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1 Introduction
The topic of fractional differential equations and inclusions has recently emerged as a
popular field of research due to its extensive development and applications in several
disciplines such as physics, mechanics, chemistry, engineering, etc. [–]. An important
characteristic of a fractional-order differential operator, in contrast to its integer-order
counterpart, is its nonlocal nature. This feature of fractional-order operators (equations)
is regarded as one of the key factors for the popularity of the subject. As a matter of fact,
the use of fractional-order operators in the mathematical modeling of several real world
processes gives rise to more realistic models as these operators are capable of describ-
ing memory and hereditary properties. For some recent results on fractional differential
equations, see [–] and the references cited therein, whereas some recent work dealing
with fractional differential inclusions can be found in [–].
In this paper, we study a boundary value problem of fractional differential inclusions

with anti-periodic type integral boundary conditions given by
⎧⎨
⎩

cDqx(t)x(t) ∈ F(t,x(t)),  < t < T ,  < q ≤ ,

x(j)() – λjx(j)(T) = μj
∫ T
 gj(s,x(s))ds, j = , , ,

(.)

where cDq denotes the Caputo derivative of fractional order q, x(j)(·) denotes jth derivative
of x(·) with x()(·) = x(·), F : [,T]×R →P(R) is a multivalued map, P(R) is the family of
all subsets of R, gj : [,T]×R →R are given continuous functions and λj,μj ∈R (λj �= ).
The present work is motivated by a recent paper [], where the authors considered (.)

with F as a single-valued map. The existence of solutions for problem (.) has been dis-
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cussed for the cases when the right-hand side is convex as well as non-convex valued. The
first result is based on the nonlinear alternative of Leray-Schauder type, whereas the sec-
ond result is established by combining the nonlinear alternative of Leray-Schauder type
for single-valued maps with a selection theorem due to Bressan and Colombo for lower
semicontinuous multivalued maps with nonempty closed and decomposable values. In
the third result, we use the fixed point theorem for contraction multivalued maps due
to Covitz and Nadler. Though the methods used are well known, their exposition in the
framework of problem (.) is new. We recall some preliminary facts about fractional cal-
culus andmultivaluedmaps in Section , while themain results are presented in Section .

2 Preliminaries
2.1 Fractional calculus
Let us recall some basic definitions of fractional calculus [–].

Definition . Let h : [,∞) → R be an (n – )-times absolutely continuous function.
Then the Caputo derivative of fractional order ν for h is defined as

cDνh(t) =


�(n – ν)

∫ t


(t – s)n–ν–h(n)(s)ds, n –  < ν < n,n = [ν] + ,

where [ν] denotes the integer part of the real number ν .

Definition . The Riemann-Liouville fractional integral of order ν is defined as

Iνh(t) =


�(ν)

∫ t



g(s)
(t – s)–ν

ds, ν > ,

provided the integral exists.

Definition . A function x ∈ AC([,T],R) is called a solution of problem (.) if there
exists a function v ∈ L([,T],R) with v(t) ∈ F(t,x(t)), a.e. [,T] such that Dαx(t) = v(t),
a.e. [, ] and x(j)() – λjx(j)(T) = μj

∫ T
 gj(s,x(s))ds, j = , , .

In the sequel, the following lemma plays a pivotal role.

Lemma . ([]) For a given y ∈ C([,T],R) and  < q ≤ , the unique solution of the
equation cDqx(t) = y(t), t ∈ [,T] subject to the boundary conditions of (.) is given by

x(t) =
∫ t



(t – s)q–

�(q)
y(s)ds – λξ

∫ T



(T – s)q–

�(q)
y(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
y(s)ds + λη

∫ T



(T – s)q–

�(q – )
y(s)ds

–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds

+μη

∫ T


g

(
s,x(s)

)
ds, (.)
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where

η = ξ
[
–λ(λ + )T + λ(λ – )tT – (λ – )(λ – )t

]
,

η = ξ
[
λT – (λ – )t

]
,

ξ =


λ – 
, ξ =


(λ – )(λ – )

, ξ =


(λ – )(λ – )(λ – )
.

