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1 Introduction

The pure spinor formalism of the superstring was constructed more than a decade ago [1].

The idea is to add a constrained ghost, which satisfies the pure spinor condition. The

string sigma model is constructed in a way that it is conformal invariant. Berkovits noted

that the conformal invariance of the model was not enough to get the superstring physical

spectrum and invented a nilpotent charge with the help of a pure spinor variable. It turns

out that the cohomology of this nilpotent charge gives the physical superstring spectrum

and nothing else [2]. Unlike RNS, the pure spinor formalism does not need to make a

projection to get the physical spectrum and space-time supersymmetry is manifest. In

fact, not only massless sates are described in terms of superfields, massive states can

also be described in this language [3]. Many applications of the formalism, like computing

manifestly supersymmetric scattering amplitudes, were developed later (see the review [4]).

Despite the success in reproducing known results in other formalisms and obtaining

new results, the pure spinor formalism is not understood completely. Perhaps, the most

important lacking ingredient is a symmetry of the world-sheet action that allows quanti-

zation. In other words, it is not known what is the fixed gauge symmetry that implies

the existence of the pure spinor BRST charge. Instead of facing directly this problem, one

could continue the program and determine some features that would lead, eventually, to

solve the previous issue. One of this features is the inclusion of a b ghost. Since the string

model does not require a pair of (b, c) ghosts, the BRST ghosts of the parameterization

invariance of the string world-sheet, they have to be constructed as a functions of the string

model variables. However, the minimal pure spinor formalism of [1] is not suitable to define
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a b ghost. Berkovits introduced new variables and constructed a non-minimal pure spinor

formalism [5]. The cohomology of the modified BRST charge does not change respect to

the minimal version of the pure spinor formalism [5]. The nilpotency of the b ghost was

verified in [6] and [7]. The conjugate c ghost was constructed in [8]. All this was done in

flat space-time background. Recently, the construction of the b ghost in a super Maxwell

background was done in [9]. The natural question is to determine the b ghost in a generic

curved background. This is the purpose of this paper.

The idea is to determine a string world-sheet action in a heterotic curved background

that it os consistent with the pure spinor BRST symmetry. We find that the stress-energy

tensor has the form

T = T0 + T1, (1.1)

where T0 is the stress-energy tensor for the minimal variable and T1 is an expression that

it is reduced to the correct limit on a flat space-time background. The expression for T is

determined in section 3. Once T is determined, the b ghost is obtained through the relation

Qb = T . The result has the form

b = b0 + f(Ωα), (1.2)

where b0 has the same dependence on world-sheet than the ghost in flat background space-

time and f is conformal weight two which depends linearly on the scalar part of the Lorentz

connection Ωα. Note that Ωα = 1
4∇αΦ, where Φ is the dilaton superfield. Then, in the flat

space-time background Φ vanishes and the b ghost has the correct limit. Note also that

there are backgrounds where the dilaton superfield is constant, then it would be possible

that in such cases, the b ghost has the same dependence on world-sheet fields thant the b

ghost in flat space-time background.

The plan of the paper is as it follows. In section 2, the non-minimal pure spinor

formalism in flat background is reviewed. In section 3, the minimal pure spinor formalism

in the heterotic curved background is reviewed. This system was studied in [10], where

it was shown that nilpotency of the BRST charge implies that the background satisfies

the ten-dimensional supergravity equations of motion and the N = 1 super Yang-Mills

equations of motion in a curved background. Note that this background was shown to be

conformal invariant at one-loop [11] and the one-loop BRST anomaly was studied in [12].

The BRST transformations for the world-sheet fields in a curved heterotic background were

determined in [13].

The BRST transformation of the minimal and non-minimal variables are obtained in

the section 4. They are obtained as consequence of the trivial cohomology of the non-

minimal contribution to the BRST charge. This fact was noted in [5] in flat space-time

background. We generalize this fact to the heterotic curved background. In section 5, we

determine the world-sheet action of the non-minimal pure spinor string in the heterotic

curved background. Here, the stress-energy tensor receives a non-trivial contribution from

the non-minimal sector. It is important to determine the stress-energy tensor because it

will allow to find constraint equations for the b ghost. This is done in section 6. The

constraints equations come from the definition for the b ghost. It satisfies Qb = T , where
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Q is the BRST charge and T is the stress-energy tensor. Finally, in section 7, we solve the

constraint equations for the b ghost and determine that the resulting construction has the

correct flat space-time background limit.

2 The non-minimal pure spinor string on a flat background

In this section we review the non-minimal pure spinor formalism [5] on a flat background.

