the graduate level, computer organization,
and software engineering. His research focus is on high perfor-
mance parallel architectures. For large parallel systems, his focus
is on communication and coordination networks. For systems on a
chip, he is focused on parallel processing architectures and design
automation for application specific computing. Dr. Hoare is one of
the founders, and is the General Chair for the IEEE Workshop on
Massively Parallel Processing.

Alex K. Jones received his B.S. in 1998
in physics from the College of William
and Mary in Williamsburg, Virginia. He
received his M.S. and Ph.D. degrees in
2000 and 2002, respectively, in electrical
and computer engineering at Northwest-
ern University. He is currently an Assistant
Professor at the University of Pittsburgh in
Pittsburgh, Pennsylvania. He was formerly
a Research Associate in the Center for Par-
allel and Distributed Computing and Instructor of electrical and
computer engineering at Northwestern University. He is a Walter
P. Murphy Fellow of Northwestern University, a distinction he was
awarded with twice. Dr. Jones’ research interests include compila-
tion techniques for behavioral synthesis, low-power synthesis, em-
bedded systems, and high-performance computing. He is the au-
thor of over 30 publications related to high-performance comput-
ing and power-aware design automation including a book chap-
ter in Power Aware Computing (Kluwer, Boston, Mass, 2002). He is
currently an Associate Editor of the International Journal of Com-
puters and Applications. He is also on the Program Committee of
the Parallel and Distributed Computing and Systems Conference
and the Microelectronic System Engineering Conference.

Dara Kusic is a Masters student at the Uni-
versity of Pittsburgh. Her research interests
include parallel processor design, hybrid ar-
chitectures and computational accelerators.
She is a Student Member of the IEEE and
the IEEE Computer Society.

Joshua Fazekas is anM.S.E.E. student at the
University of Pittsburgh. His research in-
terests include hardware/software codesign,
compiler design, and low-power hardware
design. Fazekas received a B.S. in computer
engineering from the University of Pitts-
burgh.

http://www.trimaran.org
http://kbs.cs.tu-berlin.de/~jutta/toast.html
http://kbs.cs.tu-berlin.de/~jutta/toast.html

Raymond R. Hoare et al. 23

John Foster is a Masters student in the De-
partment of Electrical and Computer En-
gineering, University of Pittsburgh. He re-
ceived his B.S. degree in computer en-
gineering from University of Maryland,
Baltimore County. His research interests
include parallel processing compilers and
hardware/software codesign.

Shenchih Tung is a Ph.D. candidate in the
Department of Electrical and Computer
Engineering, University of Pittsburgh. He
received his B.S. degree in electrical engi-
neering from National Taiwan Ocean Uni-
versity, Taiwan, in June 1997. He received
his M.S. degree in telecommunication from
Department of Information Science at the
University of Pittsburgh in August 2000.
His research interests include parallel com-
puting architecture, MPSoCs, network-on-chip, parallel and dis-
tributed computer simulation, and FPGA design. He is a Member
of the IEEE and IEEE Computer Society.

Michael McCloud received the B.S. degree
in electrical engineering from George Ma-
son University, Fairfax, VA, in 1995, and the
M.S. and Ph.D. degrees in electrical engi-
neering from the University of Colorado,
Boulder, in 1998 and 2000, respectively. He
spent the 2000–2001 academic year as a Vis-
iting Researcher and Lecturer at the Univer-
sity of Colorado. From 2001 to 2003 he was
a Staff Engineer at Magis Network, Inc., San
Diego, California, where he worked on the physical layer design of
indoor wireless modems. He spent the 2004 and 2005 academic
years as an Assistant Professor at the University of Pittsburgh. He
is currently with TensorComm, Inc., Denver, Colorado, where he
works on interference mitigation technologies for wireless commu-
nications.

	Introduction
	Motivation
	Related work
	Architecture
	VLIW processor
	Zero-cycle overhead hardware/software interface
	Achieving speedup through hardware functions

	Compilation for the VLIW processorwith hardware functions
	Performance code profiling
	Compiler transformations for synthesis
	Compiler transformations to restructure code
	Synthesis of core computational code

	Interfacing hardware and software

	Benchmarks
	Voice compression algorithms
	The discrete cosine transform
	The sphere decoder

	Results
	Conclusions and future work
	Acknowledgment
	REFERENCES

