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Abstract Uncertainty must be taken into account in all

aspects of ambient intelligence and human decisions and

activities. We investigate how to utilize both probabilistic

and possibilistic sources of information for use in human-

ized decision-making. In particular we examine aspects of

the possibilistic conditioning of probability developed by

Yager. To provide bounding of the resulting probability

analysis of the cases of completely certain and uncertain

probability and possibility distribution are carried out.

Additionally the cases of intermediate uncertainty and a

general case of possibilities are analyzed. The Zadeh

consistency measure is also used to assess these cases. To

consider whether the conditioned probability is more

informative for decision-making, three measures, Shannon

entropy, Gini index and Renyi entropy are used to compare

the original probability distributions and the conditioned

distribution for the cases described.

Keywords Information theory � Decision making �
Possibility theory � Shannon entropy � Gini index � Renyi

entropy � Possibilistic conditioning � Consistency measures

1 Introduction

Uncertainty is pervasive in the ordinary, everyday

activities and decisions of humans. Fuzzy set techniques

have been widely recognized for dealing with uncer-

tainty in ambient intelligence (Acampora and Loia

2008) and human-centric systems (Pedrycz 2010). In

this paper we are interested in a deeper understanding of

such uncertainties and how they can be quantified for

human decision makers.

One aspect that must be considered in particular is

how to deal with the inherent uncertainty involved when

information is aggregated in order to become useful for

decision making. Effective decision-making should be

able to make use of all the available, relevant infor-

mation about such aggregated uncertainty. In this paper

we investigate quantitative measures that can be used to

guide the use of aggregated uncertainty. While there are

a number of possible approaches to aggregate the

uncertainty information that has been gathered, this

paper will examine uncertainty aggregation by the soft

computing approach of possibilistic conditioning of

probability distribution representations using the

approach of Yager (2012). This form of aggregation

makes it very amenable to apply the information mea-

sures we consider in this paper.
To formalize the problem, let V be a discrete variable

taking values in a space X that has both aleatory and epi-

stemic sources of uncertainty (Parsons 2001). Let there be a

probability distribution P: X ? [0, 1] such that pi [ [0, 1], :
Pn

i¼1 pi ¼ 1 that models the aleatory uncertainty. Then the

epistemic uncertainty can be modeled by a possibility

distribution (Zadeh 1978) such that P : X ? [0, 1], where

p(xi) gives the possibility that xi is the value of V,

i ¼ 1; 2; . . .; n. A usual requirement here is the normality

condition, Maxx [p (x)] = 1, that is at least one element in

X must be a fully possible. Abbreviating our notation so

that pi = p(xi), etc. and pi = p(xi), etc., we have P = {p1,

p2,…pn} and P = {p1, p2,…, pn}.
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In possibilistic conditioning, a function f dependent on

both P and P is used to find a new conditioned probability

distribution such that

f ðP;PÞ ) new P̂

where P̂ ¼ p̂1; p̂2; . . .; p̂nf g with

p̂i ¼ pipi=K; K ¼
Xn

i¼1

pipi ð1Þ

A strength of this approach using conditioned probability is

that it also captures Zadeh’s concept of consistency

between the possibility and the original probability distri-

bution. Consistency provides an intuition of concurrence

between the possibility and probability distributions being

aggregated. In Eq. (1), K is identical to Zadeh’s possibility-

probability consistency measure (Zadeh 1978), CZ (P, P);

i.e. CZ (P, P) = K.

As an example of a conditioned probability distri-

bution that could be used to provide guidance to a

decision maker, consider the following military prob-

lem. Over the first decade of the 21st century, a major

cause of casualties in both Iraq and Afghanistan combat

zones has been from improvised explosive devices

(IEDs). Prevention/avoidance of IED attacks is a critical

decision and should be based on assessment of the most

probable placements of IEDs (Benigni and Furrer 2012).

One approach is to consider historical probability dis-

tributions characterizing typical placements sites. Let

the placement sites considered be X1, X2, X3, and X4.

The variable VIED takes values from the space

X = {X1, X2, X3, X4}. For this example, let the

probability distribution for past IED placements be

denoted as p(VIEDhistoric) : PIED. So we have the

distribution

PIED ¼
X1

0:3
;
X2

0:2
;
X3

0:4
;
X4

0:1

� �

;

where the upper halves indicate locations and the lower the

corresponding probabilities.

Typically there may be additional or more current

information based on intelligence reports that are sub-

jective in nature. A possibility distribution could be used to

represent such subjective information. If the intelligence

officials provide their assessment the possibility distribu-

tion for this will be denoted as P (VIEDintelligence) : PIED

and we have

PIED ¼
X1

1
;
X2

0:6
;
X3

0:8
;
X4

0:2
;

� �

We can now combine these by the possibilistic condition-

ing approach. Using Eq. (1) we have first

K¼ 0:3� 1 þ 0:2� 0:6 þ 0:4� 0:8 þ 0:1� 0:2 ¼ 0:76;

Then,

p̂1 ¼ 0:3� 1=0:76¼ 0:39; . . .; p̂4 ¼ 0:1� 0:2=0:76¼ 0:03

The conditioned probability distribution for IED locations

is then

P̂IED ¼
X1

0:39
;

X2

0:16
;

X3

0:42
;

X4

0:03

� �

:

The issue at hand is does P̂IED represent an improved

estimate of the IED locations? In order to provide

intuition and tools to assess this question, this paper will

provide the following discussions, reusing the IED dis-

tributions above as an ongoing numerical example.

