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1 Introduction and summary

AdS/CFT correspondence [1–3] opens a new window for us to understand the fundamental

physics of the nature. This conjecture had been tested from many aspects. One of them

is the duality between the integrable spin chains arising from the single trace operators in

N = 4 super Yang-Mills (SYM) theory [4, 5] and the rotating strings in AdS5 × S5 [6–9].

This duality can be checked by the agreement between the spin chain effective action and

the rotating string sigma model action [8, 9], and from the view point of integrability such

that the Bethe equation for the spin chain and that for the classical string sigma model

in AdS5 × S5 are equivalent [10]. The spiky string solution dual to the giant magnon

excitation of the spin chain are also constructed [11, 12].

One may wonder the possibility of generalizing the AdS/CFT correspondence to the

non-AdS/non-CFT cases. A way to investigate this problem is to consider deformations

on both sides and see how the correspondence works. One example in the context of the

super Yang-Mills spin chain is the β-deformed N = 4 SYM and its gravity dual [13]. In

contrast to [13] where a smooth deformation from S5 in the original AdS5×S5 background

is accounted for, in this paper we explore the spin chain dual solution in a gravitational

background which switches to another conjugacy class of AdS3 once the deformation is

turned on.
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One-parameter stationary vacua1 in AdS3 belonging to the loxodromic conjugacy class

of the Lorentz group (i.e. rota-boosts) were constructed in [14] by twisting the Lorentz

group in the embedding flat space. In particular, a combination of two boosts M01−βM23

(where x0 and x3 are time-like coordinates) gives rise to the rotating Rindler AdS space,

which is the universal cover for the BTZ black hole but with less symmetry. There is an

event horizon and an ergosphere due to this rota-boost. As the deformation (or rotation)

parameter β vanishes, it reduces to the Rindler spacetime, with the acceleration identified

as the inverse of the AdS radius, a ∼ L−1. On the other hand, a combination of a temporal

and a spatial rotations M03 − βM12 gives rise to the rotating global AdS, where some

region around the center is hidden from a co-rotating observer. As β vanishes, it reduces

to the AdS in global coordinates. Although the boundary theory dual to the rotating

global AdS still satisfies the Virasoro algebra, the conformal symmetry in static vacuum

is broken for uneven deformation in the left and the right sectors. While the computation

power seems out of control on the field theory side due to lost symmetry, one is hoping

that computation from gravity side is still tractable either analytically (at certain limits)

or numerically. As β vanishes, the rotating Rindler AdS3 falls in the conjugacy class of

hyperbolic transformations (i.e. pure boosts), while the global rotating AdS3 switches to

the class of elliptic transformations (i.e. pure rotations). Note that the rota-boosts cannot

reduce to the pure boosts or the pure rotations by Lorentz transformations.

The goal of this paper is to study the rotating global AdS vacuum by probing a classical

string and observe the effect of deformation to the string excitation and dispersion. We

solve the classical string solutions dual to the spin chain in the β-vacua of global rotating

AdS3 × S1 embedded in AdS5 × S5. At certain limits, we can also obtain the analytic

expressions for spin chain model and dispersion relation. Their implications on the dual

field theory side, however, remains to be investigated.

The structure of this paper is outlined as follows. In section 2, we derive a deformed

SL(2) spin chain Hamiltonian for a fast spinning string, and some simple excitation is

examined for nonzero deformation. In section 3, we first study the dispersion relation for

GKP string at different limits, and then the general solutions for giant magnons and spiky

strings are analyzed in detail. In section 4, we study the analytically continued version of

the geometry and its sin(h)-Gordon model. In section 5, the dispersion relation for a spiky

string is studied in the pp-wave limit.

2 A spin chain from AdS β-vacua

It was shown in [8] that in the fast spinning limit, one was able to obtain the Heisenberg

spin chain by using the sigma model approach, which agrees with the one-loop calculation

of anomalous dimensions in N = 4 super Yang-Mills. Although this quantity is no longer

protected by the symmetry in the deformed theory, one can still study the effect of defor-

mation to the spin chain Hamiltonian and dynamics from gravity side. In order to reach

sensible spinning limit, we will include additional circle in the background metric. This

1Note that the deformation parameter of our AdS β-vacua has nothing to do with that of the β-deformed

SYM. We just follow the convention in the literature, and remind the readers to mind the possible confusion.
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circular dimension is easily obtained from dimensional reduction, say from type IIB theory

in ten dimensions to AdS3 × S3 × T 4. After deforming to the rotating global AdS3 [14] ,

the global metrics reads:

ds2 = −((1− β2) cosh2 ρ+ β2)dt2 + 2βdtdθ+ dρ2 + ((1− β2) cosh2 ρ− 1)dθ2 + dφ2 . (2.1)