The action is given by

S = S0 +

∫
d2z ω̂α∂λ̂α + sα∂rα, (2.1)

where S0 is the minimal action which is given by

S0 =

∫
d2z

1

2
∂Xm∂Xm + pα∂θ

α + ωα∂λα, (2.2)

where (Xm, θα) are the coordinates of N = 1 ten-dimensional superspace, pα is the canon-

ical conjugate of θα. The minimal λ and the non-minimal (λ̂, r) ghosts are constrained to

satisfy

λγmλ = λ̂γmλ̂ = λ̂γmr = 0, (2.3)

where γαβm and γmαβ are the symmetric gamma matrices in ten dimensions.

In order to preserve these constraints, the canonical conjugate ghosts ω, ω̂ and s are

defined up to the gauge transformations

δωα = (λγm)αΛ
m, δsα = (γmλ̂)αΛ̃m,

δω̂α = (γmλ̂)αΛ̃m − (γmr)αΛ̃m.
(2.4)

The quantization of this system is performed after the inclusion of a nilpotent charge

which is identified with a BRST charge. It is given by

Q = Q0 +Q1, (2.5)

where

Q0 =

∮
dz λαdα, Q1 =

∮
dz ω̂αrα, (2.6)

are the the BRST charges for the minimal and non-minimal pure spinor variables. Note

that the BRST charge is nilpotent because both Q0 and Q1 are nilpotent and anticommute.

The cohomology of the minimal BRST operator, the first term in (2.5), describes

the physical superstring states. For massless states, the (unintegrated) vertex operator is

U = λαAα(X, θ). This state is in the cohomology of Q0 if Q0U = 0 and U ∼ U + Q0U .

These conditions imply that U contains the photon an the photino as physical degrees of

freedom and nothing else [1]. Similarly, vertex operators for higher mass states can be

defined and cohomology conditions put the superfields on-shell. This is the case for the

first massive state where the only physical states are the massive spin-3/2 multiplet [3].

The cohomology of the non-minimal pure spinor BRST operator (2.5) is equivalent to the

cohomology of the minimal pure spinor BRST operator in (2.5) because the non-minimal
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contribution has trivial cohomology [5]. Consequently, the action of the non-minimal model

is BRST equivalent to the action of the minimal model. In fact

S = S0 +Q

∫
d2z sα∂λ̂α. (2.7)

Below, this relation will be used to determine the superstring world-sheet action on a

curved background.

3 The minimal heterotic pure spinor string on a curved background

In this section we review the construction of the action for the heterotic string in a curved

background (see the appendix for a short review of our conventions). The action can be

obtained by adding to the flat action of (2.1) the integrated vertex operator and then

covariantize respect to background invariance. The action becomes [10]

S0 =

∫
d2z

[
1

2
ΠaΠ

b
ηab +

1

2
ΠAΠ

B
BBA + dα(Π

α
+ J

I
Wα

I ) + λαωβJ
I
UIα

β

+ ωα∇λα + (ρA∇ρA)

]
+ SFT ,

(3.1)

where ΠA and Π
A
are defined from the background supevielbein EM

A and the superfield

coordinates ZM as

ΠA = ∂ZMEM
A, Π

A
= ∂ZMEM

A. (3.2)

The variable dα is interpreted as the world-sheet generator for translations in superspace.

The world-sheet covariant derivative on the pure spinor variable is defined by

∇λα = ∂λα + λβΩβ
α, (3.3)

where Ωβ
α = ∂ZMΩMβ

α with Ω being the Lorentz connection. Note that the connection

ΩAα
β = EM

AΩMα
β has the index structure

ΩAα
β = ΩAδ

β
α +

1

4
(γab)α

βΩA
ab, (3.4)

where ΩA is the scalar connection and ΩA
ab is the usual Lorentz connection. The right-

moving heterotic fermions ρA transform in the fundamental representation of E8 × E8 or

SO(32) and its covariant derivative is defined such that

(ρA∇ρA) = (ρA∂ρA) + ΠAJ
I
AIA,

where J
I
= 1

2K
I
AB

ρAρB with KI represents the generators of the Lie algebra of E8 × E8

or SO(32) in the fundamental representation, and AIA is the corresponding gauge field.

Finally, SFT is the Fradkin-Tseytlin term given by the world-sheet integral of the dilaton

superfield Φ.