2.2 Basic concepts of multivalued analysis
Let us begin this section with some basic concepts of multi-valued maps [, ].
Let X denote a normed space equipped with the norm | · |. A multivalued map G :X →

P(X ) is
• convex (closed) valued if G(x) is convex (closed) for all x ∈X ;
• bounded on bounded sets if G(B) =

⋃
x∈B G(x) is bounded in X for all bounded sets B

in X , that is, supx∈B{sup{|y| : y ∈ G(x)}} < ∞;
• upper semi-continuous (u.s.c.) on X if for each x ∈X , the set G(x) is a nonempty
closed subset of X , and if for each open setN of X containing G(x), there exists an
open neighborhoodN of x such that G(N) ⊆N ;

• completely continuous if G(B) is relatively compact for every bounded set B in X .

Remark . If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph, that is, xn –→ x∗, yn –→ y∗,
yn ∈ G(xn) imply that y∗ ∈G(x∗).

Definition . The multivalued map G has a fixed point if there is x ∈ X such that x ∈
G(x). The fixed point set of the map G is denoted by FixG.

Definition . A multivalued map G : [,T] → P(R) with nonempty compact convex
values is said to be measurable if for any x ∈R, the function

t 	–→ d
(
x,F(t)

)
= inf

{|x – y| : y ∈ F(t)
}

is measurable.

Let C([,T],R) denote the Banach space of all continuous functions from [,T] into R

with the norm

‖x‖∞ = sup
{∣∣x(t)∣∣ : t ∈ [,T]

}
.

Let L([,T],R) be the Banach space of measurable functions x : [,T] –→ R which are
Lebesgue integrable and normed by

‖x‖L =
∫ T



∣∣x(t)∣∣dt for all x ∈ L
(
[,T],R

)
.

Definition . A multivalued map G : [,T]×R →P(R) is called Carathéodory if t 	–→
G(t,x) ismeasurable for each x ∈R and x 	–→ G(t,x) is upper semicontinuous for almost all
t ∈ [,T]. A Carathéodory function G is said to be L-Carathéodory if, for each δ > , there

http://www.boundaryvalueproblems.com/content/2013/1/82
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exists ϕδ ∈ L([,T],R+) such that ‖G(t,x)‖ = sup{|v| : v ∈ G(t,x)} ≤ ϕδ(t) for all ‖x‖∞ ≤ δ

and for a.e. t ∈ [,T].

For each y ∈ C([,T],R), we define the set of selections of F by

SF ,y :=
{
v ∈ L

(
[,T],R

)
: v(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ [,T]

}
.

LetW denote a nonempty closed subset of a Banach space E, and let G :W →P(E) be a
multivalued operator with nonempty closed values. The map G is lower semi-continuous
(l.s.c.) if the set {y ∈W :G(y)∩ B �= ∅} is open for any open set B in E. Let A be a subset of
[,T]×R. A is L⊗Bmeasurable if A belongs to the σ -algebra generated by all sets of the
form J × D, where J is Lebesgue measurable in [,T] and D is Borel measurable in R.
A subsetA of L([,T],R) is decomposable if for all u, v ∈A and measurable J ⊂ [,T] =
J , the function uχJ + vχJ–J ∈A, where χJ stands for the characteristic function of J .

Definition . Let Y be a separable metric space. A multivalued operator N : Y →
P(L([,T],R)) has the property (BC) if N is lower semi-continuous (l.s.c.) and has
nonempty closed and decomposable values.

Let F : [,T]×R →P(R) be a multivalued map with nonempty compact values. Define
a multivalued operator F : C([,T]×R) →P(L([,T],R)) associated with F as

F (x) =
{
w ∈ L

(
[,T],R

)
: w(t) ∈ F

(
t,x(t)

)
for a.e. t ∈ [, ]

}
,

which is called the Nemytskii operator associated with F .

Definition . Let F : [,T] × R → P(R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its associated
Nemytskii operator F is lower semi-continuous and has nonempty closed and decom-
posable values.