Section 2 begins by providing theorems for extreme

case of P, one of absolute certainty and the other of

complete uncertainty. These theorems provide simplifi-

cations, check results and characterize the approach.

The section then continues with combination of two

more general P distributions with for four different

classes of P distributions. In Sect. 3, we assess the

utility of an aggregated uncertainty and to decide if this

aggregation provides more effective information

through consideration of information measures; includ-

ing Shannon entropy, Gini index, and Renyi entropy; to

gauge the aggregated uncertainty. For our on going IED

numerical example, the Shannon entropy (Reza 1961),

S(P) ¼ �
Xn

i¼1

pi1n pið Þ; ð2Þ

yields for PIED and P̂IED

S P̂IED

� �
¼ 1:13\S PIEDð Þ ¼ 1:28 ð3Þ

These measures for the more generalized analytic cases are

presented here. Section 4 then discusses consistency and

shows that it provides an additional measure that is com-

patible with the information measures from the previous

section. The paper then provides a summary and discussion

of future research in Sect. 5.

2 Aggregation of possibility and probability

by conditioning

To examine the conditioning approach further we formu-

late four distinct cases for the possibility distributions. The

first two, complete certainty, complete uncertainty, repre-

sent the extreme cases of possibility distributions. Then

two intermediate cases, partial certainty and a generalized
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certainty case will be discussed. For each case we provide

instantiations of the cases based on the two extreme

probability distributions, completely certain, Pcc, and

completely uncertain, Pcu. These cases are shown in

Table 1. Additional measures discussed in Sects. 3 and 4

provide guidance for use of the result.

2.1 Case 1: complete certainty

A possibility distribution with exactly one possibility value

equal to 1 and all other values equal 0 represents a com-

pletely certain distribution. Now we will prove the rela-

tionship between such a distribution and the conditioned

probability.

Theorem 1 If a possibility distribution P is completely

certain, then its conditioned probability P̂ is completely

certain.

Proof P is completely certain if 9 k such that pk ¼
1; and pi ¼ 0; 8 i 6¼ k: To obtain the conditioned proba-

bility we first calculate K using Eq. (1):

K ¼ pkpk þ
Xn

i 6¼k

pipi ¼ pk � 1þ
Xn

i6¼k

pi � 0 ¼ pk

So now we find the conditioned probabilities

p̂k ¼pkpk=K ¼ pk � 1=pk ¼ 1

p̂i ¼pipi=K ¼ pi � 0=pk ¼ 0; i 6¼ k

Thus the conditioned probability distribution P̂is

P̂ ¼ 0; . . .; p̂k ¼ 1; . . .0f g

which is a completely certain probability distribution. h

Some of the issues relative to the interpretation of this

result with respect to consistency and conflict will be

discussed in Sect. 4.

2.2 Case 2: complete uncertainty

If there is no distinction that is made on the values of the

variable V by the possibility distribution, we say this implies

complete uncertainty. This is then represented in the distri-

bution by all values equaling 1 as shown in Table 1.

Theorem 2 If a possibility distribution P is completely

uncertain, then its conditioned probability P̂ is identical to

the original probability P.

Proof P is completely uncertain if 8i; pi ¼ 1: To obtain

the conditioned probability we first calculate K using Eq.

(1)

K ¼
Xn

i¼1

pipi ¼ þ
Xn

i6¼k

pi � 1 ¼ 1

since
Pn

i¼1 pi ¼ 1 for any probability distribution.So now

we find the conditioned probabilities

P̂i ¼ pi � pi=K ¼ pi � 1=1 ¼ pi

Thus the conditioned probability distribution P̂ is

P̂ ¼ p1; p2; . . .pnf g ¼ P;

which is the original probability distribution. h

The interpretation of this result is that the possibility

distribution shows no preference for any specific value and

so the default is that the information to be used in a

decision should be that represented by the original

probability distribution. So for the two extreme probability

cases (Table 1) we have respectively:

(a) Pcc :¼ P̂ 0; 0; . . .; 0; pt ¼ 1; . . .0f g

(b) Pcu : P̂ ¼ 1

n
;
1

n
; . . .

1

n

� �

Clearly these are valid as for both distributions:
Pn

i¼1 P̂i

¼ 1:

2.3 Case 3: intermediate uncertainty

Here we examine the case that falls between complete

certainty and complete uncertainty for a possibility distri-

bution. To represent this we allow m values of P = 1, such

that 1 \ m \ n. For convenience we index these values

from i = 1, so we have for the distribution:

P ¼ 1; 1; . . .1; 0; 0. . .0f g : pi ¼ 1;

i ¼ 1. . .m; pj ¼ 0; j ¼ mþ 1. . .n

Then clearly K = p1 ? p2 ? ��� ? pm and

p̂i ¼ pi � 1= p1 þ p2 þ � � � þ pmð Þ;
i ¼ 1. . .m; p̂mþ1 ¼ . . .p̂n ¼ 0

In order to understand what happens in this intermediate

uncertainty situation, we will examine the two extreme

Table 1 Possibility and probability distribution cases

Possibility distribution cases

Case 1: complete certainty P ¼ 0; 0. . .; pk ¼ 1; . . .0; 0f g
Case 2: complete uncertainty P ¼ 1; 1; . . .; 1; 1; 1f g
Case 3: intermediate uncertainty P ¼ 1; 1; . . .1; 0; 0. . .0f g
Case 4: generalized possibility

P ¼ 1; w2; w3; . . .;wnf g; 0\wi\1

Probability distribution cases

Case A: complete certainty Pcc ¼ 0; 0. . .; pk ¼ 1; . . .0; 0f g
Case B: complete uncertainty Pcu ¼ 1=n; 1=n; . . .1=n; 1=nf g
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probability distributions being conditioned by this possi-

bility. First for Pcc we have to consider two subcases.