In [10] it was shown that the charge Q0 in (2.6) is nilpotent and conserved if the

background is constrained to satisfy the supergravity and SYM equations of motion in ten
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dimensions. Alternatively, in [13] it was found how the world-sheet fields of the action (3.1)

transform under Q0 and it was verified that the action S0 is BRST invariant. We will

assume that the minimal variables are unaffected by the non-minimal BRST charge. Below,

we will need the BRST transformation of the connection Ωα
β which is equal to

Q0Ωα
β = ∇(λγΩγα

β)− λγΠ
A
RAγα

β, (3.5)

where the covariant derivative was defined in (3.3) and R is the curvature superfield.

Note that the first term in this transformation is a Lorentz transformation with the field-

dependent parameter λγΩγα
β . In [13] it was shown that this property is true for all the

world-sheet fields of the action (3.1), that is, the BRST transformation of the fields always

contains a gauge and Lorentz transformation. We will denote as Q̃0 on the world-sheet fields

as the minimal pure spinor BRST transformation without including the Lorentz rotation.

Below we will need the action of Q̃0 on the other world-sheet fields. These transformations

were derived in [13] and the non-vanishing variations are

Q̃0Π
A = δAα∇λα − λαΠBTBα

A, Q̃0ωα = dα, (3.6)

Q̃0dα = λβΠa(γa)βα + λβλγωδRαβγ
δ,

where we have used some local Lorentz symmetry to gauge fix the torsion component Tαβ
γ

to zero [10].

4 BRST transformations of the non-minimal variables

One could think that theQ0 BRST transformations of the non-minimal variables are trivial.

However, all the fields in the minimal model transform, at least, with a Lorentz rotation

term. Since the non-minimal variables transform under Lorentz rotations, then we expect

a non trivial action of Q0 on the non-minimal pure spinor variables. One could argue

that the Lorentz index in the non-minimal variables just counts number of fields and it

is not a vector index. This is not the case. The b ghost in flat space is constructed from

contractions between minimal and non-minimal variables such that it is Lorentz invariant.

Using cohomology arguments, we will find the form in which Q0 acts on the non-minimal

variables.

The BRST charge in a curved background has the same form as in flat space, that is,

Q = Q0 +Q1, (4.1)

where both Q0 and Q1 are nilpotent. Because Q is nilpotent, we obtain the Q0 and Q1

anticommute. The action of Q1 on the non-minimal variables is

Q1λ̂α = −rα, Q1s
α = ω̂α, Q1ω̂

α = Q1rα = 0. (4.2)

Consider the last two equations here. Acting with Q0 and using anticommutation with Q1,

we obtain

Q1(Q0ω̂
α) = 0, Q1(Q0rα) = 0. (4.3)
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Because the cohomology of Q1 is trivial [5], we determine the form of Q0ω̂
α and Q0rα to be

Q0ω̂
α = ω̂βAβ

α + rβG
βα, Q0rα = Bα

βrβ + ω̂βHβα, (4.4)

where A,B,G,H depend on the minimal variables. Note that the terms involving A and B

contains Lorentz rotations, so we identify them with the field-dependent Lorentz parameter

of the minimal sector. Recall that Q0 maps a λ-ghost number n field to a λ-ghost number

n+ 1 field, so we need to add a factor of λ to the above transformations. Then, we have

Q0ω̂
α = −ω̂βλγ(Ωγβ

α +Aγβ
α) + λβrγGβ

γα, Q0rα = λγ(Ωγα
β + Bγα

β)rβ + λβω̂γHβγα,

(4.5)

where A,B,G and H depend on the minimal variables only. Note that H has conformal

weight −1, then it has to vanish because it is not possible to write a quantity of such

conformal weight in the minimal formalism, at least if one requires Lorentz covariance.

Let us try the possibility that both G and H vanish. Below, we will determine A and B

by requiring that Q0 is nilpotent. Before that, we obtain the action of Q0 on the other

non-minimal variable λ̂ and s. Analogous to (4.3) we have

Q1(Q0λ̂α) = Q0rα, Q1(Q0s
α) = −Q0ω

α, (4.6)

from which we obtain

Q0λ̂α = λγ(Ωγα
β + Bγα

β)λ̂β , Q0s
α = sβλγ(Ωγβ

α +Aγβ
α). (4.7)

BecauseQ0 is nilpotent, A and B in (4.5) and (4.7) satisfy certain constraints. Applying

Q0 to first equation in (4.5), we obtain

Q2
0ω̂

α = −
1

2
ω̂βλγλδ(Rγδβ

α +∇(γAδ)β
α −Aγβ

ρAδρ
α −Aδβ

ρAγρ
α), (4.8)

where we used the definition of the curvature R in terms of the connection Ω and the

Berkovits-Howe constraint λγλδTγδ
A = 0, where T is the torsion in superspace [10]. The

solution for A is

Aγβ
α = −

1

4
(γab)β

αTγab. (4.9)

To verify that (4.9) is the solution of (4.8), we use

Rγδβ
α = Rγδδ

α
β +

1

4
(γab)β

αRγδab,

where Rγδ = ∇(γΩδ). Note that λγλδRγδ vanishes after using that Ωα is proportional to

∇αΦ, where Φ is the dilaton superfield [10]. The last step is to use the Bianchi identity

involving Rγδab and, again, the constraint λγλδTγδ
A = 0.