Let (X ,d) be a metric space induced from the normed space (X ;‖ · ‖). Consider Hd :
P(X )×P(X )→R∪ {∞} given by

Hd(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
,

where d(A,b) = infa∈A d(a;b) and d(a,B) = infb∈B d(a;b). Then (Pb,cl(X ),Hd) is a metric
space and (Pcl(X ),Hd) is a generalizedmetric space (see []), wherePcl(X ) = {Y ∈P(X ) :
Y is closed}, and Pb,cl(X ) = {Y ∈P(X ) : Y is bounded and closed}.

Definition . Amultivalued operator N :X →Pcl(X ) is called γ -Lipschitz if and only
if there exists γ >  such that Hd(N(x),N(y)) ≤ γd(x, y) for each x, y ∈ (X ) and is a con-
traction if and only if it is γ -Lipschitz with γ < .

3 Existence results
3.1 The Carathéodory case
We recall the following lemmas to prove the existence of solutions for problem (.) when
the multivalued map F in (.) is of Carathéodory type.

http://www.boundaryvalueproblems.com/content/2013/1/82
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Lemma . (Nonlinear alternative for Kakutani maps) [] Let E be a Banach space, let
C be a closed convex subset of E, let U be an open subset of C, and  ∈ U . Suppose that
F :U →Pcp,c(C) is an upper semicontinuous compactmap; herePcp,c(C) denotes the family
of nonempty, compact convex subsets of C. Then either

(i) F has a fixed point in U , or
(ii) there is an u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Lemma . ([]) LetX be a Banach space, and let Pcp,c(X ) denote a family of nonempty,
compact and convex subsets ofX .Let F : [,T]×R →Pcp,c(X) be an L-Carathéodorymul-
tivalued map, and let � be a linear continuous mapping from L([,T],X ) to C([,T],X ).
Then the operator

� ◦ SF : C
(
[,T],X

) →Pcp,c
(
C

(
[,T],X

))
, x 	→ (� ◦ SF )(x) = �(SF ,x)

is a closed graph operator in C([,T],X )×C([,T],X ).

Theorem . Suppose that

(H) F : [,T]×R →P(R) is Carathéodory and has nonempty compact and convex values;
(H) there exists a continuous nondecreasing function ψ : [,∞) → (,∞) and a function

p ∈ L([,T],R+) such that

∥∥F(t,x)∥∥P := sup
{|y| : y ∈ F(t,x)

} ≤ p(t)ψ
(‖x‖) for each (t,x) ∈ [,T]×R;

(H) there exist continuous nondecreasing functionsψj : [,∞) → (,∞) and functions pj ∈
L([,T],R+) such that

∣∣gj(t,x)∣∣ ≤ pj(t)ψj
(‖x‖), j = , , , for each (t,x) ∈ [,T]×R;

(H) there exists a constantM >  such that

M
ψ(M)�‖p‖L +ψ(M)|μξ|‖p‖L +ψ(M)|μη|‖p‖L +ψ(M)|μη|‖p‖L

> ,

where

� =
Tq–

�(q)
{
 + |λξ| + |λη|(q – )T– + |λη|q(q – )(q – )T–}.

Then the boundary value problem (.) has at least one solution on [,T].

Proof Define the operator �F : C([,T],R)→P(C([,T],R)) by

�F (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h ∈ C([,T],R) :

h(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ t


(t–s)q–
�(q) v(s)ds – λξ

∫ T


(T–s)q–
�(q) v(s)ds

+λη
∫ T


(T–s)q–
�(q–) v(s)ds + λη

∫ T


(T–s)q–
�(q–) v(s)ds

–μξ
∫ T
 g(s,x(s))ds +μη

∫ T
 g(s,x(s))ds

+μη
∫ T
 g(s,x(s))ds,  ≤ t ≤ 

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

http://www.boundaryvalueproblems.com/content/2013/1/82
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for v ∈ SF ,x. We will show that �F satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type. The proof consists of several steps. As the first step, we show that�F

is convex for each x ∈ C([,T],R). This step is obvious since SF ,x is convex (F has convex
values), and therefore we omit the proof.
In the second step, we show that �F maps bounded sets (balls) into bounded sets in