2.3.1 Pcc, Subcase (1); pt = 1; t B m

K ¼ 0� 1þ 0� 1þ � � � þ pt ¼ 1ð Þ
� ðpt ¼ 1Þ þ � � � 0� 0 ¼ 1

p̂t ¼
1� 1

K
¼ 1

1
¼ 1; p̂j6¼t ¼ 0

So P̂ ¼ f0; 0; . . .; 0; p̂t ¼ 1; . . .0g ¼ Pcc

2.3.2 Pcc Subcase (2); pt = 1; t [ m

For this subcase, however, there is a problem since

pt = 0, but pt = 1. This case will be discussed further in

Sect. 4.

2.3.3 Pcu, Complete uncertainty

Next for the completely uncertain probability distribution

Pcu we find

K ¼
Xm

i¼1

pipi þ
Xn

i¼mþ1

pipi ¼ m� 1

n

� �

� 1þ n� mþ 1ð Þð Þ � 1

n

� �

� 0 ¼ m

n

Then the conditioned probability values are

p̂i ¼
1

n
� 1=

m

n

� 	
¼ 1

m
; i ¼ 1. . .m

p̂mþ1 ¼ . . .p̂n ¼
1

n
� 0=

m

n

� 	
¼ 0

p̂ ¼ 1

m
;

1

m
; . . .;

1

m
; p̂mþ1 ¼ 0; 0; . . .0

� �

Therefore, we have obtained a subset of equally distributed

conditioned probabilities corresponding to the possibilities

that are 1. Note that these equally distributed probabilities

are greater than the 1
n values for the initial Pcu. Again, this

is clearly a valid distribution as
Pn

i¼1 p̂i ¼ m� 1
m
� �

¼ n� mþ 1ð Þð Þ � 0 ¼ 1

2.4 Case 4: Generalized possibility distribution

This is a general case for which we index p1 = 1 and to

capture the situation between complete certainty and

uncertainty we use the weights, 0 \ wi \ 1, for the n - 1

arbitrary possibility values. So from Table 1 this possibility

distribution is:

P ¼ f1;w2;w3; . . .;wng

and for the conditioned probabilities we obtain

K ¼ p1 � 1þ
Xn

i¼2

piwi ¼ p1 þ K0; where K0 ¼
Xn

i¼2

piwi

p̂1 ¼ p1 � 1þ ðp1 + K0Þ;
p̂i ¼ pi � wi þ ðp1 + K0Þ; i ¼ 2. . .n

Again we will examine the conditioning of the extreme

probabilities and once more have to consider the subcases

of Pcc

2.4.1 Pcc subcase (1); t = 1, p1 = 1

K0 ¼
Xn

i¼2

0� wi ¼ 0;

p̂1 ¼ 1� 1=ð1þ 0Þ ¼ 1; p̂i ¼ 0� wi=ð1þ 0Þ ¼ 0;
i ¼ 2. . .n

P̂ ¼ 1; 0; . . .0f g ¼ Pcc

2.4.2 Pcc subcase (2); t [ 1, pt = 1

We find the conditioned probability here as:

K ¼ 0� 1þ pt � wt þ
Xn

i¼2;i 6¼t

0� wi ¼ wt

p̂1 ¼ 0� 1=wt ¼ 0;¼ p̂t ¼ pt � wt=wt ¼ 1� wt=wt ¼ 1

p̂i ¼ 0� wi=wt ¼ 0; i ¼ 2. . .n; i 6¼ t

P̂ ¼ f0; 0; . . .; p̂t ¼ 1; . . .0g ¼ Pcc

2.4.3 Pcu complete uncertainty

Finally for the completely uncertain probability Pcu

K ¼ 1

n
þ
Xn

i¼2

1=n� wi ¼ 1þ
Xn

i¼2

wi

 !

=n

p̂1 ¼
1

n
� 1= 1þ

Xn

i¼2

wi

 !

=n ¼ 1= 1þ
Xn

i¼2

wi

 !

p̂i ¼
1

n
� wi= 1þ

Xn

i¼2

wi

 !

=n ¼ wi= 1þ
Xn

i¼2

wi

 !

i

¼ 2. . .n

Here we can see since 0 \ wi \ 1, then p̂1 \ 1 and

p̂i \ p̂1: Also these conditioned probabilities still sum to 1.

Xn

i¼2

p̂i ¼ 1= 1þ
Xn

i¼2

wi

 !

þ
Xn

i¼2

wi= 1þ
Xn

i¼2

wi

 !

¼ 1þ
Xn

i¼2

wi

 !

= 1þ
Xn

i¼2

wi

 !

¼ 1

To consider specific cases for the weights here we look at

an equal distribution of the weights values. In a sense this
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is a default choice. After deciding on which possibility

value to choose as 1, then if there is no preference for the

other values, a default of equal values is reasonable. We

first consider that since there are n-1 weights to be assigned

we use the weight values as

w1 ¼ 1 and wi ¼
1

n� 1
; i ¼ 2; . . .; n:

First

1þ
Xn

i¼2

wi

 !