– 6 –
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We proceed similarly to determine B by demanding that Q2
0rα vanishes. It turns out

that B = A. In summary, the action of Q0 on the non-minimal variables is given by

Q0ω̂
α = −ω̂βλγ

(
Ωγβ

α −
1

4
(γab)β

αTγab

)
,

Q0rα = −λγrβ

(
Ωγα

β −
1

4
(γab)α

βTγab

)
,

Q0λ̂α = λγ λ̂β

(
Ωγα

β −
1

4
(γab)α

βTγab

)
,

Q0s
α = sβλγ

(
Ωγβ

α −
1

4
(γab)β

αTγab

)
.

(4.10)

5 The non-minimal heterotic pure spinor string on a curved background

We now define a world-sheet action for the heterotic pure spinor string in a curved back-

ground. We start with the generalization of (2.7) in this case,

S = S0 +Q

∫
d2z sα∇λ̂α, (5.1)

where S0 is given in (3.1). Using the above BRST transformations on the minimal and

non-minimal variables we obtain

S = S0 +

∫
d2z ω̂α∇λ̂α + sα∇rα

+
1

4
sβλ̂γ∇λα(γab)β

γTαab + λαsβλ̂γΠ
A
(
1

4
(γab)β

γ∇ATαab −RAαβ
γ

)
.

(5.2)

Because the pure spinor BRST operator is nilpotent on gauge invariant operator, the

action (5.1) is BRST invariant.

Since we are interested in the construction of the b ghost, we need to know the left-

moving stress-energy tensor derived from (5.2). Under an holomorphic conformal trans-

formation, the superspace coordinate Z, the pure spinor ghosts λ, λ̂ and r carry conformal

weight zero. While the conjugate pure spinor variables ω, ω̂ and s carry conformal weight

one. Noether theorem determines the conserved charge due to this transformation to be

T = T0 − ω̂α∇λ̂α − sα∇rα

−
1

4
sβλ̂γ∇λα(γab)β

γTαab − λαsβλ̂γΠ
A

(
1

4
(γab)β

γ∇ATαab −RAαβ
γ

)
,

(5.3)

where T0 is the stress-tensor from the action S0 which is given by

T0 = −
1

2
ΠaΠ

a − dαΠ
α − ωα∇λα. (5.4)

Note that (5.3) reduces to the correct expression in the flat space limit because

Tαab = 2(γab)α
βΩβ → 0, RAαβ

γ → 0.

In the next section we will use the stress tensor (5.3) to determine the b ghosts satisfying

Qb = T .
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6 The b ghost

The b ghost was constructed in [5] for the case in which the background is flat. It is given by

b = −sα∂λ̂α +
1

(λλ̂)
λ̂αG

α −
1

(λλ̂)2
λ̂αrβH

αβ −
1

(λλ̂)3
λ̂αrβrγK

αβγ +
1

(λλ̂)4
λ̂αrβrγrδL

αβγδ,

(6.1)

where G,H,K and L have conformal weight two, λ-ghost number zero and depend on the

minimal variables. They have to satisfy the relations

QGα=λαT, QHαβ=λ[αGβ], QKαβγ=λ[αHβγ], QLαβγδ=λ[αKβγδ], λ[αLβγδρ]=0.

(6.2)

to satisfy Qb = T . The expressions for them were derived in [5], we quote the result here

Gα = −
1

2
Πmγαβm dβ −

1

4
J∂θα +

1

8
Nmn(γmn∂θ)

α, (6.3)

Hαβ =
1

192
((dγmnpd) + 24ΠmNnp) γαβmnp,

Kαβγ =
1

16
γ[αβmnp(γ

md)γ]Nnp, Lαβγδ =
1

128
γ[αβmnp(γ

pqr)γδ]NmnNqr,

where Πm = ∂Xm+ 1
2(θγ

m∂θ) is the supersymmetric world-sheet momentum, J = −λαωα

is the λ-ghost number current, and Nmn = 1
2(λγ

mnω) is the generator for Lorentz trans-

formations of the pure spinor variables.