Note that in this coordinate, cosh2 ρ < 1
1−β2 is inaccessible due to the deformation, since

in this region the rotation generator ∂
∂θ becomes time-like. Now we would like to show

that at the fast spinning limit, a spin chain Hamiltonian can be obtained from the string

worldsheet. Without loss of generality, we apply the following embedded ansatz:

t = κτ, ρ = ρ(τ, σ), θ = θ(τ, σ), φ = φ(τ, σ), (2.2)

where (τ, σ) are worldsheet coordinates. A change of coordinates

θ → θ + t, φ → φ+ (1− β)t, ρ → 1

2
ρ, (2.3)

brings the Polyakov action into2

S =

√
λ

4π

∫

dτdσ
{1

4
(ρ̇2 − ρ′2) +

[

(1− β2) cosh2
ρ

2
− 1

]

(θ̇2 − θ′2) + 2[(1− β2) cosh2
ρ

2

−(1− β)]κθ̇ + (φ̇2 − φ′2) + 2(1− β)κφ̇
}

, (2.4)

where we use X ′ to denote the derivative of X with respect to σ and Ẋ with respect to

τ . Then we take fast spinning limit [8], by sending κ → ∞ and Ẋµ → 0, such that κẊµ

remains finite. After taking the limit, the above action simplifies as

S =

√
λ

4π

∫

dτdσ
{

2
[

(1− β2) cosh2
ρ

2
− (1− β)

]

κθ̇

+ 2(1− β)κφ̇− 1

4
ρ′2 −

[

(1− β2) cosh2
ρ

2
− 1

]

θ′2 − φ′2
}

. (2.5)

Taking account of the Virasoro constraint: GµνẊµXν ′ = 0, that is

[

(1− β2) cosh2
ρ

2
− (1− β)

]

θ′ + (1− β)φ′ = 0, (2.6)

one reaches the classical action of spin chain

S =

√
λ

4π

∫

dtdσ

{

(1− β)[(1 + β) cosh ρ− (1− β)]∂tθ + 2(1− β)∂tφ− λ̃

2L2
H
}

, (2.7)

where we define λ̃ ≡ λ
8π2 and L ≡ κ

√
λ

2π , and the spin chain Hamiltonian density reads

H = (∂σρ)
2 + (1 + β)2 sinh2 ρ(∂σθ)

2. (2.8)

This will reduce to SL(2) XXX spin chain at the limit β → 0 as expected [9].

2The general form of the equations of motion and the Virasoro constraints arising from the Polyakov

action is presented in the appendix.
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To illustrate the effect of deformation, we will examine a rotated string solution against

the deformed spin chain action (2.7). First, the equations of motion are derived:

(1− β2)∂t cosh ρ−
λ̃

L2
(1 + β)2∂σ(sinh

2 ρ∂σθ) = 0,

(1− β2) sinh ρ∂tθ +
λ̃

L2

[

∂2
σρ−

1

2
(1 + β)2 sinh 2ρ(∂σθ)

2

]

= 0. (2.9)

The simplest solution is obtained for θ = ωt and ρ = ρ(σ). Then the equation of motion

for ρ can be integrated to give

∂σρ = ±
√

a− b cosh ρ, b =
2L2

λ̃
(1− β2)ω, (2.10)

for some constant a. This solution describes that a folded string stretching between ρ =

±ρmax = cosh−1 a
b rotates in uniform speed at the center of AdS3. The total energy E and

spin S, defined as follows, can be written in terms of complete elliptic integral of the first

kind K(x) and second kind E(x):

E =
λ̃

4L

∫

dσ(∂σρ)
2 = −2

√
2b

λ̃

L
{E(x)− (1− x)K(x)},

S =
L

2

∫

dσ(1− β2) cosh ρ = 2(1− β2)L

√

2

b
{2E(x)−K(x)}, (2.11)

where x = b−a
2b . We plot the energy and spin against ω for several β’s in the figure (1) and

find out that deformation increases the energy but slows down the spin.

Several comments are in order: first, the horizon censoring the AdS center seems

boosted away in the fast spin limit such that the folded string is able to pass through

ρ = 0. Secondly, the equation (2.10) implies that the apparent string tension is enhanced

by a factor (1−β2)−1/2. We recall in the earlier studies of turning on the NSNS field B for

spinning string in S3 [15, 16], the apparent tension is reduced by a factor (1−B2)1/2. This

might be some kind of electric-magnetic duality or strong-weak duality between the metric

component Gtθ and its analytic continued counterpart G′
ϕ1ϕ2

, which acts as a nontrivial

Bϕ1ϕ2
on the string worldsheet.3

3 Two-spin strings

There are three U(1)’s found in the isometry SO(2, 2) × SO(2) for the target space (2.1).

While a U(1) is identified to the global time generator, one can still turn on maximal two

spins charged under the remaining U(1)2. In the following sections, we will first study the

spinning closed string solution to understand its leading Regge trajectory behavior at short

and long string limits. Then we will construct general ansatz for giant magnons and spiky

strings and obtain their dispersion relations.