¼ 1 þ n� 1ð Þ � 1

n� 1

� �

¼ 2

Then

p̂1 ¼ 1= 1þ
Xn

i¼2

wi

 !

¼ 1

2
; and p̂i ¼ wi= 1þ

Xn

i¼2

wi

 !

¼ 1

n� 1

� �

=2 ¼ 1

2ðn� 1Þ

So P̂ ¼ 1
2
; 1

2ðn�1Þ ;
1

2ðn�1Þ ; � � � 1
2ðn�1Þ

n o
and clearly this is a

valid distribution as

Xn

i¼1

p̂i ¼
1

2

Xn

i¼2

1

2ðn� 1Þ ¼
1

2
þ ðn� 1Þ 1

2ðn� 1Þ ¼
1

2
þ 1

2

¼ 1

3 Information measures

In this section we will consider measures that can be

used to evaluate a conditioned probability distribution

relative to the original probability. Shannon’s entropy

has been a commonly accepted standard for information

metrics; however, the concept of information is so rich

and broad that multiple approaches to the quantification

of information are desirable (Klir 2006; Xu and Er-

dogmuns 2010). Thus, we will also examine other

measures, such as the Gini index and Renyi entropy, in

this section.

3.1 Shannon entropy

Shannon entropy has been the most broadly applied mea-

sure of randomness or information content (Shannon

1948). For a probability distribution P = {p1, p2,…pn} as

was discussed previously in Eq. (2), SðPÞ ¼
�
Pn

i¼1 pi1nðpiÞ. The well-known minimum and maximum

values for the Shannon entropy are presented in the context

of our two extreme probability cases.

First for complete certainty, Pcc, we recall that here, for

some t, pt = 1, and so

S Pccð Þ ¼ � 1 ln (1)þ
Xn

i¼1; 6¼t

0 ln (0Þ
 !

¼ 1� 0þ
Xn

i¼1;6¼t

0 ¼ 0

Note this follows as limp!0þ;p ln p = 0. That is when a

probability distribution represents complete certainty, then

we have no uncertainty, i.e. maximum information.

Then for the case of complete uncertainty represented by

the equi-probable distribution, Pcu, where V i pi = 1/n

S Pcuð Þ ¼ �
Xn

i¼1

1

n
� ln

1

n

� �

¼ � 1

n

Xn

i¼1

ln (1)� ln (n)ð Þ

¼ �n� 1

n
0� ln (n)ð Þ = ln (n):

That is, when all probabilities are equi-probable, this is the

most unpredictable, uncertain situation and so represents

the minimum information. In summary the range of

Shannon’s entropy for a given probability distribution is:

0� S(P)� ln (n) ð4Þ

3.2 Gini Index

The Gini index, G(P), also known as the Gini coefficient, is

a measure of statistical dispersion developed by Gini

(1912), and is defined as

G(P) � 1�
Xn

i¼1

p2
i ð5Þ

Some practitioners use G(P) versus S(P) since it does not

involve a logarithm, making analytic solutions simpler.

Gini index is used in consideration of inequalities in vari-

ous areas such as economics, ecology and engineering

(Aristondo et al. 2012). A very important application of the

Gini index is as a splitting criterion for decision tree

induction in machine learning and data mining (Breiman

et al. 1984).

It is accepted in practice for diagnostic test selection that

the Shannon and Gini measures are interchangeable (Sent

and van de Gaag 2007). The specific relationship of

Shannon entropy and the Gini index has been discussed in

the literature (Eliazar and Sokolov 2010). Theoretical

support for this practice is provided in Yager’s independent

consideration of alternative measures of entropy (Yager

1995), where he derives the same form for an entropy

measure as the Gini measure.
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Now as done for Shannon entropy, we consider the

maximum and minimum values for G(P). Letting

R =
Pn

i¼1 p2
i , then since 0 B pi B 1 (0 B pi

2 B 1) and at

least one pi [ 0, 0 \ R B 1. R = 1 only if for some t,

pt = 1. Thus, G(P) [ 0 unless pt = 1 where G(P) = 0.

This is the case for the distribution Pcc, since pt = 1,

pi = 0, i = t. Specifically

G Pccð Þ ¼ 1� ðp2
t þ

Xn

i 6¼t

p2
i Þ ¼ 1� 12 þ 0

� �
¼ 0

As for the Shannon entropy this corresponds to no uncer-

tainty and has the same value of 0.

Next we examine the index for the equi-probable dis-

tribution, Pcu, where pi = 1/n for all i.

G Pcuð Þ ¼ 1�
Xn

i¼1

1

(n)2
¼ 1� n

1

(n2Þ
¼ 1� 1

n
¼ n� 1

n

Consider the behavior of G(Pcu) as n increases. For

n ¼ 2 pi ¼ 1
2
; pj ¼ 1

2

� 	

G Pcuð Þ ¼ 2� 1

2
¼ 1=2

Then for n = 10 (pi = 0.1,…, pj = 0.1) we have

G Pcuð Þ ¼ 10� 1

10
¼ 9=10

Clearly then for n ? ?, G(P) ? 1. Thus, in the case of an

equiprobable distribution, we have increasing values for

G(Pcu) with n, and in general the range for G(P) is

0�G Pð Þ� n� 1

n
\1 ð6Þ

Now we can use this measure for evaluating our IEDs’

example and compare G(P) for the original and the con-

ditioned probability distributions. First

G PIEDð Þ ¼ 1� 0:32þ 0:22þ 0:42þ 0:12
� �

¼ 1� 0:3¼ 0:7

So for P̂

GðP̂IEDÞ ¼ 1� 0:392 þ 0:162 þ 0:422 þ 0:032
� �

¼ 1� 0:354 ¼ 0:646

Thus we see that as with the Shannon measure result (3),

based on the Gini index P̂
IED

appears again to be more

informative than PIED.

