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Abstract

Background: Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally
for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib
produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral
bioavailability of around 40% (Capsule). Therefore the aim of the present investigation was to
assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied
nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the
aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was
evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and
histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic
(bioavailability) studies on Wistar male rats.

Results: FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that
permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant
decrease in activation energy (2.373 kcal/mol) for celecoxib permeation across rat skin indicated
that the stratum corneum lipid bilayers were significantly disrupted (p < 0.05). Photomicrograph of
skin sample showed the disruption of lipid bilayers as distinct voids and empty spaces were visible
in the epidermal region. The absorption of celecoxib through transdermally applied nanoemulsion
and nanoemulsion gel resulted in 3.30 and 2.97 fold increase in bioavailability as compared to oral
capsule formulation.

Conclusion: Results of skin permeation mechanism and pharmacokinetic studies indicated that
the nanoemulsions can be successfully used as potential vehicles for enhancement of skin
permeation and bioavailability of poorly soluble drugs.

Background and many existing drugs are poortly soluble or lipophilic
By many estimates up to 90% of new chemical entities =~ compounds [1]. The solubility issues obscuring the deliv-
(NCEs) discovered by the pharmaceutical industry today  ery of these new drugs also affect the delivery of many
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existing drugs (about 40%). Relative to compounds with
high solubility, poor drug solubility often manifests itself
in a host of in vivo consequences like decreased bioavaila-
bility, increased chance of food effect, more frequent
incomplete release from the dosage form and higher inter-
subject variability. Poorly soluble compounds also
present many in vitro formulation development hin-
drances, such as severely limited choices of delivery tech-
nologies and increasingly complex dissolution testing
with limited or poor correlation to the in vivo absorption.
However, important advances have been made in improv-
ing the bioavailability of poorly soluble compounds, so
that promising drug candidates need no longer be
neglected or have their development hindered by sub
optimal formulation. In addition to more conventional
techniques, such as micronization, salt formation, compl-
exation etc, novel solubility/bioavailability enhancement
techniques have been developed. The recent trend for the
enhancement of solubility/bioavailability is lipid based
system such as microemulsions, nanoemulsions, solid
dispersions, solid lipid nanoparticles and liposomes etc.
This is also the most advanced approach commercially, as
formulation scientists increasingly turn to a range of nan-
otechnology-based solutions to improve drug solubility
and bioavailability.

Nanoemulsions have been reported to make the plasma
concentration profiles and bioavailability of poorly solu-
ble drugs more reproducible [1-5]. Nanoemulsions have
also been reported as one of the most promising tech-
niques for enhancement of transdermal permeation and
bioavailability of poorly soluble drugs [6-12]. Nanoemul-
sions are thermodynamically stable transparent (translu-
cent) dispersions of oil and water stabilized by an
interfacial film of surfactant and cosurfactant molecules
having a droplet size of less than 100 nm [10,11,13].
Many formulation scientists have investigated skin per-
meation mechanism of many drugs using chemical
enhancers [14-21] and microemulsion technique [22,23].
Best of our knowledge, skin permeation mechanism of
celecoxib has not been reported using microemulsion or
nanoemulsion technique although these techniques have
been known to enhance skin permeation of drugs effec-
tively [6-9]. Celecoxib (CXB), a selective cyclo-oxygenase-
2 (COX-2) inhibitor has been recommended orally for the
treatment of arthritis and osteoarthritis [24]. Long term
oral administration of CXB produces serious gastrointesti-
nal side effects [24]. It is a highly lipophilic, poorly solu-
ble drug with oral bioavailability of around 40%
(Capsule). Therefore the aim of the present investigation
was to evaluate the mechanism of skin permeation and
bioavailability of CXB using nanoemulsion technique.

http://www.jnanobiotechnology.com/content/6/1/8

Materials and methods

Materials

Celecoxib was a kind gift sample from Ranbaxy Research
Labs (India). Propylene glycol mono caprylic ester (Sefsol
218) was a kind gift from Nikko Chemicals (Japan).
Diethylene glycol monoethyl ether (Transcutol-P) was gift
sample from Gattefosse (France). Glycerol triacetate
(Triacetin) and acetonitrile (HPLC grade) were purchased
from E-Merck (India). Cremophor-EL was purchased
from Sigma Aldrich (USA). Deionized water for HPLC
analysis was prepared by a Milli-Q-purification system.
All other chemicals used in the study were of analytical
reagent grade.

Preparation of nanoemulsion

Various nanoemulsions were prepared by aqueous phase
titration method (spontaneous emulsification method).
Optimized nanoemulsion formulation (C2) of CXB was
prepared by dissolving 2% w/w of CXB in 15% w/w com-
bination of Sefsol-218 and Triacetin (1:1). Then 35% w/w
mixture of Cremophor-EL and Transcutol-P (1:1) were
added slowly in oil phase. Then 50% w/w of distilled
water was added to get the final preparation.