3For the analytic continuation of the metric (2.1), see the change of coordinates (4.1) in the section 4.
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(a) E v.s. ω for a rotating string.
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(b) S v.s. ω for a rotating string.

Figure 1. (a) shows the log plot for energy of a rotating string for deformation parameter β =

0(solid black), 0.5(solid gray), 0.7(dashed brown), 0.9(dotted green). (b) shows the spin of a rotating

string for the same deformation parameters.

3.1 GKP solution

First we consider a two-spin classical solution in β-deformed AdS3 × S1 background.4 We

apply the following ansatz to the metric (2.1):

t = κτ, ρ = ρ(σ), θ = ωτ, φ = χτ, (3.1)

where κ, ω and χ are integers. In the conformal gauge, the Polyakov action leads to

S =

√
λ

4π

∫

dτdσ
{

−[(1− β2) cosh2 ρ+ β2]κ2 + 2βκω − (∂σρ)
2

+[(1− β2) sinh2 ρ− β2]ω2 + χ2
}

. (3.2)

From the Virasoro constraint, we get the following equation

dρ

dσ
= ±

√

{(κ− βω)2 − χ2} cosh2 ρ− {(ω − βκ)2 − χ2} sinh2 ρ. (3.3)

We will present the solution later. For now, by integrating (3.3), we obtain the following

relation

2π = 4

∫ ρmax

0

dρ
√

{(κ− βω)2 − χ2} cosh2 ρ− {(ω − βκ)2 − χ2} sinh2 ρ

=
4

√

(κ− βω)2 − χ2

1√
1 + η

K

(

1√
1 + η

)

, (3.4)

here ρmax and η are defined as

coth2 ρmax =
(ω − βκ)2 − χ2

(κ− βω)2 − χ2
= 1 + η. (3.5)

4In [18], a spinning string in AdS3 space was originally discussed. Also a two-spin solution in AdS3 ×S1

space was discussed in [19].
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We calculate three conserved quantities of this system, the energy E and two angular

momenta S and J which are associated to the coordinates θ and φ respectively

E = −Pt =

√
λ

2π

∫ 2π

0

{

κ
(

(1− β2) cosh2 ρ+ β2
)

− βω
}

dσ, (3.6)

S = Pθ =

√
λ

2π

∫ 2π

0

{

ω((1− β2) sinh2 ρ− β2) + βκ
}

dσ, (3.7)

J = Pφ =
√
λχ. (3.8)

Using (3.3), the energy E and the spin S can be evaluated in terms of the elliptic integral as

E =
2
√
λ

π

1
√

(κ− βω)2 − χ2

(

κ(1− β2)

√
1 + η

η
E

(

1√
1 + η

)

− β(ω − βκ)√
1 + η

K

(

1√
1 + η

))

,

(3.9)

S =
2
√
λ

π

1
√

(κ− βω)2 − χ2

(

ω(1− β2)

√
1 + η

η
E

(

1√
1 + η

)

− ω − βκ√
1 + η

K

(

1√
1 + η

))

.

(3.10)

In the following we consider the short string limit ρmax ≪ 1 and the long string limit

ρmax ≫ 1, and evaluate a relation between the energy E and the spins S and J for

each case.

3.1.1 Short string limit

First we consider the short string limit ρmax ≪ 1. From (3.5), this corresponds to the limit

η ≫ 1. From (3.4) and (3.5), by taking the limit, we get the relations

(κ− βω)2 ∼ χ2 +
1

η
, (3.11)

(ω − βκ)2 ∼ χ2 + 1 +
1

η
. (3.12)

Also, by a suitable combination of (3.9) and (3.10), we obtain a simple expansion relation as

S − βE ∼
√
λ(1− β2)

2

√

χ2 + 1

η
. (3.13)

It is natural to identify E − βS and S − βE as the twisted energy and spin in the rotating

global AdS background, because they correspond to generators ∂t − β∂θ and ∂θ − β∂t
respectively. By substituting this, we obtain the relation of the twisted energy and the

twisted spin for any value of χ as

E − βS ∼
√
λ(1− β2)

√

χ2 +
2√
λ

S − βE

(1− β2)
√

χ2 + 1

+(S − βE)

√

χ2 + 2√
λ

S−βE

(1−β2)
√

χ2+1
√

χ2 + 1 + 2√
λ

S−βE

(1−β2)
√

χ2+1

. (3.14)
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In order to describe this relation in terms of the spin J , let us first consider the limit of

χ ≪ 1. At this limit, (3.13) leads to

S − βE ∼
√
λ(1− β2)

2

1

η
, (3.15)

and (3.14) is simplified to

E − βS ∼
√
λ(1− β2)

√

χ2 +
2√
λ

S − βE

(1− β2)
. (3.16)

Then, using (3.8), we obtain the relation

(

E − βS

1− β2

)2

∼ J2 + 2
√
λ
S − βE

1− β2
+ · · · . (3.17)

Next let us see another limit χ ≫ 1. At this limit, (3.13) leads to

S − βE ∼
√
λ(1− β2)

2

χ

η
, (3.18)

and (3.14) becomes

E − βS ∼
√
λ(1− β2)χ+ S − βE +

S − βE

χ2
, (3.19)

or, using (3.8), this corresponds to the relation

E − βS ∼ (1− β2)J + (S − βE)− 1

2

λ

J2
(S − βE) + · · · . (3.20)

In the case of β = 0, this result reduces to (3.24) in [19] as expected.