3.3 Application of measures to the four cases

In this section we apply the Shannon and Gini measures to

the original and conditioned probability distributions for

the four possibility distribution cases of Sect. 2.2 and

compare the measures’ values. As both measures have

increasing values with increasing uncertainty, the condi-

tioned probability will be more informative for decision-

making if it’s measure value is less than for the original

probability. We shall see that both measures basically

agree for the cases considered although their specific val-

ues are in different ranges.

3.3.1 Case 1

For the completely certain possibility, we consider only

where there is no conflict and the conditioned proba-

bility is

P̂ ¼ 1; 0; . . .0f g

Then we have first for both measures with the distribution

Pcc

SðP̂Þ ¼ GðP̂Þ ¼ 0 ¼ S Pccð Þ ¼ G Pccð Þ

But for the equi-probable initial distribution Pcu

S Pcuð Þ ¼ ln(n) [ SðP̂Þ ¼ 0

G Pcuð Þ ¼ n� 1

n
[ GðP̂Þ ¼ 0

So the conditioned probability distribution is more infor-

mative in the second case for the probability Pcu.

3.3.2 Case 2

Next for the case of complete possibilistic uncertainty, we

had P̂ = P for all the probability distributions and so we

have

SðP̂Þ ¼ S Pð Þ and GðP̂Þ ¼ G Pð Þ

We can conclude that the conditioned probability distri-

bution P̂ is no more informative than the original proba-

bility P since the possibility distribution P does not

contribute any information as it represents complete

uncertainty.

3.3.3 Case 3

Recall this is the intermediate possibility case and here we

consider the probability, Pcc, first for the Shannon measure

and then the Gini index. Since for no conflict P̂ ¼
0; 0; . . .; 0; pt ¼ 1; . . .0f g then as before for this

distribution

SðP̂Þ ¼ S Pccð Þ ¼ 0 and GðP̂Þ ¼ G Pccð Þ ¼ 0

Next for the equi-probable distribution Pcu, the Shannon

measure is
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SðP̂Þ ¼ �
Xm

i¼1

1

m

� �

ln
1

m

� �

þ
Xn

i¼mþ1

0ln 0ð Þ
 !

¼ � 1

m

Xm

i¼1

ð1n(1)� 1n(m)Þ

¼ � 1

m
� � m ln mð Þð Þ ¼ ln mð Þ

Now since Pcu is an equi-probable distribution and n [ m

S Pcuð Þ ¼ ln nð Þ[ ln mð Þ ¼ SðP̂Þ

Next for the Gini measure

GðP̂Þ ¼ 1�
Xm

i¼1

p̂2
i þ

Xm

i¼mþ1

p̂2
i

 !

¼ 1�
Xm

i¼1

1

m2

� �

þ
Xn

i¼mþ1

0

 !

¼ 1�m� 1

m2

Recall G(Pcu) = = 1 - 1/n and since 1 \ m \ n, 1/n \ 1/

m

GðP̂Þ ¼ 1� 1

m
\1� 1

n
¼ G Pcuð Þ

Thus we see that by both measures the conditioned prob-

ability is more informative in this case.

3.3.4 Case 4

This is the case of the generalized possibility distribution in

which for Pcc we saw that P̂P̂ = Pcc. So again we have

SðP̂Þ ¼ GðP̂Þ ¼ 0 ¼ S Pccð Þ ¼ G Pccð Þ

Next for the other probability distribution, Pcu, we had

obtained for P̂ a general expression in terms of the weights

wi. Here we will consider the special case we examined for

the equal distribution of the weights where we had for P̂

P̂ ¼ 1

2
;

1

2ðn� 1Þ ;
1

2ðn� 1Þ ; . . .
1

2ðn� 1Þ

� �

Now we can apply our measures to this conditioned dis-

tribution. First for S(P̂):

SðP̂Þ¼� 1

2
ln

1

2

� �

þ
Xn

i¼2

1

2(n�1ÞIn
1

2(n�1Þ

� �" #

¼ 1

2
ln1� ln2ð Þþ n�1ð Þ 1

2(n�1Þ ln1 � ln 2 n�1ð Þð Þð Þ

 �

¼� �1n2

2
�1

2
ln 2 n�1ð Þð Þ


 �

¼1

2
ln 2 þ ln 2 n�1ð Þð Þ½ �

For n ¼ 2; SðP̂Þ ¼ 1

2
ln 2 þ ln 2 1ð Þð Þ½ � ¼ ln 2

¼ S Pð Þ; but for n [ 2

SðP̂Þ\ln n ¼ S Pð Þ

Next for the Gini index:

GðP̂Þ ¼ 1� 1

2

� �2

þ
Xn

i¼1

1

2ðn� 1Þ

� �2
 !

¼ 1� 1

4
þ n� 1ð Þ � 1

2ðn� 1Þ

� �2
 !