We generalize the expression (6.1) to a curved background and find the relations anal-

ogous to (6.2). We propose

b = −sα∇λ̂α +
1

(λλ̂)
λ̂αG

α −
1

(λλ̂)2
λ̂αrβH

αβ −
1

(λλ̂)3
λ̂αrβrγK

αβγ +
1

(λλ̂)4
λ̂αrβrγrδL

αβγδ,

(6.4)

and now we compute Qb and impose it is equal to (5.3). Because of the form in which Q

acts on both minimal and no-minimal variables, we can organize Qb in an expansion in

powers of r. Note that the b ghost is a Lorentz scalar, so all the terms which depend on the

Lorentz connection Ω will produce a zero variation of b because they are a field-dependent

Lorentz transformation.

The term independent from r is

T − T0 +
1

(λλ̂)
λ̂α

(
Q̃0G

α −
1

4
λβTβab(γ

ab)γ
αGγ − 5λβΩβG

α

)
, (6.5)

where Q̃0G
α is the minimal BRST transformation without the Lorentz rotation term. It

is required that

Q̃0G
α = λαT0 +

1

4
λβTβab(γ

ab)γ
αGγ + 5λβΩβG

α. (6.6)

In this way, (6.5) is equal to the stress-energy tensor T . The remaining terms in Qb has

to vanish and we find constraints equations for H,K,L. The order 1 in r determines an

equation for H,

Q̃0H
αβ = λ[αGβ] −

1

4
λγTγab(γ

ab)δ
[αHβ]δ + 10λγΩγH

αβ . (6.7)

– 8 –



J
H
E
P
0
3
(
2
0
1
4
)
0
9
5

The order 2 in r determines an equation for K,

Q̃0K
αβγ = λ[αHβγ] +

1

4
λδTδab(γ

ab)ρ
[αKβγ]ρ + 15λδΩδK

αβγ . (6.8)

The order 3 in r determines an equation for L,

Q̃0L
αβγδ = λ[αKβγδ] −

1

4
λρTρab(γ

ab)σ
[αLβγδ]σ + 20λρΩρL

αβγδ. (6.9)

Finally, the order 4 in r determines the constraint for L,

λ[αLβγδρ] = 0. (6.10)

Note that, after adding the Lorentz rotation term, the nilpotency of Q0 on G,H,K,L is

verified. Note that the equations (6.6) to (6.10) have the correct flat space limit because

Ωα = 0 in this case.

7 Construction of the b ghost

We look for the fields (G,H,K,L) satisfying equations (6.6) to (6.10). They have conformal

dimension two and minimal ghost number zero. Quite general, they all have the form

UA = ΠaΠb(u1)ab
A +ΠaΠβ(u2)aβ

A +Πadβ(u3)a
βA +Πaλβωγ(u4)aβ

γA

+ΠβΠγ(u5)βγ
A +Πβdγ(u6)β

γA +Πβλγωδ(u7)βγ
δA + dβdγ(u8)

βγA

+ dβλ
γωδ(u9)γ

δβA + λβωγλ
δωρ(u10)βδ

γρA,

(7.1)

where the u’s are super fields of the background and the index A is α for G, αβ for H, αβγ

for K and αβγδ for L. There are possible terms involving ∇ΠA,∇dα,∇λα,∇ωα. We will

not need these terms, so we do not include them. Note that all the terms involving ω must

be invariant under the gauge transformation δωα = (λγa)αΛa. It constrains the Lorentz

index structure of these terms above.

We need to know the action of Q̃0 on G,H,K,L to solve the equations (6.6) to (6.10).

Then, we compute Q̃0 on the general world-sheet field UA. Using (3.6) we obtain

Q̃0U
A = λβΠaΠb

(
−2Taβ

c(u1)cb
A +∇β(u1)ab

A + (γa)βγ(u3)b
γA

)
(7.2)

+ λβΠaΠγ
(
−2Tγβ

b(u1)ba
a + Taβ

b(u2)bγ
A −∇β(u2)aγ

A − (γa)βδ(u6)γ
δA
)

+ λβΠγΠδ
(
−Tγβ

a(u2)aδ
A +∇β(u5)γδ

A
)
+∇λβΠa(u2)aβ

A

+ λβdγΠ
a
(
Taβ

b(u3)b
γA −∇β(u3)a

γA + (u4)aβ
γA + 2(γa)βδ(u8)

δγA
)

+ λβdγΠ
δ
(
Tδβ

a(u3)a
γA −∇β(u6)δ

γA + (u7)δβ
γA

)

+ λβλγωδΠ
a
(
Rρβγ

δ(u3)a
ρA − Taβ

b(u4)bγ
δA +∇β(u4)aγ

δA + (γa)βρ(u9)γ
δρA

)