C([,T],R). For a positive number ρ , let Bρ = {x ∈ C([,T],R) : ‖x‖ ≤ ρ} be a bounded
ball in C([,T],R). Then, for each h ∈ �F (x),x ∈ Bρ , there exists v ∈ SF ,x such that

h(t) =
∫ t



(t – s)q–

�(q)
v(s)ds – λξ

∫ T



(T – s)q–

�(q)
v(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
v(s)ds + λη

∫ T



(T – s)q–

�(q – )
v(s)ds

–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds.

Then for t ∈ [,T] we have

∣∣h(t)∣∣ ≤
∫ t



(t – s)q–

�(q)
∣∣v(s)∣∣ds + |λξ|

∫ T



(T – s)q–

�(q)
∣∣v(s)∣∣ds

+ |λη|
∫ T



(T – s)q–

�(q – )
∣∣v(s)∣∣ds + |λη|

∫ T



(T – s)q–

�(q – )
∣∣v(s)∣∣ds

+ |μξ|
∫ T



∣∣g(s,x(s))∣∣ds + |μη|
∫ T



∣∣g(s,x(s))∣∣ds

+ |μη|
∫ T



∣∣g(s,x(s))∣∣ds

≤ ψ
(‖x‖)

{
Tq–

�(q)
+ |λξ|T

q–

�(q)
+ |λη| Tq–

�(q – )
+ |λη| Tq–

�(q – )

}∫ T


p(s)ds

+ψ
(‖x‖)|μξ|

∫ T


p(s)ds +ψ

(‖x‖)|μη|
∫ T


p(s)ds

+ψ
(‖x‖)|μη|

∫ T


p(s)ds

≤ ψ
(‖x‖)�‖p‖L +ψ

(‖x‖)|μξ|‖p‖L +ψ
(‖x‖)|μη|‖p‖L

+ψ
(‖x‖)|μη|‖p‖L .

Thus,

‖h‖ ≤ ψ(ρ)�‖p‖L +ψ(ρ)|μξ|‖p‖L +ψ(ρ)|μη|‖p‖L +ψ(ρ)|μη|‖p‖L .

Now we show that �F maps bounded sets into equicontinuous sets of C([,T],R). Let
t′, t′′ ∈ [,T] with t′ < t′′ and x ∈ Bρ . For each h ∈ �F (x), we obtain

∣∣(Fx)(t′′) – (Fx)
(
t′
)∣∣

≤
∣∣∣∣ψ(‖x‖)

∫ t′



[
(t′′ – s)q– – (t′ – s)q–

�(q)

]
p(s)ds +ψ

(‖x‖)
∫ t′′

t′

(t′′ – s)q–

�(q)
p(s)ds

∣∣∣∣

http://www.boundaryvalueproblems.com/content/2013/1/82
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+
∣∣( – λ)λξ

∣∣∣∣t′′ – t′
∣∣ψ(‖x‖)

∫ T



(T – s)q–

�(q – )
p(s)ds

+ |λξ|
[

∣∣( – λ)λ

∣∣T∣∣t′′ – t′
∣∣

+
∣∣( – λ)( – λ)

∣∣∣∣t′′ – t′
∣∣]ψ(‖x‖)

∫ T



(T – s)q–

�(q – )
p(s)ds

+
∣∣( – λ)μλξ

∣∣∣∣t′′ – t′
∣∣ψ

(‖x‖)
∫ T


p(s)ds

+ |λξμ|
[

∣∣( – λ)λ

∣∣T∣∣t′′ – t′
∣∣

+
∣∣( – λ)( – λ)

∣∣∣∣t′′ – t′
∣∣]ψ

(‖x‖)
∫ T


p(s)ds.