Preparation of nanoemulsion gel

Nanoemulsions gel (NGC2) was prepared by dispersing
1% w/w of Carbopol-940 in sufficient quantity of distilled
water. This dispersion was kept in dark for 24 h for com-
plete swelling of Carbopol-940. 2% w/w of CXB was dis-
solved in 15% w/w mixture of Sefsol-218 and Triacetin
(1:1). CXB solution was added slowly to Carbopol-940
dispersion. 0.5% w/w of triethanolamine (TEA) was
added in this mixture to neutralize Carbopol-940. Then
35% w/w mixture of Cremophor-EL and Transcutol-P
(1:1) were added slowly. Then remaining quantity of dis-
tilled water was added to get the final preparation 100%
w/w.

The composition of nanoemulsion and nanoemulsion gel
are given in Table 1.

Table I: Compositions of nanoemulsion (C2) and nanoemulsion
gel (NGC2)

Ingredients C2 NGC2
CXB (% wiw) 2.0 2.0
Carbopol-940 (% wiw) - 1.0
Sefsol 218 (%w/w) 7.5 7.5
Triacetin (%w/w) 7.5 7.5
Cremophor-EL 17.5 17.5
Transcutol-P (% wiw) 17.5 17.5
Triethanolamine (% w/w) - 0.5
Distilled water to (% w/w) 100.0 100.0
Page 2 of 11

(page number not for citation purposes)



Journal of Nanobiotechnology 2008, 6:8

Droplet size analysis

Droplet size distribution of optimized nanoemulsion was
determined by photon correlation spectroscopy, using a
Zetasizer 1000 HS (Malvern Instruments, UK). Light scat-
tering was monitored at 25°C at a scattering angle of 90°.
A solid state laser diode was used as light source. The sam-
ple of optimized nanoemulsion was suitably diluted with
distilled water and filtered through 0.22 um membrane
filter to eliminate mutiscattering phenomena. The diluted
sample was then placed in quartz couvette and subjected
to droplet size analysis.

Preparation of full thickness rat skin

Approval to carry out these studies was obtained from the
Animal Ethics Committee of Jamia Hamdard, New Delhi,
India. Male Wistar rats were sacrificed with prolonged
ether anaesthesia and the abdominal skin of each rat was
excised. Hairs on the skin of animal were removed with
electrical clipper, subcutaneous tissues were surgically
removed and dermis side was wiped with isopropyl alco-
hol to remove residual adhering fat. The skin was washed
with distilled water, wrapped in aluminium foil and
stored in a deep freezer at -20°C till further use.

Preparation of epidermis and stratum corneum

The skin was treated with 1 M sodium bromide solution
in distilled water for 4 h [25]. The epidermis from full
thickness skin was separated using cotton swab moistened
with water. Epidermal sheet was cleaned by washing with
distilled water and dried under vacuum and examined for
cuts or holes if any. Stratum corneum (SC) samples were
prepared by floating freshly prepared epidermis mem-
brane on 0.1% trypsin solution for 12 h. Then SC sheets
were cleaned by washing with distilled water.

FTIR spectral analysis of nanoemulsion treated and
untreated rat skin

SC was cut into small circular discs. 0.9% w/v solution of
sodium chloride was prepared and 0.01% w/v sodium
azide was added as antibacterial and antimycotic agent.
35 ml of 0.9% w/v of sodium chloride solution was
placed in different conical flasks and SC of approximate
1.5 cm diameter was floated over it for 3 days. After 3 days
of hydration, these discs were thoroughly blotted over fil-
ter paper and fourier transform infra-red (FTIR) spectra of
each SC disc was recorded before nanoemulsion treat-
ment (control) in frequency range of 400 to 4000 cm-!
(Perkin Elmer, Germany). After taking FTIR spectra, the
same discs were dipped into CXB nanoemulsion formula-
tion present in 35 ml of methanolic phosphate buffer
saline (PBS) pH 7.4 (30:70). This was kept for a period of
24 h (equivalent to the permeation studies) at 37 + 2°C.
Each SC disc after treatment was washed, blotted dry, and
then air dried for 2 h. Samples were kept under vacuum in
desiccators for 15 min to remove any traces of formula-
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tion completely. FTIR spectra of treated SC discs were
recorded again. Each sample served as its own control.