+ λβλγωδΠ
ρ
(
−Tρβ

a(u4)aγ
δA −Rσβγ

δ(u6)ρ
σA −∇β(u7)ργ

δA
)

+ 2∇λβΠγ(u5)βγ
A +∇λβdγ(u6)β

γA +∇λβλγωδ(u7)βγ
δA

+ λβdγdδ

(
∇β(u8)

γδA − (u9)β
δγA

)

+ λβλγωδdρ

(
2Rσβγ

δ(u8)
σρA −∇β(u9)γ

δρA + 2(u10)βγ
ρδA

)

+ λβλγωδλ
ρωσ

(
∇β(u10)γρ

δσA +Rτβγ
δ(u9)ρ

στA
)
,
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where T is the torsion, R is the curvature, both in superspace. Now we solve the equations

to obtain the b ghost. We well call the u’s superfields in (7.1) g for G, h for H, k for K

and l for L.

We now solve the equation for Gα (6.6). The expression for Q̃0G
α can be read

from (7.2) and it has to equal to the right hand side of (6.6). The r.h.s. of (6.6) does

not contain a term involving ∇λβΠγ , then, (g5)βγ
α = 0. The term with ∇λβΠa in (6.6)

implies that (g2)aβ
α = 0. The term with ∇λαdγ in (6.6) implies that (g6)β

γα = 0.

Consider the term involving λβΠaΠγ in the equation (6.6). It determines

γbγβ(g1)ba
α = 0. (7.3)

If we multiply this equation by γβγc , we obtain that (g1)ca
α = 0.

Consider now the term involving λβΠaΠb in the equation (6.6). Because g1 is zero, the

r.h.s. vanishes and we have

(γ(a)βγ(g3)b)
γα = −ηabδ

α
β , (7.4)

which implies

(g3)a
βα = −

1

2
γβαa . (7.5)

Consider the term involving λβdγΠ
a in (6.6). It leads to the equation

(g4)aβ
γα + 2(γa)βδ(g8)

δγα =
3

2
γγαa −

1

2
(γab)β

ρ(γb)γαΩρ +
1

4
γγαabc(γ

bc)β
ρΩρ. (7.6)

To solve this equation we note that g4 contains a 0-form and a 2-form when it is expanded

in β
γ , and g8 is antisymmetric in δγ . That is,

(g4)aβ
γα = δγβ(j

α
a ) + (γbc)β

γ(jαa )bc, (g8)
δγα = γδγabc(k

α)abc. (7.7)

Plugging (7.7) into (7.6) we obtain

δγβ(j
α
a ) + (γbc)β

γ((jαa )bc + 6(kα)abc) + 2(γabcd)β
γ(kα)bcd

=
3

2
γγαa −

1

2
(γab)β

ρ(γb)γαΩρ +
1

4
γγαabc(γ

bc)β
ρΩρ.

(7.8)

Multiplying by δβγ we determine the 0-form of g4,

(jαa ) =
3

2
γαβa Ωβ . (7.9)

Multiplying by (γaefg)γ
β we obtain that g8 vanishes. Finally, multiplying by (γde)γ

β we

obtain

(jαa )bc = −
1

4
(γaγbc)

αβΩβ . (7.10)

In summary, the solution of (7.6) is

(g4)aβ
γα =

3

2
δγβγ

αδ
a Ωδ −

1

4
(γbc)β

γ(γaγbc)
αδΩδ, (g8)

δγα = 0. (7.11)
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Because g8 vanishes, it seems that g9 and g10 also vanish in order to simplify the

equations from (6.6). In this case, it remains to determine g7. It is obtained from the

equation involving λβdγΠδ. In fact

(g7)δβ
γα = −δαβ δ

γ
δ +

1

2
γaδβγ

γα
a . (7.12)

Note that g7 satisfies

(γabcd)γ
β(g7)δβ

γα = 0, (7.13)

as it is required from the gauge symmetry for ω in the minimal pure spinor string. Note

that the term involving ∇λβλγωδ in (6.6) is satisfied because (∇λγaλ) = 0.

It remains to verify that the terms involving λβλγωδΠ
a and λβλγωδΠ

ρ. Instead of

plugging the values of the g superfields that we have determined. We will show that these

equations are implied by the others. Consider the first term. It implies the equation

λβλγ
(
∇β(g4)aβ

δα + Tβa
b(g4)bγ

δα +Rρβγ
δ(g3)a

ρα
)

(7.14)

= λβλγ

(
1

4
Tβbc(γ

bc)ρ
α(g4)aγ

δρ + 5Ωβ(g4)aγ
δα

)
.