Obviously, the right-hand side of the above inequality tends to zero independently of x ∈
Bρ as t′′ – t′ → . As �F satisfies the above three assumptions, it follows by the Ascoli-
Arzelá theorem that �F : C([,T],R)→P(C([,T],R)) is completely continuous.
In our next step, we show that �F has a closed graph. Let xn → x∗, hn ∈ �F (xn) and

hn → h∗. Then we need to show that h∗ ∈ �F (x∗). Associated with hn ∈ �F (xn), there
exists vn ∈ SF ,xn such that for each t ∈ [,T],

hn(t) =
∫ t



(t – s)q–

�(q)
vn(s)ds – λξ

∫ T



(T – s)q–

�(q)
vn(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
vn(s)ds + λη

∫ T



(T – s)q–

�(q – )
vn(s)ds

–μξ

∫ T


g

(
s,xn(s)

)
ds +μη

∫ T


g

(
s,xn(s)

)
ds

+μη

∫ T


g

(
s,xn(s)

)
ds.

Thus it suffices to show that there exists v∗ ∈ SF ,x∗ such that for each t ∈ [,T],

h∗(t) =
∫ t



(t – s)q–

�(q)
v∗(s)ds – λξ

∫ T



(T – s)q–

�(q)
v∗(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
v∗(s)ds + λη

∫ T



(T – s)q–

�(q – )
v∗(s)ds

–μξ

∫ T


g

(
s,x∗(s)

)
ds +μη

∫ T


g

(
s,x∗(s)

)
ds +μη

∫ T


g

(
s,x∗(s)

)
ds.

Let us consider the continuous linear operator � : L([,T],R)→ C([,T],R) given by

f 	→ �(f )(t) =
∫ t



(t – s)q–

�(q)
v(s)ds – λξ

∫ T



(T – s)q–

�(q)
v(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
v(s)ds + λη

∫ T



(T – s)q–

�(q – )
v(s)ds

–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds

+μη

∫ T


g

(
s,x(s)

)
ds.
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Observe that

∥∥hn(t) – h∗(t)
∥∥

≤
∫ t



(t – s)q–

�(q)
(
vn(s) – v∗(s)

)
ds – λξ

∫ T



(T – s)q–

�(q)
(
vn(s) – v∗(s)

)
ds

+ λη

∫ T



(T – s)q–

�(q – )
(
vn(s) – v∗(s)

)
ds + λη

∫ T



(T – s)q–

�(q – )
(
vn(s) – v∗(s)

)
ds

–μξ

∫ T



(
g

(
s,xn(s)

)
– g

(
s,x∗(s)

))
ds +μη

∫ T



(
g

(
s,xn(s)

)
– g

(
s,x∗(s)

))
ds

+μη

∫ T



(
g

(
s,xn(s)

)
– g

(
s,x∗(s)

))
ds.

Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ �(SF ,xn ). Since xn → x∗, therefore, we have

h∗(t) =
∫ t



(t – s)q–

�(q)
v∗(s)ds – λξ

∫ T



(T – s)q–

�(q)
v∗(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
v∗(s)ds + λη

∫ T



(T – s)q–

�(q – )
v∗(s)ds

–μξ

∫ T


g

(
s,x∗(s)

)
ds +μη

∫ T


g

(
s,x∗(s)

)
ds

+μη

∫ T


g

(
s,x∗(s)

)
ds,

for some v∗ ∈ SF ,x∗ .
Finally, we show there exists an open setU ⊆ C([,T],R) with x /∈ �F (x) for any λ ∈ (, )

and all x ∈ ∂U . Let λ ∈ (, ) and x ∈ λ�F (x). Then there exists v ∈ L([,T],R) with v ∈ SF ,x
such that, for t ∈ [,T], we have

h(t) =
∫ t



(t – s)q–

�(q)
v(s)ds – λξ

∫ T



(T – s)q–

�(q)
v(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
v(s)ds + λη

∫ T



(T – s)q–

�(q – )
v(s)ds

–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds

+μη

∫ T


g

(
s,x(s)

)
ds,

and using the computations of the second step above, we have

‖h‖ ≤ ψ
(‖x‖)

{
Tq–

�(q)
+ |λξ|T

q–

�(q)
+ |λη| Tq–

�(q – )
+ |λη| Tq–

�(q – )