DSC studies of nanoemulsion treated and untreated rat
skin

Approximately 15 mg of freshly prepared SC was taken
and hydrated over saturated potassium sulphate solution
for 3 days. Then the SC was blotted to get hydration
between 20 to 25%. Hydrated SC sample was dipped into
nanoemulsion formulation present in 35 ml of meth-
anolic PBS pH 7.4 (30:70). This was kept for 24 h (equiv-
alent to the permeation studies) at 37 + 2°C. After
treatment, SC was removed and blotted to attain hydra-
tion of 20-25%, cut (5 mg), sealed in aluminum hermatic
pans and equilibrated for 1 h before the differential scan-
ning calorimeter (DSC) run. Then, the SC samples were
scanned on a DSC6 Differential Scanning Calorimeter
(Perkin Elmer, Germany). Scanning was done at the rate
of 5°C/min over the temperature range of 30 to 200°C
[25,26].

Determination of activation energy

In vitro skin permeation study of CXB across rat skin was
carried out at 27, 37, and 47°C in the methanolic PBS pH
7.4 (30:70). These studies were performed on a modified
Keshary-Chien diffusion cell with an effective diffusional
area of 4.76 cm? and 35 ml of receiver chamber capacity.
In the donor compartment, 1 ml of nanoemulsion formu-
lation was taken (containing 20 mg of CXB). Receiver
compartment was composed of the vehicle only (meth-
anolic PBS pH 7.4). Permeability coefficients were calcu-
lated at each temperature and activation energy of CXB
was then calculated from Arrhenius relationship given as
follows [20,27].

P =P, eFa/RT or
log P = Ea/2.303 RT + log P,

Where, Ea is the activation energy, R is gas constant (1.987
kcal/mol), T is absolute temperature in K, P is the perme-
ability cofficient, and Po is the Arrhenius factor.

Histopathological examination of skin specimens

Abdominal skins of Wistar rats were treated with opti-
mized CXB nanoemulsion (C2) in methanolic PBS pH
7.4. After 24 h, rats were sacrificed and the skin samples
were taken from treated and untreated (control) area.
Each specimen was stored in 10% formalin solution in
methanolic PBS pH 7.4. The specimens were cut into sec-
tion vertically. Each section was dehydrated using etha-
nol, embedded in paraffin for fixing and stained with
hematoxylin and eosin. These samples were then
observed under light microscope (Motic, Japan) and com-
pared with control sample. In each skin sample, three dif-
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ferent sites (epidermis, dermis and subcutaneous fat
layer) were scanned and evaluated for mechanism of skin
permeation enhancement. These slides were interpreted
by Dr. Ashok Mukherjee, Professor, Department of
Pathology, All India Institute of Medical Sciences (AIIMS),
New Delhi, India.

Pharmacokinetic studies

Approval to carry out pharmacokinetic studies was
obtained from the Animal Ethics Committee of Jamia
Hamdard, New Delhi, India. Guidelines of ethics commit-
tee were followed for the studies. Pharmacokinetic studies
were performed on optimized nanoemulsion (C2),
nanoemulsion gel (NGC2) and marketed capsule. The
male Wistar rats were kept under standard laboratory con-
ditions (temperature 25 + 2 °C and relative humidity of 55
+ 5%). The rats were kept in polypropylene cages (six per
cage) with free access to standard laboratory diet (Lipton
feed, Mumbai, India) and water ad libitum. About 10 cm?
of skin was shaved on the abdominal side of rats in each
group except group treated with marketed capsule. They
were fasted for the period of 24 h for observations on any
unwanted effects of shaving. The dose for the rats was cal-
culated based on the weight of the rats according to the
surface area ratio [28]. The rats were divided into 3 groups
(n = 6). Group I received C2 transdermally, group II
received NGC2 transdermally and group III received mar-
keted capsule orally. The dose of CXB in all groups was
1.78 mg/kg of body weight. The rats were anaesthetized
using ether and blood samples (0.5 ml) were withdrawn
from the tail vein of rat at 0 (pre-dose), 1, 2, 3, 6, 12, 24,
36, and 48 h in microcentrifuge tubes in which 8 mg of
EDTA was added as an anticoagulant. The blood collected
was mixed with the EDTA properly and centrifuged at
5000 rpm for 20 min. The plasma was separated and
stored at -21°C until drug analysis was carried out using
HPLC.

Plasma samples were prepared by adding 500 pl of
plasma, 50 pl standard solution of CXB, 50 pl of internal
standard solution (ibuprofen), 50 pl of phosphate buffer
(pH 5; 0.5 M) and 4 ml of chloroform in small glass tubes.
The tubes were vortex for 1 min and centrifuged for 20
min at 5000 rpm. Upper layer was discarded and the chlo-
roform layer was transferred to a clean test tube and evap-
orated to dryness at 50°C under the stream of nitrogen.
The residue was reconstituted in 100 pl of mobile phase,
mixed well and 20 pl of the final clear solution was
injected into the HPLC system.