¼ 1� 1

4
þ 1

4ðn� 1Þ

� �

¼ 3n� 4

3n� 4

Similar to the Shannon measure for n = 2, the Gini mea-

sure is the same for P and P̂

GðP̂Þ ¼ 1� 2

4
¼ 1

2
and G Pð Þ ¼ 1� 1

n
¼ 1

2

Finally for n [ 2; GðP̂Þ ¼ 3n�4

4n�4
\G Pð Þ ¼ n�1

n since for

n ¼ 3; GðP̂Þ ¼ 5
8
\G Pð Þ ¼ 2

3
, and as n!1; GðP̂Þ ! 3

4
;

but G Pð Þ ! 1:

To consider this last case more generally, we examine

the effects of the range of equi-distributed weights. When

wi ? 0, 1 \ i B n, P ? {1, 0,…0}, complete certainty,

and we recall for which case we have seen that the con-

ditioned distribution is more informative. Then if wi ? 1,

1 \ i B n, P ? {1, 1,…1}, the case of complete uncer-

tainty. So the conditioned probability distribution P̂ is no

more informative than the original probability P for either

measure.

3.4 Renyi entropy

Renyi (1961,1970) introduced a parameterized family of

entropies as a generalization of Shannon entropy. The

intention was to have the most general approach that pre-

served the additivity property and satisfied the probability

axioms of Kolmogorov. Renyi entropy is

Sa Pð Þ ¼ 1

1� a
� In

Xn

i¼1

pa
i

 !

3.5 Cases of the parameter a

a ¼ 0 : S Pð Þ ¼ ln Pj j—Hartley Entropy (Hartley 1928)

lim a! 1 : S1 Pð Þ ¼ �
Pn

i¼1

pi � ln pið Þ—Shannon Entropy
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a ¼ 2 : S2 Pð Þ

¼ �ln
Xn

i¼1

p2
i

 !

� Collision or quadratic entropy ð7Þ

a!1 : S1 Pð Þ ¼ Min
n

i¼1
�ln pið Þ ¼ �Max

n

i¼1
ln pið Þ ð8Þ

This last case is the smallest entropy in the Renyi family

and so is the strongest way to obtain an information content

measure. It is never larger than the Shannon entropy. Thus,

the possible ranges of a capture the following:

High a: high probability events

Low a: weight possible events more equally

a ¼ 0; 1 C Hartley or Shannon, respectively

The Hartley entropy is not of great interest here as for all

of our cases here Pj j ¼ jP̂j, and we have already considered

the Shannon entropy. Now we consider the values of the S2

measure, Eq. 7, for our two characteristic probabilities. For

Pcc

S2 Pccð Þ ¼ �ln p1 þ
Xn

i¼2

p2
i

 !

¼ �ln 1þ
Xn

i¼2

02

 !

¼ �ln 1 ¼ 0

and for

S2 Pcuð Þ ¼ �ln
Xn

i¼1

p2
i

 !

¼ �ln
Xn

i¼1

1

n2

 !

¼ �lnðn� 1

n2
Þ

¼ � ln 1� ln nð Þð Þ ¼ ln nð Þ

These are the same as the results for the Shannon entropy.

To continue we calculate S2 for our IED example as we

have done for the Shannon entropy and Gini index. So we

have

S2 PIEDð Þ ¼ �lnð0:32 þ 0:22 þ 0:42 þ 0:12Þ ¼ �ln 0:3ð Þ
¼ 1:20

and for the conditioned probability

S2ðP̂IEDÞ ¼ �ln 0:392 þ 0:162 þ 0:422 þ 0:032
� �

¼ �ln 0:356ð Þ ¼ 1:03

Again as for the other two measures, the resulting value for

P̂ is less than for P.We want to consider only briefly the

effect of larger values for the parameter a. For example

from Eq. 8 for S? we have

S1 PIEDð Þ ¼ 0:92 [ S1ðP̂IEDÞ ¼ 0:87

This continues the evaluation of P̂IED being more infor-

mative but we note the difference is somewhat smaller.

Next we can utilize the already determined sum of the

squared probabilities from the Gini measure to evaluate for

the first three possibility cases for S2.

3.5.1 Case 1

For the probability distribution Pcc we see

S2ðP̂Þ ¼ �ln 1þ
Xn

i¼2

02

 !

¼ �ln 1 ¼ 0 ¼ S2 Pccð Þ

but for Pcu

S2ðP̂Þ ¼ 0\S2 Pcuð Þ ¼ ln nð Þ

3.5.2 Case 2

Since P̂ ¼ P;

S2ðP̂Þ ¼ 0 ¼ S2 Pccð Þ and S2ðP̂Þ ¼ ln nð Þ ¼ S2 Pcuð Þ

3.5.3 Case 3

For the completely certain probability as before,

S2ðP̂Þ ¼ 0 ¼ S2 Pccð Þ

and for Pcu

S2ðP̂Þ ¼ �ln
Xm

i¼1

p̂2
i þ

Xn

i¼mþ1

p̂2
i

 !

¼ �ln
Xm

i¼1

1

m

� �2

þ
Xn

i¼mþ1

0

 !

ln mð Þ

Again since m \ n,

S2ðP̂Þ ¼ ln mð Þ\ln nð Þ ¼ S2 Pcuð Þ:

So we note that values of S2 in these specific cases are the

same as for the Shannon entropy measure; however, the

exact numeric value obtained for example in Eq. 3 is not

identical so we can conclude there is a close but not exact

relationship between them.