3.1.2 Long string limit

Next we consider the case of the long string limit ρmax ≫ 1, i.e. η ≪ 1. From (3.4)

and (3.5), by taking the limit, we get the relations

(κ− βω)2 ∼ χ2 +
1

π2
ln2

(

1

η

)

, (3.21)

(ω − βκ)2 ∼ χ2 + (1 + η)
1

π2
ln2

(

1

η

)

. (3.22)

Also, from the expansion of the spin S in (3.10), we obtain

S ∼ 2(1 + β)
√
λ

πη

√

χ2 + 1
π2 ln

2 1
η

√

1
π2 ln

2 1
η

. (3.23)

We find that the spin is large S ≫ 1 for any value of χ. Since it is not easy to spot a

dispersion relation in this complicated expression, we consider several limits of χ in the

following. First let us consider the case for χ ≪ ln 1
η . For the limit (3.23) leads to

S ∼ 2
√
λ

π

(1 + β)

η
, (3.24)

– 7 –
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and using (3.8) we obtain the following relation

E ∼ S + (1− β)

√
λ

π
ln

S√
λ(1 + β)

+
(1− β)π

2
√
λ

J2

ln S√
λ(1+β)

. (3.25)

In the case of the opposite limit χ ≫ ln 1
η , (3.23) leads to

S ∼ 2
√
λ(1 + β)

χ

η
. (3.26)

From this equation we find that S ≫ χ. Comparing an expansion of the energy (3.9)

with (3.26), and using (3.8), we obtain the relation

E ∼ S + (1− β)J + (1− β)
λ

2π2J

(

ln
S

(1− β)J

)2

, (3.27)

which also leads to (3.32) of [19] when β = 0.

3.2 Giant magnon/spiky solution

3.2.1 The solution

To describe the 2-spin giant magnon/spiky string solutions, we take the ansatz follow-

ing [12]:

t = τ + h1(y), ρ = ρ(y), θ = ω[τ + h2(y)], φ = Ω τ, (3.28)

where the worldsheet coordinates are changed from (τ, σ) to (τ, y), with y = σ − vτ and

0 < v < 1. In the following, we will set Ω = 1 in our analysis for convenience, and

0 < ω < 1. Then the equations of motion (A.2) and (A.3) are rewritten into the differential

equations for h1(y), h2(y),
5

{vgtt + (1− v2)gtth
′
1 + βω(1− v2)h′2}′ = 0, (3.29)

{v ω gθθ + (1− v2)ω gθθ h
′
2 + β(1− v2)h′1}′ = 0, (3.30)

where now ′ stands for d/dy. These equations further reduce to

h′1 = − 1

1− v2
βωc2 + (βωv + c1)gθθ − vgttgθθ

(1− β2)2 sinh2 ρ cosh2 ρ
, (3.31)

h′2 = − 1

1− v2
−βc1 + (βv − ωc2)gtt − ωvgttgθθ

ω(1− β2)2 sinh2 ρ cosh2 ρ
, (3.32)

where c1, c2 are two integration constants arising from integrating (3.29), (3.30). As β = 0,

(3.31) and (3.32) reduce to the equations presented in [12]. The equation of motion for ρ

in (A.4) becomes

ρ′′ =
1− β2

(1− v2)2
cosh ρ sinh ρ

{[

1−
(

βωc2 − (c1 + βωv + v)β2

(1− β2)2 sinh2 ρ cosh2 ρ
+

c1 + βωv

(1− β2) cosh2 ρ

)2
]

−ω2

[

1−
(−βc1/ω + (c2 − βv/ω − v)β2

(1− β2)2 sinh2 ρ cosh2 ρ
+

c2 − βv/ω

(1− β2) sinh2 ρ

)2
]}

. (3.33)

5We set
√

λ

2π
= 1 in the following numerical analysis of the giant magnon/spiky sting solutions.
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With the string profile ansatz (3.28), the Virasoro constraints are given by

gtt(1− vh′1)h
′
1 + βω(h′1 + h′2 − 2vh′1h

′
2) + ω2gθθ(1− vh′2)h

′
2 − v(ρ′)2 = 0, (3.34)

gtt[1− 2vh′1 + (1 + v2)(h′1)
2] + 2βω[1− v(h′1 + h′2) + (1 + v2)h′1h

′
2]

+ω2gθθ[1− 2vh′2 + (1 + v2)(h′2)
2] + (1 + v2)(ρ′)2 + 1 = 0. (3.35)

Eliminating (ρ′)2 by equating the l.h.s. of these two equations and substituting in the h′1, h
′
2

expressions from (3.31) and (3.32), one obtains the following relation

c1 − ω2c2 + 2βωv + v = 0 (3.36)

for the two integration constants.