CXB in plasma was quantified by the reported HPLC
method with slight modifications [29]. The method was
validated in our laboratory. A Shimadzu model HPLC
equipped with quaternary LC-10A VP pumps, variable
wavelength programmable UV/VIS detector SPD-10AVP
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column oven (Shimadzu), SCL 10AVP system controller
(Shimadzu), Rheodyne injector fitted with a 20 pl loop
and Class-VP 5.032 software was used. Analysis was per-
formed on a C,4 column (25 cm x 4.6 mm ID SUPELCO
516 C,¢ DB 5 um RP-HPLC). The mobile phase consisted
of acetonitrile:water (40:60). The mobile phase was deliv-
ered at the flow rate of 0.9 ml/min. Detection was per-
formed at 260 nm. Injection volume was 20 pl. The
concentration of unknown plasma samples was calcu-
lated from the calibration curve plotted between peak area
ratios of CXB to IS against corresponding CXB concentra-
tions.

Pharmacokinetic and statistical analysis

The plasma concentration of CXB at different time inter-
vals was subjected to pharmacokinetic (PK) analysis to
calculate various parameters like maximum plasma con-
centration (C,,,,), time to reach maximum concentration
(Thhax), and area under the plasma concentration-time
curve (AUC,_,,and AUC,_,,). The values of C,, and T,,,,
were read directly from the arithmetic plot of time and
plasma concentration of CXB. The AUC was calculated by
using the trapezoidal method. The relative bioavailability
of the CXB after the transdermal administration versus the
oral administration was calculated as follows:

AUC sample Dose oral

AUC oral

F % = X100

Dose sample

The PK data between different formulations was com-
pared for statistical significance by one-way analysis of
variance (ANOVA) followed by Tukey-Kramer multiple
comparisons test using GraphPad Instat software (Graph-
Pad Software Inc., CA, USA).

Results and discussion

Droplet size analysis

The mean droplet size of optimized nanoemulsion (C2)
was found to be 16.41 + 1.72 nm. All the droplets were
found in the nanometer range which indicated the suita-
bility of formulation for transdermal drug delivery. Poly-
dispersity signifies the uniformity of droplet size within
the formulation. The polydispersity value of the formula-
tion C2 was very low (0.105) which indicated uniformity
of droplet size within the formulation.

FTIR spectral analysis of formulation treated and
untreated rat skin

FTIR spectrum of untreated SC (control) showed various
peaks due to molecular vibration of proteins and lipids
present in the SC (Figure 1a). The absorption bands in the
wave number of 3000 to 2700 cm! were seen in untreated
SC. These absorption bonds were due to the C-H stretch-
ing of the alkyl groups present in both proteins and lipids
(Figure 1a). The bands at 2920 cm-! and 2850 cm! were
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FTIR spectra of rat SC. Change in lipid C-H stretching (2920 cm"') vibrations after 24 hr treatment with (a) control (b) C2.

due to the asymmetric -CH, and symmetric -CH, vibra-
tions of long chain hydrocarbons of lipids respectively.
The bands at 2955 cm! and 2870 cm-! were due to the
asymmetric and symmetric CH; vibrations respectively
[30]. These narrow bands were attributed to the long alkyl
chains of fatty acids, ceramides and cholesterol which are
the major components of the SC lipids.

The two strong bands (1650 cm ' and 1550 cm!)were due
to the amide I and amide II stretching vibrations of SC
proteins (Figure 2a). The amide I and amide II bands
arisen from C = O stretching vibration and C-N bending
vibration respectively. The amide I band consisting of
components bands, represented various secondary struc-
ture of keratin.

There was clear difference in the FTIR spectra of untreated
and nanoemulsion treated SC with prominent decrease in
asymmetric and symmetric CH- stretching of peak height
and area (Figure 1b).

The rate limiting step for transdermal drug delivery is
lipophilic part of SC in which lipids (ceramides) are
tightly packed as bilayers due to the high degree of hydro-
gen bonding. The amide I group of ceramide is hydrogen
bonded to amide II group of another ceramide and form-
ing a tight network of hydrogen bonding at the head of
ceramides. This hydrogen bonding makes stability and
strength to lipid bilayers and thus imparts barrier property
to SC[31]. When skin was treated with nanoemulsion for-
mulation (C2), ceramides got loosened because of com-
petitive hydrogen bonding leading to breaking of
hydrogen bond networks at the head of ceramides due to

penetration of nanoemulsion into the lipid bilayers of SC.
The tight hydrogen bonding between ceramides caused
split in the peak at 1650 cm-!(amide I) as shown in the
control skin spectrum (Fig 2a). Treatment with nanoe-
mulsion resulted in either double or single peak at 1650
cm-!(Figure 2b) which suggested breaking of hydrogen
bonds by nanoemulsion.