We will show that this equation is implied by the term involving λβdγΠ
a which states that

(g4)aγ
δα = ∇γ(g3)a

δα + Tγa
b(g3)b

δα −
1

4
Tγbc(γ

bc)ρ
α(g3)a

δρ − 5Ωγ(g3)a
δα. (7.15)

We act with ∇β on this equation and symmetrize in (βγ) to obtain

∇(β(g4)aγ)
δα + T(βa

b(g4)bγ)
δα −

1

4
T(βbc(γ

bc)ρ
α(g4)aγ)

δρ − 5Ω(β(g4)aγ)
δα (7.16)

= {∇β ,∇γ}(g3)a
δα +

(
∇(βTγ)a

b − Ta(β
cTγ)c

b
)
(g3)b

δα − 5∇(βΩγ)(g3)a
δα

−
1

4

(
(γbc)ρ

α∇(βTγ)bc −
1

4
(γdeγbc)ρ

αT(βbcTγ)de

)
(g3)a

δρ.

where the symmetrization is on (βγ) only. Note that we will multiply this expression by

λβλγ to obtain (7.14). Then, the last term in the second line will vanish because Ωα is

proportional to ∇αΦ, where Φ is the dilation superfield. Recall that the anticommutator

in the second line is related to the curvature. In fact, the graded commutator for covariant

derivatives on g3 is

[∇A,∇B](g3)a
δα = −TBA

C∇C(g3)a
δα + (g3)a

σαRBAσ
δ + (g3)a

δσRBAσ
α −RBAa

b(g3)b
δα.

(7.17)

Using this equation in (7.16) and the Bianchi identity involving the curvature Rβγa
b we

obtain

∇(β(g4)aγ)
δα + T(βa

b(g4)bγ)
δα −

1

4
T(βbc(γ

bc)ρ
α(g4)aγ)

δρ − 5Ω(β(g4)aγ)
δα −Rβγρ

δ(g3)a
ρα

(7.18)

= −
1

4

(
(γbc)ρ

α∇(βTγ)bc −
1

4
(γdeγbc)ρ

αT(βbcTγ)de − (γbc)ρ
αRβγbc

)
(g3)a

δρ

– 11 –
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up to terms proportional to γbβγ which will be zero after hitting with λβλγ . In the l.h.s.

here is equal to the l.h.s. of (7.14), after multiplying with λβλγ , if we use the Bianchi

identity R(βγρ)
δ = 0. The r.h.s. here is because the Bianchi identity for Rβγbc. Therefore,

we have proved that equation (7.14) is implied by the one of the other equations. A similar

calculation determines that the term involving λβλγωδΠ
ρ in (6.6) is satisfied.

In summary, we determine Gα to be

Gα = −
1

2
Πadβγ

βα
a −

1

4
JΠα +

1

8
Nab(γab)

α
βΠ

β −
3

2
JΠaγαβa Ωβ −

1

2
NabΠc(γcγab)

αβΩβ ,

(7.19)

where J = −λαωα and Nab = 1
2(λγ

abω). Note that this expression has the correct flat

space limit. In this case

Πα → ∂θα, Ωα → 0. (7.20)

Consider now the equation for Hαβ (6.7). Note that the r.h.s. here does not contain

terms with derivatives of λγ , therefore h2 = h5 = h6 = h7 = 0. Consider the term with

λγΠaΠδ, it implies that h1 = 0. Consider now the term with λγΠaΠb that implies

(γ(a)γδ(h3)b)
δαβ = 0. (7.21)

Multiplying by ηab we obtain

γaγδ(h3)a
δαβ = 0.

And multiplying (7.21) by (γb)σγ and we use the above restriction on h3 we obtain the it

vanishes.

The term with λγdδΠ
a determines h4 and h8. In fact, the corresponding term gives

the equation

(h4)aγ
δαβ + 2(γa)γρ(h8)

ρδαβ = −
1

2
δ[αγ γβ]δa . (7.22)

Note that the four form in the expansion of h4 in γ
δ vanishes and that h8 is antisymmetric

in ρδ. Then,

(h4)aγ
δαβ = δδγ(x

αβ
a ) + (γbc)γ

δ(xαβa )bc, (h8)
ρδαβ = γρδbcd(y

αβ)bcd.