In order to proceed to obtain the explicit string solutions, we need to assign specific

values to c1, c2. In this paper we set6

c1 = −βωv − v

1− βω
, c2 = − β2v

1− βω
. (3.38)

This choice yields a constraint

v2 < 1− βω (3.39)

by requiring forward propagation of the strings,

dt

dτ
=

1

1− v2

{

1− v2

(1− βω)(1− β2) cosh2 ρ

}

> 0. (3.40)

Note that the constraint (3.39) is regarded as a natural β-deformation from the original

v2 < 1. Moreover, (3.36) and (3.38) reduce to the corresponding results in [12] at β = 0.

With the given c1, c2, h
′
1, h

′
2 become

h1(y)
′ = − v

1− v2

{

1− 1

(1− βω)(1− β2) cosh2 ρ

}

, (3.41)

h2(y)
′ = − v

1− v2

{

1− β/ω

(1− βω)(1− β2) cosh2 ρ

}

. (3.42)

Substituting these expressions into the Virasoro constraints, one obtains the differential

equation for ρ(y):

ρ′2 =
1

(1− v2)2

{

(1− ω2)(1− β2) cosh2 ρ+
v2

(1− βω)2 cosh2 ρ
+ (β − ω)2 − (1 + v2)

}

.

(3.43)

6As being demonstrated later in this paper, the choice of c1, c2 in (3.38) gives rise to consistent β = 0

reduction. One may choose other c1, c2, for example

c1 = −v − βωv, c2 = βv/ω. (3.37)

But when β is taken to zero, such a choice does not yield the same condition to distinguish the hanging

string and the spiky string profiles as the β-free case in [12], despite that β = 0 in (3.38) and (3.37) reduce

to the c1, c2 choice of [12].
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It is straightforward to check that ρ′2 is indeed an integral of ρ′′ according to (3.33)

and (3.43).

The next step is to solve ρ(y) profile. (3.43) can be rewritten into

ρ(y)′ = ± 1

(1− v2) cosh ρ

√

f(ρ), (3.44)

f(ρ) = (1− ω2)(1− β2) cosh4 ρ + [(β − ω)2 − (1 + v2)] cosh2 ρ +
v2

(1− βω)2
,

in which one finds ρ′ → ±∞ as ρ → ∞. In principle, ρ(y) is solved by integrating

dy = ±(1− v2)(cosh ρ)dρ/
√

f(ρ) over some appropriate range on both sides, but the form

of f(ρ) leaves ρ(y) no analytic solution. However, it can be solved numerically with the

same method.

f(ρ) is a quadratic function in cosh2 ρ, and analysis shows that within β, ω, v ∈ (0, 1),

there always exist two real roots cosh2 ρ+, cosh
2 ρ− (where ρ+ > ρ−) for f(ρ):

cosh2 ρ± =
(1 + v2)− (β − ω)2 ±

√

[(1 + v2)− (β − ω)2]2 − 4v2(1−ω2)(1−β2)
(1−βω)2

2(1− ω2)(1− β2)
. (3.45)

The string solutions only exist for f(y) ≥ 0, i.e. ρ ≥ ρ+ and ρ ≤ ρ−. On the other hand,

the radial coordinate is physical for ρ ≥ ρ0, where cosh2 ρ0 =
1

1−β2 . Therefore the rotating

string solutions can be classified by comparing ρ+ and ρ0:

(1) ρ+ > ρ0. This type of solution has two subclasses: (a) ρ− ≤ ρ0. The strings can only

extend between ρ = ρ+ and ρ = ∞, but not for ρ0 ≤ ρ < ρ+. This corresponds to

the hanging strings displayed in figure 2(a). (b) ρ− > ρ0. The string can either be a

hanging one like that in figure 2(a), or a bulging string confined between ρ0 ≤ ρ ≤ ρ−
in figure 2(b). Note that the bulging string solution does not allow β = 0 reduction,

and can exist only for some limited range of (β, ω, v). The parameter region for this

type of solution is constrained by ρ− > ρ0 and 1−βω−v2 > 0 in (3.39). (See figure 4

for numerical results.)

In this subclass, ρ(y)′ = 0 at ρ = ρ+ or ρ = ρ− corresponds either to the bottom points

of the hanging strings, or to the tips of the bulging stings respectively.

(2) ρ+ ≤ ρ0. The string extends all the way from ρ0 to the asymptotic infinity, and it is

a spiky solution depicted in figure 3.