DSC studies

DSC thermogram of untreated rat epidermis revealed 4
endotherms (Figure 3a). The first 3 endotherms were
recorded at 34°C (T,), 82°C (C2) and 105°C (T;) respec-
tively, whereas fourth endotherm (T,) produced a very
sharp and prominent peak at 114 °C which is attributed to
SC proteins. The first endotherm (having the lowest
enthalpy) was attributed to sebaceous section [32] and to
minor structural rearrangement of lipid bilayer [33]. The
second and third endotherm (T2 and T;) appeared due to
the melting of SC lipids and the fourth endotherm (T,)
has been assigned to intracellular keratin denaturation
[14]. It was observed that both T2 and T; endotherms were
completely disappeared or shifted to lower melting points
in thermograms of SC treated with nanoemulsion formu-
lation (C2). This indicated that the components (oil, sur-
factant or cosurfactant) of nanoemulsion enhanced skin
permeation of CXB through disruption of lipid bilayers.
Nanoemulsion formulation (C2) also decreased the pro-
tein endotherm T, to lower melting point, suggesting ker-
atin denaturation and possible intracellular permeation
mechanism in addition to the disruption of lipid bilayers
(Figure 3b). Thus it was concluded that the intracellular
transport is a possible mechanism of permeation
enhancement of CXB. Another observation was that
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FTIR spectra of rat SC. Change in amide | (1640 cm-') and amide Il (1550 cm!) stretching vibrations after 24 h treatment with
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Figure 3
DSC thermogram of control SC and nanoemulsion treated SC for 24 h. (a) control (b) C2.
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T,increased up to 122°C in case of nanoemulsion formu-
lation with broadening of the peak. Shift to higher transi-
tion temperature (T,) and peak broadening has been
attributed to dehydration of SC as another mechanism of
permeation enhancement in addition to disruption of
lipid resulting in higher permeation of CXB [18].

Determination of activation energy

The activation energy (E,) for diffusion of a drug molecule
across skin (rat or human) depends on its route of diffu-
sion and physicochemical properties. Nanoemulsions can
change this value of E, to greater extent by their action on
SC lipids. The activation energy for ion transport has been
reported as 4.1 and 10.7 kcal/mol across human epider-
mis [34] and phosphatidylcholine bilayers respectively
[35]. The Arrhenius plot between logarithms of permea-
bility coefficient (log P,) and reciprocal of absolute tem-
perature (1/T) was found to be linear in the selected
temperature range between 27-47°C, indicating no sig-
nificant structural or phase transition changes within the
skin membrane (Figure 4). The value of E, for permeation
of CXB across rat skin was calculated from the slope of
Arrhenius plot. The E, of CXB from nanoemulsion formu-
lation C2 was found to be 2.373 kcal/mol. The significant
decrease in E, for CXB permeation across rat skin indi-
cated that the SC lipid bilayers were significantly dis-
rupted (p < 0.05).

It is also well established that ion transport across skin
occurs mainly via aqueous shunt pathways [36]. In the
light of these reports it can be anticipated that if a mole-
cule moves via polar pathways across human cadaver epi-

http://www.jnanobiotechnology.com/content/6/1/8

dermis then E, value would be akin to that of ion
transport across skin. In our study, E, of CXB from formu-
lation C2 was 2.373 kcal/mol. Therefore it was concluded
that nanoemulsions create pathways in the lipid bilayers
of SC resulting in enhanced transdermal permeation of
CXB [37].

Histopathological studies

The photomicrographs of control (untreated skin)
showed normal skin with well defined epidermal and der-
mal layers. Keratin layer was well formed and lied just
adjacent to the topmost layer of the epidermis. Dermis
was devoid of any inflammatory cells. Skin appendages
were within normal limits (Figure 5a&b). When the skin
was treated with nanoemulsion formulation (C2) for 24
h, significant changes were observed in the skin morphol-
ogy. Low power photomicrograph of skin sample showed
epidermis with a prominent keratin layer, a normal der-
mis and subcutaneous tissues. High power photomicro-
graph of skin sample showed a thickened and
reduplicated stratum corneum with up to 8 distinct layers.
The epidermis showed increase in its cellular layers to 4-
6 cells. Dermis does not show any edema or inflammatory
cell infiltration. The disruption of lipid bilayers was
clearly evident as distinct voids and empty spaces were vis-
ible in the epidermal region (Figure 6a&b). These obser-
vations support the in vitro skin permeation data of CXB
(unpublished data).

There were no apparent signs of skin irritation (erythma
and edema etc.) observed on visual examination of skin
specimens treated with nanoemulsion formulation.

31 3.15 32

Logph

-1.5 1

325 33 3.35

-2.5 -

LTXI10

*C2

Figure 4
Arrhenius plots of C2 permeation across rat skin.
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Figure 5

Photomicrographs of skin sample from control group animal showing normal epidermis, dermis and subcutaneous tissues at (a)

low power view (HE x 100) (b) high power view (HE % 400).