3.6 Example: less informative conditioned probability

Next consider the following example for possibility

and probability distributions in order to illustrate that

not all P̂’s are more informative than an initial prob-

ability P. We shall apply our previous information

measures and see that these are consistent in their

assessments. So let the possibility and probability

distributions be:

P ¼ f0:1; 0:1; 1:0; 0:1Þ; P ¼ f0:8; 0:1; 0:05; 0:05Þ

As before we can compute P̂

K ¼ 0:8� 0:1þ 0:1� 0:1þ 1:0� 0:05þ 0:1� 0:05

¼ 0:08þ 0:01þ 0:05þ 0:005 ¼ 0:145

and
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p̂1 ¼ 0:8� 0:1=0:145 ¼ 0:552; . . .p̂4 ¼ 0:1� 0:05=0:145

¼ 0:034

P̂ ¼ f 0:552; 0:069; 0:345; 0:034Þ

We can see intuitively that there is some degree of conflict

or lack of consistency between the possibility and proba-

bility distributions. For example for the largest probability,

p1 = 0.8, the possibility is quite low, p1 = 0.1. Then

where p3 = 1.0, we observe the corresponding probability,

p3, is one of two lowest probability values, 0.05.

Now we can assess this situation with the information

measures. Starting with Shannon entropy we have the

smaller entropy for the initial probability distribution:

S Pð Þ ¼ 0:708\SðP̂Þ ¼ 0:995

Likewise we can see that the Gini index measure also

yields a similar result for this case involving some degree

of conflict indicating that the conditioned probability P̂is

less informative:

G Pð Þ ¼ 1� 0:655 ¼ 0:345\GðP̂Þ ¼ 1� 0:43 ¼ 0:57

Finally we obtain similar results for the Renyi entropies, S2

and S?:

S2 Pð Þ ¼ � ln 0:655ð Þ ¼ 0:408\S2ðP̂Þ ¼ � ln 0:430ð Þ
¼ 0:844

S1 Pð Þ ¼ 0:22\S1ðP̂Þ ¼ 0:59

So the information measures are compatible with our

intuitive assessment of the conflict between between P and

P. In the next section when we discuss in some detail

Zadeh’s consistency measure, we can observe this measure

is also indicative of a lower consistency with these

distributions.

4 Consistency evaluations of distributions

In this section, we use Zadah’s consistency measure as

another approach to assess the integration of uncertainty

representations as a supplement to the information mea-

sures of the previous section. We shall see that the measure

yields evaluations compatible with the information mea-

sures of the previous section.

As noted by Sudkamp (1992), a probability–possibility

transformation is a ‘‘purely mechanical manipulation of the

distribution without regard to the underlying problem

domain or evidence’’. It does not by itself provide guidance

of the usefulness of the outcome.

For example, reconsider the result of Theorem 1 with

respect to the initial probability distribution. Let pk be a very

low probability; i.e. represent a ‘‘rare’’ event, 0 \ pk \\1;

however, as we have seen p̂k ¼ 1, which indicates that

although the probability was very small, the corresponding

event did actually occur in this particular instance based on

the possibility distribution. Furthermore, if the initial proba-

bility pk was actually 0, then K = 0 and the conditional

probability is ill defined as we have an indeterminate result:

0/0. Clearly, these results by themselves are unhelpful to

decision making and we will see that the consistency mea-

sure reflects this.

There have been a number of approaches to consistency

measures of probability and possibility distributions that

have been proposed (Delgado and Moral 1987; Gupta

1993). As we discussed in the introduction, Zadeh’s

approach,

CZðP; PÞ ¼
Xn

i¼1

pi�pi ð9Þ

is identical to the expression for K in the conditioned

probability approach. This measure does not represent an

inherent relationship but rather represents the intuition that

a lowering of an event’s possibility tends to lower its

probability, but not the converse.

Another consistency measure that appears in the litera-

ture, CDP (P, P), is due to Dubois and Prade (1982, 1983).

Here for every subset A of the space X,

CDP P; Pð Þ ¼ 1 if P Að Þ	 P Að Þ ð10Þ

and is 0 otherwise. This definition is based on the idea that

possibility is the weaker representation for a situation than

probability.

For our purposes, we focus here on CZ as it provides a

range of values to evaluate the idea of consistency as it relates

to the possibilistic conditioning approach. We can note that

the maximum value that CZ P; Pð Þ ¼
Pn

i¼1 pi � pi can

have in general is 1 as
Pn

i¼1 pi = 1 and pi is at most 1. Thus,

the range of CZ is the interval [0…1] where 0 can be con-

sidered as complete inconsistency and 1 complete consis-

tency. In a more general sense we can relate this to the

concept of conflict, of which consistency is only one aspect.

Conflict generally is thought of as involving broader semantic

issues such source reliability and trustworthiness.

Thus, for the case in Theorem 1 where pk = 0 when

pk = 1, evaluation of CZ yields

CZ(P,P) ¼ pk � pk þ
Xn

i 6¼k

pi � pi

¼ 1� 0þ
Xn

i 6¼k

0*pi

¼ 0

This result implies that these distributions are indeed

inconsistent, i.e. a total conflict, and we should not expect a
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valid conditional probability distribution to be produced for

such a situation. Resolution of such a conflict can be

managed by considerations of semantic issues such as the

reliability of the underlying information sources.

4.1 Zadeh’s consistency measure, Cz,

for four possibility cases

We will consider comparative evaluation of the consis-

tency cases in a following section some of which show a

conflict. Note that for validity we can check to see that the

conditioned distribution does indeed sum to 1 where there

is no conflict.