One finds that the range of y for the spiky string becomes finite due to the β-

deformation of the AdS vacua. In fact, the y range of all three types of solutions de-

pends on the value of β. It is revealed in figures 2(a) and 3 that, for the hanging and the

spiky strings, as β increases, the width of ρ(y) decreases, which implies that at constant

worldsheet time τ , the range of σ shrinks as β increases. However, since the worldsheet

coordinates still have a remaining Weyl symmetry in the Polyakov action, one can rescale

σ according to β to get rid of this issue. As for the bulging stings in figure 2(b), the length

of the string segment increases with β.
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(a) Hanging string ρ(y) solutions.
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(b) Bulging string ρ(y) solutions at various β.

Figure 2. (a) shows the hanging string ρ(y) profile at various β values, with ω = 0.8, v = 0.7. As β

increases, the width in y decreases; (b) is the bulging string ρ(y) at various β, with ω = 0.7, v = 0.8.

The dotted lines are the coordinate origins ρ = ρ0 of the AdS β-vacua in eq. (2.1), with the

corresponding β values, where the strings end. ρ0 increases with β.

The parameter regions of (β, ω, v) ∈ (0, 1) for all three types of the string solutions

are shown in figure 4. The boundary separating the spiky and the hanging profiles are

obtained comparing ρ+ and ρ0, and as β is infinitely small, it cannot be obtained as a

smooth deformation from the profile distinguishing condition at β = 0 derived from (3.44).

The transition from vanishing to non-vanishing β is discontinuous in this aspect. At β = 0,

the two roots in for f(ρ) becomes cosh2 ρ1 = 1 and cosh2 ρ2 = v2

1−ω2 , while the origin is at

ρ0 = 0 = ρ1. Here ρ2 can be greater or smaller than ρ1. If ρ2 > 1, i.e. v2

1−ω2 > 1, it is a

hanging string; otherwise the solution is spiky (for v2

1−ω2 ≤ 1), as predicted by [12]. This

can be seen in figure 4 that the region A (the spiky strings at β 6= 0) and region C (the

spiky strings at β = 0) are disjoint. This result implies that the string profile classification

condition is different when the background belongs to different conjugacy classes, and they

may not deform smoothly to each other, as the global rotating AdS space (β 6= 0) is

in the loxodromic transformation class, while the global AdS (β = 0) is in the elliptic

transformation one.

Comparison of the snapshots (at constant worldsheet time τ = 0) of the spiky and

the hanging strings in the AdS3 β-vacua target space for β = 0 and β = 0.5 are shown in

figure 5.
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Figure 3. This figure shows the spiky string solutions ρ(y) at various β, with ω = 0.2, v = 0.4.

The dotted lines are the coordinate origins ρ = ρ0 of the AdS β-vacua for each β.

Figure 4. This figure shows the parameter ranges of (β, ω, v) corresponding to each of the three

types of the string solutions. The green surface depicts ρ+ = ρ0, the brown surface 1−βω−v2 = 0,

while the purple surface ρ
−

= ρ0. For β 6= 0, the spiky strings fall in the region A, to the left of

the green surface, where ρ+ < ρ0. The hanging strings fall in the region B, in between the green

and the brown surfaces, where ρ+ > ρ0 subject to the constraint 1− βω− v2 > 0. There is a small

region C in between the purple and the brown surfaces, confined by ρ
−
> ρ0 and 1− βω − v2 > 0,

corresponding to the bulging strings. At β = 0 (the bottom plane), region D (the blue plane) depicts

1 − ω2 − v2 > 0 and corresponds to the spiky string solutions, while the region E (the magenta

plane) has 1 − ω2 − v2 < 0, giving rise to the hanging strings. Note that the spiky string (giant

magnon) regions for vanishing and non-vanishing β’s (i.e. regions D and A respectively) are disjoint.
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Figure 5. Rotating string profiles in the target space (t, ρ, θ) with β = 0 (red) and β = 0.5 (blue)

at τ = 0: (a) hanging strings, with ω = 0.8, v = 0.7; (b) spiky strings, with ω = 0.2, v = 0.4.

3.2.2 Dispersion relation

The rotating strings in the β-vacua in AdS3 × S1 carry the following energy E and spins

S, J which associate with θ, φ respectively:

E =

√
λ

2π(1− v2)

∫

dσ

{

(1− β2) cosh2 ρ+ β2 − βω − v2

1− βω

}

, (3.46)

S =

√
λ

2π(1− v2)

∫

dσ

{

ω(1− β2) sinh2 ρ− ωβ2 + β − v2β

1− βω

}

, (3.47)

J =

√
λ

2π

∫

dσ. (3.48)

They satisfy a relation

E − J =
S

ω
+K, (3.49)

where K is a β-dependent correction term and given by the expression

K = −
√
λ

2π(1− v2)

∫

dσ

{

β2 −
(

βω +
β

ω

)(

1− v2

1− βω

)}

. (3.50)

K vanishes identically as β = 0, and (3.49) reduces to E − J = S
ω , consistent with [12].