Pharmacokinetic studies

Plasma concentration of CXB from formulations C2,
NGC2 and capsule at different time intervals was deter-
mined by reported HPLC method. The graph between
plasma concentration and time was plotted for each for-
mulation (Fig 7). It was seen from Figure 7 that the
plasma concentration profile of CXB for C2 and NGC2
showed greater improvement of drug absorption than the
oral capsule formulation. Peak (maximum) plasma con-
centration (C,,,,) of CXB in C2, NGC2 and capsule was

680 + 100, 610 + 148 and 690 + 180 ng/ml respectively
whereas time (t,,,,) to reach C,,was 12 + 2.1, 12 + 2.4
and 3 + 0.8 h respectively (Table 2 & Figure 7). AUC,_,,
and AUC,_,, in formulations C2, NGC2 and capsule were
14435 + 1741, 13005 + 1502 and 4366 + 1015 ng/ml.h
respectively and 19711.3 + 2012, 17507.3 + 1654 and
4688.5 + 1293 ng/ml.h respectively (Table 2). These phar-
macokinetic parameters obtained with formulations C2
and NGC2 were significantly different from those
obtained with oral capsule formulation (p < 0.05). The

Figure 6

Photomicrographs of skin sample from nanoemulsion treated animal at (a) low power view (HE % 100) (b) high power view

(HE x 400).
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Plasma concentration (Mean * SD) time profile curve of CXB from C2, NGC2 and capsule (n = 6).

significant AUC values observed with C2 and NGC2 also
indicated increased bioavailability of the CXB from C2
and NGC2 in comparison with oral capsule formulation
(p <0.05). The formulations C2 and NGC2 were found to
enhance the bioavailability of CXB by 3.30 and 2.97 folds
(percent relative bioavailability 330 and 297) with refer-
ence to the oral capsule (Table 2). This increased bioavail-
ability from transdermal formulations (C2 and NGC2)
may be due to the enhanced skin permeation and avoid-
ance of hepatic first pass metabolism.

Conclusion

FTIR spectra and DSC thermogram of skin treated with
nanoemulsion indicated that permeation occurred due to
the extraction of SC lipids by nanoemulsion. The signifi-

cant decrease in activation energy for CXB permeation
across rat skin indicates that the SC lipid bilayers were sig-
nificantly disrupted (p < 0.05). Photomicrograph of skin
sample showed the disruption and extraction of lipid
bilayers as distinct voids and empty spaces were visible in
the epidermal region. There were no apparent signs of
skin irritation observed on visual examination of skin
specimens treated with nanoemulsion formulation. The
pharmacokinetic studies revealed significantly greater
extent of absorption than the oral capsule formulation (p
< 0.05). The absorption of CXB from C2 and NGC2
resulted in 3.30 and 2.97 fold increases in bioavailability
as compared to the oral capsule formulation. Results of
these studies indicate that nanoemulsions can be success-

Table 2: Pharmacokinetic parameters (Mean £ SD, n = 6) of CXB from C2, NGC2 and capsule

Formulation ta2E SD C. 2 ESD AUC, <tSD AUC, , d4*SD
(h) (ng/ml) (ng/ml.h) (ng/ml.h)

C2 12+1.8 680 + 100 14435 + 1741 19711.3 £2012

NGC2 12+2.0 610+ 148 13005 + 1502 17507.3 £ 1654

Capsule 3+08 690 + 180 4366 £ 1015 4688.5 + 1293

atime of peak concentration; b peak of maximum concentration; ¢ area under the concentration time profile curve until last observation; darea

under curve extrapolated to infinity
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fully used for enhancement of skin permeation as well as
bioavailability of poorly soluble drugs.
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High performance liquid chromatography; C2: Opti-
mized nanoemulsion; NGC2: Nanoemulsion gel; PBS:
Phosphate buffer saline; AIIMS: All india institute of med-
ical sciences; EDTA: Ethylene diamine tetra-acectic acid;
rpm: Revolution per minute; min: Minutes; IS: Internal
standard; RP-HPLC: Reverse phase high performance lig-
uid chromatography; PK: Pharmacokinetic; AUC_,,. Area
under curve from time o to t; AUC,_,,. Area under curve
from time o to infinitive; % F: Percent relative bioavaila-
bility; ANOVA: Analysis of variance.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

FS performed pharmacokinetic studies. SB and AA pre-
pared skin for Histopathological examination and activa-
tion energy measurement. JA took FTIR spectra and DSC
thermogram. SS validated HPLC method for analysis of
drug in plasma samples. SB, AA and JA guided the studies.
Finally manuscript has been checked and approved by all
the authors.