Case 1:

For P(1,0,…,0);

CZ P; Pccð Þ ¼ 1� 1þ
Xn

i¼2

0� 0 ¼ 1;

CZ P; Pcuð Þ ¼ 1� 1

n
þ
Xn

i¼2

0� 1

n
¼ 1

n

For Pcc, this result shows complete consistency that since

only one probability, p1, was considered as possible. For

Pcu, the measure indicates that there is some inconsistency

with Pcu.

Case 2:

For case 2, P(1, 1,…, 1), which is complete uncertainty,

no distinctions are made relative to the probabilities and so

both Pcc and Pcu are consistent with the possibility

distribution.

CZ P; Pccð Þ ¼ 1� 1þ
Xn

i¼2

1� 0 ¼ 1;

CZ P; Pcuð Þ ¼
Xn

i¼1

1� 1

n
¼ n� 1

n
¼ 1:

Case 3, Pcc subcase 1; pt = 1; t � m

With the intermediate possibility case 3 for Pcc where

pt = 1 and t � m we have

CZ P; Pccð Þ ¼ 1� 1þ
Xm

i¼2

1� 0þ
Xn

i¼mþ1

0� 0 ¼ 1;

Case 3, Pcc subcase 2; pt = 1; t [ m

As noted in Sect. 2, there is a problem since pt = 0, but

pt = 1. As a result, we have zero for the consistency

measure,

CZ P; Pð Þ ¼
Xm

i¼1

1� 0þ pt ¼ 1ð Þ � pt ¼ 0ð Þ þ 0� 0 ¼ 0:

This result implies that these distributions are completely

inconsistent or in conflict. Thus, no valid conditional

probability distribution can be produced for such a

situation.

Case 3, Pcu Complete uncertainty

CZ P; Pcuð Þ ¼
Xm

i¼1

1� 1

n
þ n

i = m + 1
0� 1

n
¼ m

n
\1

Similar to subcase 1 for Pcu, n - m of the original

probabilities are not compatible with the possibility dis-

tribution as reflected in the consistency measure. That is

the inconsistency here is due to the contrast in the n-m

values of P and Pcu.

Case 4, Pcc Subcase 1; t = 1, pt = 1:

Finally for the general possibility case, Case 4, where

P = {1, 0,…, 0},

CZ ¼ 1� 1þ
Xn

i¼2

wi � 0 ¼ 1:

Case 4, Pcc Subcase 2; t [ 1, pt = 1:

Since 0 B wi \ 1, we know not all probabilities are

fully represented. Here, all wi [ 0 so we do not have a

conflict as in Case 3, Subcase 2 above since CZ (P,

P) = wt 9 pt = wt; 0 \ wt \ 1

Case 4, Pcu complete uncertainty

CZ ¼ 1� 1

n
þ
Xn

i¼2

wi�
1

n
\

1

n
þ n� 1

n
¼ 1

4.2 Consistency for example distributions

Next let us consider the consistency for the IED example.

For these distributions, if we recall the value of K then we

have

CZðPIED; PIEDÞ ¼ K ¼ 0:3þ 0:12þ 0:32þ 0:02 ¼ 0:76:

We have seen that the values of each of the three infor-

mation measures we have evaluated for P̂IED are less than

their values for P IED. At issue is how specific values for

consistency are related to the information measure values.

Relative to the range of CZ, 0.76 is reasonably large. We

can see next how this consistency value compares to the

example of distributions for which the information

assessments were shown to be less informative.

Consider again the possibility and probability distribu-

tions of Sect. 3.5 above. For these we observed that all the

information measures indicated the conditioned probability

P̂was less informative than the initial probability P. For

these distributions the consistency measure is

CZðP; PÞ ¼ K ¼ 0:08þ 0:01þ 0:05þ 0:005 ¼ 0:145

Clearly this consistency value is quite low compared to CZ

(PIED, P IED). So we can observe that higher consistency

values are generally correlated with more informative

conditioned probabilities.

Situations like this can occur in many applications. For

example with web assistant agents, uncertainty aggregation
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appears in the integration of information from sources such

as user profiles, proximity-based fuzzy clustering and

knowledge-based discovery (Loia et al. 2006).

5 Summary

Decision makers are constantly faced with making choices

in complex situations for which they have imperfect and

often conflicting information. They have difficult decisions

in making effective use of this information. Typically such

a mix of information has a variety of associated uncer-

tainty, but ultimately the decision maker must come to

specific conclusions or actions based on this. Our research

here has developed preliminary approaches to assist in this

process by providing information theory based quantitative

evaluations to guide decisions.

We have developed exact expressions for conditioned

probability based on the extreme cases, completely certain

and uncertain. For these cases three information measures

were applied and yielded compatible results for comparing

the informativeness of the original versus the conditioned

probability. As well, we carried out the possibilistic con-

ditioning and information evaluations for numeric exam-

ples. Additionally we used the Zadeh consistency measure

and have seen it correlates well with the evaluation results.

We are currently doing research on the aggregations of

both multiple possibility distributions and probability dis-

tributions. This will allow us to potentially take advantage

of such additional information sources before the com-

puting the conditioned probability. Also we are developing

environments to carry out Monte Carlo simulations to test

the conditioning approach and the evaluation measures. We

are investigating ways to apply such simulations to actual

decision-making and assess if more effective outcomes

result when the evaluation measures have indicated that the

conditioned probability is more informative.
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