}∫ T


p(s)ds

+ψ
(‖x‖)|μξ|

∫ T


p(s)ds +ψ

(‖x‖)|μη|
∫ T


p(s)ds

+ψ
(‖x‖)|μη|

∫ T


p(s)ds

http://www.boundaryvalueproblems.com/content/2013/1/82
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≤ ψ
(‖x‖)�‖p‖L +ψ

(‖x‖)|μξ|‖p‖L +ψ
(‖x‖)|μη|‖p‖L

+ψ
(‖x‖)|μη|‖p‖L .

Consequently, we have

‖x‖/(ψ(‖x‖)�‖p‖L +ψ
(‖x‖)|μξ|‖p‖L +ψ

(‖x‖)|μη|‖p‖L
+ψ

(‖x‖)|μη|‖p‖L
) ≤ .

In view of (H), there existsM such that ‖x‖ �=M. Let us set

U =
{
x ∈ C

(
[,T],R

)
: ‖x‖ <M

}
.

Note that the operator �F :U →P(C([,T],R)) is upper semicontinuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ λ�F (x) for some λ ∈
(, ). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we
deduce that�F has a fixed point x ∈ U which is a solution of problem (.). This completes
the proof. �

3.2 The lower semicontinuous case
This section deals with the case when F is not necessarily convex valued. Our strategy
to deal with this problem is based on the nonlinear alternative of Leray-Schauder type
together with the selection theorem of Bressan and Colombo for lower semi-continuous
maps with decomposable values.

Lemma . (Bressan and Colombo []) Let Y be a separable metric space, and let N :
Y → P(L([,T],R)) be a multivalued operator satisfying the property (BC). Then N has
a continuous selection, that is, there exists a continuous function (single-valued) g : Y →
L([,T],R) such that g(x) ∈N(x) for every x ∈ Y .

Theorem . Assume that (H), (H), (H) and the following condition hold:

(H) F : [,T]×R →P(R) is a nonempty compact-valued multivalued map such that
(a) (t,x) 	–→ F(t,x) is L⊗B measurable;
(b) x 	–→ F(t,x) is lower semicontinuous for each t ∈ [,T];

then the boundary value problem (.) has at least one solution on [,T].

Proof It follows from (H) and (H) that F is of l.s.c. type. Then from Lemma ., there
exists a continuous function f : AC([,T],R)→ L([,T],R) such that f (x) ∈F (x) for all
x ∈ C([,T],R).
Consider the problem

⎧⎨
⎩

cDqx(t)x(t) = f (x(t)), t ∈ [,T],

x(j)() – λjx(j)(T) = μj
∫ T
 gj(s,x(s))ds, j = , , .

(.)

Observe that if x ∈ AC([,T],R) is a solution of (.), then x is a solution to problem
(.). In order to transformproblem (.) into a fixed point problem,we define the operator

http://www.boundaryvalueproblems.com/content/2013/1/82
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�F as

�Fx(t) =
∫ t



(t – s)q–

�(q)
f
(
x(s)

)
ds – λξ

∫ T



(T – s)q–

�(q)
f
(
x(s)

)
ds

+ λη

∫ T



(T – s)q–

�(q – )
f
(
x(s)

)
ds + λη

∫ T



(T – s)q–

�(q – )
f
(
x(s)

)
ds

–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds

+μη

∫ T


g

(
s,x(s)

)
ds.

It can easily be shown that �F is continuous and completely continuous. The remaining
part of the proof is similar to that of Theorem .. So, we omit it. This completes the
proof. �

3.3 The Lipschitz case
Here we show the existence of solutions for problem (.) with a nonconvex valued right-
hand side by applying a fixedpoint theorem formultivaluedmaps due toCovitz andNadler
[].

Lemma. ([]) Let (X,d) be a completemetric space. If N : X →Pcl(X) is a contraction,
then FixN �= ∅.