Acknowledgements

The authors are thankful to Dr. Ashok Mukherjee, for observation and
interpretation of photomicrographs of skin samples. The authors are also
thankful to Nikko Chemicals (Japan) and Gattefosse (France) for gift sam-
ples of Sefsol 218 and Transcutol-P respectively.

References

l. Kommuru TRK, Gurley B, Khan MA, Reddy IK: Selfemulsifying
drug delivery systems (SEDDS) of coenzyme Q10: Formula-
tion development and bioavailability assessment. Int | Pharm
2001, 212:233-246.

2.  Constantinides PP: Lipid microemulsions for improving drug
dissolution and oral absorption and biopharmaceutical
aspects. Pharm Res 1995, 12:1561-1572.

3. Lawrence M), Rees GD: Microemulsion-based media as novel
drug delivery systems. Adv Drug Deliv Rev 2000, 45:89-121.

4.  Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishi-
hara Y, Masuda K: Microemulsion formulation for enhanced
absorption of poorly soluble drugs I.Prescription design. |
Control Rel 2002, 81:65-74.

5. Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishi-
hara Y, Masuda K: Microemulsion formulation for enhanced
absorption of poorly soluble drugs Il. In vivo study. | Control Rel
2002, 81:75-82.

6. Baboota S, Alazaki A, Kohli K, Ali J, Dixit N, Shakeel F: Develop-
ment and evaluation of a microemulsion formulation for
transdermal delivery of terbenafine. PDA | Pharm Sci Technol
2007, 61(4):276-285.

20.

21.

22.

23.

24.

25.

26.

27.

28.

http://www.jnanobiotechnology.com/content/6/1/8

Baboota S, Shakeel F, Ahuja A, Ali ], Shafiq S: Design development
and evaluation of novel nanoemulsions formulations for
transdermal potential of celecoxib. Acta Pharm 2007, 8:316-332.
Shakeel F, Baboota S, Ahuja A, Ali ], Agil M, Shafiq S: Nanoemul-
sions as vehicles for transdermal delivery of aceclofenac.
AAPS Pharm Sci Tech 2007, 8:E104.

Shakeel F, Baboota S, Ahuja A, Shafiq S, Faisal S, Ali J: Enhanced
transdermal delivery of aceclofenac using nanoemulsion
technique. | Pharm Pharmacol 2007, 93(Suppl 1):31-37.

Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M: Design
and development of oral oil in water ramipril nanoemulsion
formulation: In vitro and in vivo assessment. | Biomed Nanotech
2007, 3:28-44.

Shafiq S, Shakeel F, Talegaonkar S, Ahmad F), Khar RK, Ali M: Devel-
opment and bioavailability assessment of ramipril nanoe-
mulsion formulation. Eur | Pharm Biopharm 2007, 66:227-242.
Karande P, Jain A, Mitragotri S: Development of high through
screening platforms for discovery of novel transdermal per-
meation enhancers. Nat Biotech 2004, 22:192-197.

Shafiq S, Shakeel F, Talegaonkar S, Ali ], Baboota S, Ahuja A, Khar RK,
Ali M: Formulation development and optimization using
nanoemulsion technique: a technical note. AAPS Pharm Sci Tech
2007, 8:E28.

Goodman M, Barry BW: Action of penetration enhancers on
human stratum corneum as assessed by differential scanning
calorimetry. In Percutaneous absorption 2nd edition. Edited by: Bro-
naugh RL, Maibach HI. Marcel Dekker: New York and Basel;
1989:567-595.

Yamane MA, Williams AC, Barry BW: Terpenes penetration
enhancers in propylene glycol/water co-solvent systems:
Effectiveness and mechanism of action. | Pharm Pharmacol 1995,
47:978-989.

Zhao K, Singh J: Mechanisms of percutaneous absorption of
tamoxifen by terpenes: eugenol, D-limonene and menthone.
J Control Release 1998, 55(2-3):253-264.

Stott PW, Williams AC, Barry BW: Mechanistic study into the
enhanced transdermal permeation of a model (-blocker,
propranolol, by fatty acids: a melting point depression effect.
Int | Pharm 2001, 219:161-176.

Vaddi HK, Ho PC, Chan SY: Terpenes in propylene glycol as
skin-penetration enhancers: permeation and partition of
haloperidol, fourier transform infrared spectroscopy and dif-
ferential scanning calorimetry. | Pharm Sci 2002, 91:1639-1651.
Cotte M, Dumas P, Besnard M, Tchoreloff P, Walter P: Synchrotron
FT-IR microscopic study of chemical enhancers in transder-
mal drug delivery: example of fatty acids. | Control Rel 2004,
97:269-281.

Narishetty STK, Panchagnula R: Transdermal delivery of zidovu-
dine: effect of terpenes and their mechanism of action. | Con-
trol Rel 2004, 95:367-379.