(3.46)–(3.48) diverge as they are integrated to ρ → ∞, and require regularization.

However, due to lack of analytic results out of these integrals, we are unable to obtain

analytic regularized expressions for E, S and J . We refer to the numerical computation to

reveal their dependence on ω, such that the dispersion relation (3.49) is satisfied. We take

a cutoff at Λ = 50 while integrating these quantities over ρ, and denote them by EΛ, SΛ, JΛ,

and KΛ. The behaviors of E, S, J against ω remains the same whether they are regularized

or not, up to a large constant to be subtracted in regularization. The results are given in

figures 6–8.
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Figure 6. EΛ of the spiky strings against ω, with (a) three values of β, and with (b) β = 0.5

magnified from (a). We’ve chosen v = 0.4, and the integration cutoff Λ is at ρ = 50. SΛ

ω
behaves

similarly against ω for sufficiently large ω.
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Figure 7. JΛ of the spiky strings against ω, with (a) three values of β, and with (b) β = 0 magnified

from (a). Here v = 0.4, and Λ is at ρ = 50.
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Figure 8. KΛ of the spiky strings against ω, with β = 0.5 and β = 0.7, at v = 0.4. The integration

cutoff is at ρ = 50. The magnitude of KΛ increases as ω decreases, but KΛ = 0 identically at β = 0.

4 Analytical continuation and complex sin(h)-Gordon model

While a string prapogates in metric (2.1) is expected to have an equivalent description in

terms of sinh-Gordon model, it is entertaining to see its connection to sine-Gordon model

via analytic continuation. With the coordinates change:

ρ → iγ, φ → t̂, t → ϕ1, θ → ϕ2, (4.1)
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One obtains the new metric

ds2 → −d̂s
2
= −dt̂2 + dγ2 + [(1− β2) cos2 γ + β2]dϕ2

1

+[(1− β2) sin2 γ + β2]dϕ2
2 − 2βdϕ1dϕ2, (4.2)

whose spatial part is a squashed three-sphere.7 The deform parameter β changes the

geometry to a round sphere at β = 0 and to a 3-tori at β = 1. The spin chain at fast

spinning limit after analytic continuation takes the following form:

S =

√
λ

4π

∫

dτdσ2(1− β)κφ̇1 + 2(1 + β) cos γκφ̇2

−1

4
{γ′2 + (1− β)2φ′2

1 + (1 + β)2φ′2
2 + 2(1− β2) cos γφ′

1φ
′
2} (4.3)

for another coordinates change φ1 → ϕ1 + ϕ2, φ2 → ϕ1 − ϕ2, γ → γ/2 and boosting

φ1 → φ1 + t̂/(1− β). Utilizing the Virasoro constraint, one obtains a deformed spin chain

Hamiltonian density:

H = (∂σγ)
2 + (1 + β)2 sin2 γ(∂σφ2)

2, (4.4)

which recovers the SU(2) Heisenberg XXX spin chain in [8] for β = 0. One might wonder

what is this deformed spin chain on the dual field theory side. If one embeds the squashed

sphere in R4 as

X1 = cos γ cos (ϕ1 − βϕ2), X2 = sin γ cos (ϕ2 − βϕ1),

X3 = sin γ sin (ϕ2 − βϕ1), X4 = cos γ sin (ϕ1 − βϕ2). (4.5)

An academic guess is that the deformed spin chain is still made of the single trace operator

Tr(ZZZ · · · ) but with a twisted complex scalar Z ≡ X1 + iX4 = cos(γ)ei(ϕ1−βϕ2).

At last, the complex sine-Gordon model can be obtained by first constructing a new

vector Ki = ǫijklX
j∂+X

k∂−X
l out of Xi and use them to define two O(4)-invariants φ

and χ:

cosφ ≡ −∂+ ~X · ∂− ~X, ±2∂±χ sin2 (φ/2) ≡ ∂2
± ~X · ~K. (4.6)

It can be shown that the equations of motion of φ and χ are nothing but the complex

sine-Gordon equations [23]. By analytically continuing back to deformed AdS3 × S1, one

can also obtain the sinh-Gordon equation as shown in [12].

5 PP-wave limit

In this section, we consider a spiky string solution on a pp-wave limit of the β-deformed

AdS3 background, in which we especially see the region of ρ → ∞ and θ → t. Follow-

ing [21], we start with the β-AdS3 part in the metric (2.1), and consider the following

reparametrization,

z =
2
√
2eρ0

eρ
, (5.1)

x± = eρ0e∓θ0(θ ± t). (5.2)

7A different way to deform S3 is by squashing the Hopf fiber S1 along the S2 base. A different spin

chain model could be also obtained [20].
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We take limits of the two parameters as ρ0, θ0 → ∞ with fixing the ratio

eθ0

eρ0
= 2µ. (5.3)

Here µ > 0 can be regarded as a free parameter. At this limit, we obtain β-AdS pp-wave

metric

ds2 =
1

z2
{

2(1− β2)dx+dx− + dz2 − (1− β)2µ2z2dx2+
}

. (5.4)

The boundary is located at z = 0.