Theorem . Assume that the following conditions hold:

(A) F : [,T] × R → Pcp(R) is such that F(·,x) : [,T] → Pcp(R) is measurable for each
x ∈R;

(A) Hd(F(t,x),F(t, x̄)) ≤ m(t)|x – x̄| for almost all t ∈ [,T] and x, x̄ ∈ R with m ∈
L([,T],R+) and d(,F(t, ))≤ m(t) for almost all t ∈ [,T];

(A) There exist constants cj > , j = , , , such that

∣∣gj(t,x) – gj(t, y)
∣∣ ≤ cj|x – y|, ∀t ∈ [,T], j = , , ,x, y ∈R.

Then the boundary value problem (.) has at least one solution on [,T] if

�‖m‖L +
{
c|μξ| + c|μη| + c|μη|

}
T < .

Proof Observe that the set SF ,x is nonempty for each x ∈ C([,T],R) by the assumption
(A), so F has a measurable selection (see Theorem III. []). Now we show that the
operator �F , defined in the beginning of the proof of Theorem ., satisfies the assump-
tions of Lemma .. To show that �F (x) ∈ Pcl((C[,T],R)) for each x ∈ C([,T],R), let
{un}n≥ ∈ �F (x) be such that un → u(n → ∞) in C([,T],R). Then u ∈ C([,T],R) and
there exists vn ∈ SF ,xn such that, for each t ∈ [,T],

un(t) =
∫ t



(t – s)q–

�(q)
vn(s)ds – λξ

∫ T



(T – s)q–

�(q)
vn(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
vn(s)ds + λη

∫ T



(T – s)q–

�(q – )
vn(s)ds

http://www.boundaryvalueproblems.com/content/2013/1/82
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–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds

+μη

∫ T


g

(
s,x(s)

)
ds.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn
converges to v in L([,T],R). Thus, v ∈ SF ,x and for each t ∈ [,T], we have

un(t) → u(t) =
∫ t



(t – s)q–

�(q)
v(s)ds – λξ

∫ T



(T – s)q–

�(q)
v(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
v(s)ds + λη

∫ T



(T – s)q–

�(q – )
v(s)ds

–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds

+μη

∫ T


g

(
s,x(s)

)
ds.

Hence, u ∈ �(x).
Next we show that there exists δ <  such that

Hd
(
�F (x),�F (x̄)

) ≤ δ‖x – x̄‖ for each x, x̄ ∈ AC([,T],R)
.

Let x, x̄ ∈ AC([,T],R) and h ∈ �F (x). Then there exists v(t) ∈ F(t,x(t)) such that, for
each t ∈ [,T],

h(t) =
∫ t



(t – s)q–

�(q)
v(s)ds – λξ

∫ T



(T – s)q–

�(q)
v(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
v(s)ds + λη

∫ T



(T – s)q–

�(q – )
v(s)ds

–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds

+μη

∫ T


g

(
s,x(s)

)
ds.

By (H), we have

Hd
(
F(t,x),F(t, x̄)

) ≤ m(t)
∣∣x(t) – x̄(t)

∣∣.

So, there exists w ∈ F(t, x̄(t)) such that

∣∣v(t) –w
∣∣ ≤ m(t)

∣∣x(t) – x̄(t)
∣∣, t ∈ [,T].

Define U : [,T]→P(R) by

U(t) =
{
w ∈R :

∣∣v(t) –w
∣∣ ≤ m(t)

∣∣x(t) – x̄(t)
∣∣}.

http://www.boundaryvalueproblems.com/content/2013/1/82
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Since themultivalued operatorU(t)∩F(t, x̄(t)) ismeasurable (Proposition III. []), there
exists a function v(t) which is a measurable selection for U . So, v(t) ∈ F(t, x̄(t)) and for
each t ∈ [,T], we have |v(t) – v(t)| ≤ m(t)|x(t) – x̄(t)|.
For each t ∈ [,T], let us define

h(t) =
∫ t



(t – s)q–

�(q)
v(s)ds – λξ

∫ T



(T – s)q–

�(q)
v(s)ds

+ λη

∫ T



(T – s)q–

�(q – )
v(s)ds + λη

∫ T



(T – s)q–

�(q – )
v(s)ds

–μξ

∫ T


g

(
s,x(s)

)
ds +μη

∫ T


g

(
s,x(s)

)
ds

+μη

∫ T


g

(
s,x(s)

)
ds.