Plugging these expressions into (7.22) and multiplying by δγδ , then by (γaefg)δ
δ, and finally

by (γde)δ
γ we determine h4 and h8. They are

(h4)aγ
δαβ = −

1

16
(γbc)γ

δγαβabc, (h8)
ρδαβ =

1

192
γρδabc(γ

abc)αβ . (7.23)

Consider the equation determined by the term with λγdδdρ in (6.7). It determines the

part of h9 antisymmetric in ρδ to be

(h9)γ
[ρδ]αβ =

1

16
(γabc)αβ(γdbc)

ρδ(γdγa)γ
σΩσ. (7.24)

Note that the remaining equations in (6.7) are satisfied if h10 = 0. As in the case for Gα,

the equations from (6.7) with curvature are implied by the equations without curvature

– 12 –
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and the use of Bianchi identities and the pure spinor condition. It remains to determine

the symmetric part in ρδ of h9. It turns out that it can be expanded as

(h9)γ
(ρδ)αβ =

(
H1

γabcd(γ
d)ρδ +H5

γabcdefgh(γ
defgh)ρδ

)
(γabc)αβ . (7.25)

The condition (γijkl)ρ
δ(h9)γ

ρδαβ = 0 determines the equation,

(γdγijkl)
δγH1

γabcd + (γdefghγijkl)
δγH5

γabcdefgh +
1

16
(γdbcγijklγ

dγa)
δγΩγ = 0. (7.26)

Note that this equation has to be completely antisymmetric in abc because we factor out

the matrix (γabc)αβ . Because of this, we try the solution

H1
γabcd = (A(γabcγd)γ

σ +B(γdγabc)γ
σ) Ωσ, (7.27)

H5
γabcd = (C(γabcγdefgh)γ

σ +D(γdefghγabc)γ
σ) Ωσ.

The constants A,B,C,D can be determined when we plug this solution into (7.26).

Up to these constants, Hαβ is given by

Hαβ =
1

8
ΠaN bcγαβabc +

1

192
(dγabcd)γ

αβ
abc + dγλ

δωρ(h9)δ
ργαβ , (7.28)

where h9 is given above, up to some undetermined constants, and depends on Ωα. There-

fore, the flat limit of (7.28) gives the expected result because h9 → 0.

We proceed similarly to determine K and L. The calculation becomes more involving.

We just can state that K has the form

Kαβγ = Kαβγ
0 + λδωρλ

σωτ (k10)δσ
ρταβγ , (7.29)

where K0 is the value of K in the flat space limit and k10 depends linearly on Ωα so it

becomes zero in the flat space limit. Finally, the tensor L is equal to the corresponding

tensor in flat space-time background.

A Review on pure spinor superspace

We review the results from [10]. The string action (3.1) is based on the superspace co-

ordinate ZM , where M is a target space super index and runs over ten bosonic indices

and sixteen fermionic indices. We define the world-sheet fields ΠA and Π
A
as in (3.2) by

introducing the supervielbein EM
A, where A is a local superspace index. We also need a

super connection ΩMA
B to write super covariant derivatives. Out of EM

A and ΩMA
B we

define the super one-forms

EA = dZMEM
A, ΩA

B = dZMΩMA
B. (A.1)

We can define now a covariant derivative in superspace which transform homogeneously

under local Lorentz rotation. For a super p-form ΨA it is given by

∇ΨB
A = dΨB

A +ΨB
CΩC

A − (−1)pΩB
CΨC

A. (A.2)

– 13 –
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In this formula the product between forms is a wedge product. Given the forms (A.1) and

the derivative (A.2) we define the super two forms torsion TA and curvature RB
A as

TA = ∇EA, RB
A = dΩB

A +ΩB
CΩC

A. (A.3)

They satisfy the Bianchi identities

∇TA = TBRB
A, ∇RB

A = 0. (A.4)

We use these identities in the torsion and curvature components,

TA =
1

2
EBECTCB

A, RB
A =

1

2
ECEDRDCB

A. (A.5)

In terms of the torsion and curvature components, the Bianchi identities (A.4) become

∇[ATBC]
D + T[AB

ETEC]
D −R[ABC]

D = 0, ∇[ARBC]D
E + T[AB

FRFC]D
E = 0. (A.6)

In [10] and [13], the BRST invariance of the action (3.1) puts the background on-shell.

In fact, the nil potency of Q implies λαλβTαβ
A = 0. Berkovits and Howe showed that

Lorentz invariance and a symmetry involving the pure spinor variables and the connection

Ω ( that they call shift symmetry) allow to fix the values of the torsion component as

Tαβ
a = γaαβ , Tαβ

γ = 0, (A.7)

where γa are the symmetric gamma matrices in ten dimensions. In [10]. it was shown

that (A.7) plus the Bianchi identities (A.6) put the background to satisfy the background

supergravity equations of motion.
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