We shall consider a spiky string solution in the β-AdS3-pp-wave with the following

ansatz:

x+ = τ, x− = σ, z = z(σ), −σ0 ≤ σ ≤ σ0. (5.5)

The Nambu-Goto action in this case is given by

S = −
√
λ

2π

∫

1

z2

√

(1− β)2z2µ2(∂σz)2 + (1− β2)2dτdσ. (5.6)

From the equations of motion, we obtain the differential equation

∂σz = (1 + β)
1

z

√

z40
z4

− 1, (5.7)

and this can be solved by

z(σ) =
√
2
√

1 + β(σ2
0 − σ2)1/4. (5.8)

We can evaluate conserved quantities associated with x+ and x− as

P+ = −
√
λ

2π

∫ σ0

−σ0

√

(1− β)2z2(∂σz)2 + (1− β2)2

z2
dσ (5.9)

= −2

√
λ

2π
(1− β)

∫ z0

ǫ

1

z
√

1− z4

z4
0

dz, (5.10)

P− =

√
λ

2π
(1− β)

∫ σ0

−σ0

1

z2
(∂σz)

2

√

(1− β)2z2(∂σz)2 + (1− β2)2
dσ (5.11)

= 2

√
λ

2π

∫ z0

ǫ

1

z3

√

1− z4

z40
dz. (5.12)

Here we set µ = 1 and z0 =
√

2(1 + β)σ0, and we also introduced a cutoff ǫ that should be

taken ǫ → 0. By expanding by ǫ we get

P+ ∼ −
√
λ

2π
(1− β) ln

z20
ǫ2

+ · · · , (5.13)

P− ∼
√
λ

2π

1

ǫ2
−

√
λ

2π

π

2z20
· · · . (5.14)

From these expansions, we obtain the following relation

P+ ∼ −
√
λ

2π
(1− β2) lnP− + · · · . (5.15)

This relation can be regarded as a β-deformed result from that in [22].
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A Equations of motion and Virasoro constraints from the Polyakov

action

In this appendix, we present the general expressions of the equations of motion and Virasoro

constraint from the Polyakov action in the background (2.1).

The Polyakov action is given by

I = −
√
λ

4π

∫

dτ dσ
{

−[(1− β2) cosh2 ρ+ β2](t′2 − ṫ2) + 2β(t′θ′ − ṫθ̇)

+[(1− β2) sinh2 ρ− β2](θ′2 − θ̇2) + (ρ′2 − ρ̇2) + (φ′2 − φ̇2)
}

, (A.1)

from which the equations of motion can be derived as follows:

∂

∂τ

[

gtt
∂t

∂τ

]

− ∂

∂σ

[

gtt
∂t

∂σ

]

+ β

[

∂2θ

∂τ2
− ∂2θ

∂σ2

]

= 0, (A.2)

∂

∂τ

[

gθθ
∂θ

∂τ

]

− ∂

∂σ

[

gθθ
∂θ

∂σ

]

+ β

[

∂2t

∂τ2
− ∂2t

∂σ2

]

= 0, (A.3)

(1−β2) sinh ρ cosh ρ

[

(

∂t

∂τ

)2

−
(

∂t

∂σ

)2

−
(

∂θ

∂τ

)2

+

(

∂θ

∂σ

)2
]

+

(

∂2ρ

∂τ2
− ∂2ρ

∂σ2

)

= 0, (A.4)

∂2φ

∂τ2
− ∂2φ

∂σ2
= 0. (A.5)

The Virasoro constraints read

gtt
∂t

∂τ

∂t

∂σ
+ β

(

∂t

∂τ

∂θ

∂σ
+

∂θ

∂τ

∂t

∂σ

)

+ gθθ
∂θ

∂τ

∂θ

∂σ
+

∂ρ

∂τ

∂ρ

∂σ
+

∂φ

∂τ

∂φ

∂σ
= 0, (A.6)

gtt

[

(

∂t

∂τ

)2

+

(

∂t

∂σ

)2
]

+ 2β

[

∂t

∂τ

∂θ

∂τ
+

∂t

∂σ

∂θ

∂σ

]

+ gθθ

[

(

∂θ

∂τ

)2

+

(

∂θ

∂σ

)2
]

+

(

∂ρ

∂τ

)2

+

(

∂ρ

∂σ

)2

+

(

∂φ

∂τ

)2

+

(

∂φ

∂σ

)2

= 0. (A.7)
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