Cole L, Heard C: Skin permeation enhancement potential of
aloe vera and a proposed mechanism of action based upon
size exclusion and pull effect. Int | Pharm 2007, 333:10-16.
Changez M, Varshney M, Chander |, Dinda AK: Effect of the com-
position of lecithin/n-propanol/isopropyl myristate/water
microemulsions on barrier properties of mice skin for
transdermal permeation of tetracaine hydrochloride: In
vitro. Coll Surf B: Biointerf 2006, 50:18-25.

Dreher F, Walde R, Walther R, Wehrli E: Interaction of a lecithin
microemulsion gel with human stratum corneum and its
effect on transdermal transport. | Control Rel 1997, 45:131-140.
Gaurel A, Martel AM, Castaner |: Celecoxib, anti-inflammatory,
cyclo-oxygenase-2 inhibitor. Drugs Future 1997, 22:711-714.
Panchagnula R, Salve PS, Thomas NS, Jain AK, Ramarao P: Transder-
mal delivery of naloxone: effect of water, propylene glycol,
ethanol and their binary combinations on permeation
through rat skin. Int | Pharm 2001, 219:95-105.

Cumming KI, Winfield AJ: In vitro evaluation of a series of
sodium carboxylates as dermal penetration enhancers. Int |
Pharm 1994, 108:141-148.

Golden GM, Guzek DB, Harris RR, McKie JE, Potts RO: Lipid ther-
motropic transition in human stratum corneum. | Invest Der-
matol 1986, 86:255-259.

Ghosh MN: Fundamentals of Experimental Pharmacology Hilton and
company: Kolkata; 2005:192.

Page 10 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11165081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11165081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11165081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8592652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8592652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8592652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11104900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11104900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17127045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17127045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17127045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8932680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8932680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8932680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9795076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9795076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12115825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3745950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3745950

Journal of Nanobiotechnology 2008, 6:8 http://www.jnanobiotechnology.com/content/6/1/8

29. Jalalizadeh H, Amini M, Ziace V, Farsam SA, Shafice A: Determina-
tion of celecoxib in human plasma by high-performance lig-
uid chromatography. | Pharm Biomed Anal 2004, 35:665-670.

30. Babua RJ, Pandit JK: Effect of penetration enhancers on the
release and skin permeation of bupranolol from reservoir-
type transdermal delivery systems. Int | Pharm 2005,
288:325-334.

31. Panchagnula R, Bokalial R, Sharma P, Khandavilli S: Transdermal
delivery of naloxone: skin permeation, pharmacokinetic, irri-
tancy and stability studies. Int | Pharm 2005, 293:213-223.

32. Lee PJ, Langer R, Shastri VP: Role of n-methyl pyrrolidone in the
enhancement of aqueous phase transdermal transport. |
Pharm Sci 2005, 94:912-917.

33. Xiong GL, Quan D, Maibach HI: Effects of penetration enhacers
on in vitro percutaneous absorption of low molecular weight
heparin through human skin. | Control Rel 1996, 42:289-296.

34. Pagano R, Thompson TE: Spherical bilayer membranes: electri-
cal and isotopic studies of ion permeability. | Mol Biol 1968,
38:41-57.

35. Monti D, Saettone MF, Giannaccini B, Galli-Angeli D: Enhancement
of transdermal penetration of dapiprazole through hairless
mouse skin. | Control Rel 1995, 33:71-77.

36. Cullander PA, Guy RH: Sites of iontophoretic current flow into
the skin: identification and characterization with the vibrat-
ing probe electrode. | Invest Dermatol 1991, 97:55-64.

37. Clarys P, Alewaeters K, Jadoul A, Barel A, Manadas RO, Préat V: In
vitro percutaneous penetration through hairless rat skin:
influence of temperature, vehicle and penetration enhanc-
ers. Eur Pharm Biopharm 1998, 46:279-283.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 11 of 11

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15137994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15137994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15137994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15620873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15620873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15620873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15778059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15778059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15778059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15736187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15736187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5760634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5760634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2056194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2056194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2056194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9885299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9885299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9885299
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Materials and methods
	Materials
	Preparation of nanoemulsion
	Preparation of nanoemulsion gel
	Droplet size analysis
	Preparation of full thickness rat skin
	Preparation of epidermis and stratum corneum
	FTIR spectral analysis of nanoemulsion treated and untreated rat skin
	DSC studies of nanoemulsion treated and untreated rat skin
	Determination of activation energy
	Histopathological examination of skin specimens
	Pharmacokinetic studies
	Pharmacokinetic and statistical analysis

	Results and discussion
	Droplet size analysis
	FTIR spectral analysis of formulation treated and untreated rat skin
	DSC studies
	Determination of activation energy
	Histopathological studies
	Pharmacokinetic studies

	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