Thus,

∣∣h(t) – h(t)
∣∣

=
∫ t



(t – s)q–

�(q)
∣∣v(s) – v(s)

∣∣ds + |λξ|
∫ T



(T – s)q–

�(q)
∣∣v(s) – v(s)

∣∣ds

+ |λη|
∫ T



(T – s)q–

�(q – )
∣∣v(s) – v(s)

∣∣ds + |λη|
∫ T



(T – s)q–

�(q – )
∣∣v(s) – v(s)

∣∣ds

+ |μξ|
∫ T



∣∣g(s,x(s)) – g
(
s, x̄(s)

)∣∣ds + |μη|
∫ T



∣∣g(s,x(s)) – g
(
s, x̄(s)

)∣∣ds

+ |μη|
∫ T



∣∣g(s,x(s)) – g
(
s, x̄(s)

)∣∣ds

≤ ψ
(‖x‖)

{
Tq–

�(q)
+ |λξ|T

q–

�(q)
+ |λη| Tq–

�(q – )
+ |λη| Tq–

�(q – )

}

× ‖x – x̄‖
∫ T


m(s)ds

+ c|μξ|T‖x – x̄‖ + c|μη|T‖x – x̄‖ + c|μη|T‖x – x̄‖.

Hence,

‖h – h‖ ≤ [
�‖m‖L +

{
c|μξ| + c|μη| + c|μη|

}
T

]‖x – x̄‖.

Analogously, interchanging the roles of x and x, we obtain

Hd
(
�F (x),�F (x̄)

) ≤ δ‖x – x̄‖
≤ [

�‖m‖L +
{
c|μξ| + c|μη| + c|μη|

}
T

]‖x – x̄‖.

Since �F is a contraction, it follows by Lemma . that �F has a fixed point x which is
a solution of (.). This completes the proof. �
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Example . Consider the following boundary value problem of fractional differential
inclusions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cD/x(t) ∈ F(t,x(t)), t ∈ [, ],

x() + x() =
∫ 


x(s)
(+s) ds,

x′() + x′() = 

∫ 


esx(s)
(+es) ds,

x′′() + x′′() = 

∫ 


x(s)
(+es) ds,

(.)

where F : [, ]×R→P(R) is a multivalued map given by

x → F(t,x) =
[ |x|
(|x| + )

,
| sinx|

(| sinx| + )
+




]
.

For f ∈ F , we have

|f | ≤ max

( |x|
(|x| + )

,
| sinx|

(| sinx| + )
+




)
≤ 


, x ∈R.

Thus,

∥∥F(t,x)∥∥P := sup
{|y| : y ∈ F(t,x)

} ≤ 


= p(t)ψ
(‖x‖), x ∈R,

with p(t) = 
 , ψ(‖x‖) = 

 . Here

g(t,x) =
x(t)

( + t)
, g(t,x) =

etx(t)
( + et)

, g(t,x) =
x(t)

( + et)

and λ = λ = λ = –, μ = , μ = 
 , μ = 

 .

Clearly, ξ = –/, ξ = /, ξ = –/, η = /, η = /, |g(t,x)| ≤ 
‖x‖, |g(t,x)| ≤


‖x‖, |g(t,x)| ≤ 

‖x‖ with ψ(M) = 
 , ψ(M) = ψ(M) = ψ(M) = M, ‖p‖L = ‖p‖L =

‖p‖L = ‖p‖L = 
 , and � = 

√
π

 . In view of the condition

M
ψ(M)�‖p‖L +ψ(M)|μξ|‖p‖L +ψ(M)|μη|‖p‖L +ψ(M)|μη|‖p‖L

> ,

we find that M > 
√

π

 . Thus, all the conditions of Theorem . are satisfied. So, there
exists at least one solution of problem (.) on [, ].
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