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Abstract
Rationale Individual susceptibility to alcohol use disorder has
been related to functional changes in dopaminergic
neurotransmission.
Objectives The aim of the current work was to assess the
effects of selective dopamine D1 and D2 receptor agonists
and antagonists on alcohol consumption in rats that differ in
individual levels of alcohol intake.
Methods The effects of the dopamine D1 receptor agonist
SKF 82958, the dopamine D1 receptor antagonist SCH
23390, the dopamine D2 receptor agonist sumanirole and
the dopamine D2 receptor antagonist L741,626 on alcohol
consumption and preference were assessed at different time
points after treatment in subgroups of low and high alcohol
drinking rats (LD and HD) using an intermittent alcohol ac-
cess paradigm.
Results SKF 82958 decreased alcohol intake and alcohol
preference throughout the 24-h session. Sumanirole decreased
alcohol intake during the first 2 h, but increased alcohol intake
during the remainder of the session. The effects of SKF 82958
and sumanirole on alcohol intake and alcohol preference were
comparable in LD and HD. By contrast, the dopamine recep-
tor antagonists SCH 23390 and L741,626 did not alter alcohol
consumption in either group at any time point.
Conclusions These data indicate that stimulation of dopamine
D1 receptors reduces alcohol intake, but that endogenous do-
pamine does not play a primary role in alcohol consumption.

Moreover, the difference in alcohol consumption between LD
and HD does not involve altered dopamine signaling.
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Individual differences

Introduction

Alcohol use disorder (AUD) is a chronic relapsing brain dis-
order, which is characterized by compulsive engagement in
alcohol use (American Psychiatric Association 2013). There is
substantial heterogeneity in both the etiology and expression
of AUD. Several (e.g. genetic, environmental and personality)
factors are thought to contribute to the individual vulnerability
for this disorder (Chassin et al. 2002; Anderson 2006; Perry
and Carroll 2008; Goudriaan et al. 2011; Enoch 2013). More
insight into the mechanisms underlying individual variation in
alcohol consumptionmay provide important knowledge about
the development of AUD, which may contribute to improved
personalized treatments for AUD.

One prominent hypothesis is that variations in dopami-
nergic neurotransmission underlie the individual suscepti-
bility to AUD (Noble 2000; Tupala and Tiihonen 2004; Le
Foll et al. 2009). The mesolimbic dopamine system has
been widely implicated in motivated-, including alcohol-
directed behaviour (Berridge 2007; Robbins and Everitt
2007; Spanagel 2009; Volkow et al. 2011; Salamone and
Correa 2012; Floresco 2015; Korpi et al. 2015). Acute
alcohol administration has been shown to activate dopa-
mine neuron firing in the ventral tegmental area (VTA)
(Gessa et al. 1985; Brodie et al. 1990; Brodie et al.
1999), and alcohol ingestion increases dopamine release
in the ventral striatum (Weiss et al. 1993; Boileau et al.
2003; Doyon et al. 2003). Moreover, acute and repeated
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alcohol exposure has been shown to alter dopaminergic
function at both the pre- and postsynaptic level (Reggiani
et al. 1980; Imperato et al. 1987; Imperato and Di Chiara
1988; Nestby et al. 1997; Nestby et al. 1999; Gonzales
et al. 2004; Sari et al. 2006).

The actions of dopamine are mediated by two principal
classes of dopamine receptor subtypes, i.e. the D1-like
(D1/D5) and D2-like (D2/D3/D4) dopamine receptors
(Le Foll et al. 2009). However, the relative contributions
of the different dopamine receptor subtypes to the devel-
opment and maintenance of AUD remain incompletely
understood. In addition, it is unknown whether individual
susceptibility to AUD relates to a specific dopamine re-
ceptor subtype. Alterations in dopamine D2 receptor func-
tion have been the main focus in AUD studies over the
last decade (Noble 2000; Connor et al. 2002; Kraschewski
et al. 2009). Thus, reduced levels of dopamine D2 recep-
tors in limbic areas have been observed in both AUD
patients (Hietala et al. 1994; Volkow et al. 1996; Tupala
et al. 2001; Volkow et al. 2002; Tupala et al. 2003) and in
alcohol-preferring rats and mice (Stefanini et al. 1992;
McBride et al. 1993; Zhou et al. 1995; Bice et al. 2008).
The dopamine D1 receptor has also been implicated in
alcohol seeking and consumption. Both dopamine D1
and D2 receptor deficient mice show marked reductions
in alcohol-directed behaviour (El-Ghundi et al. 1998;
Phillips et al. 1998; Risinger et al. 2000; Thanos et al.
2005). Moreover, involvement of both dopamine receptor
subtypes in alcohol consumption and reinforcement has
been demonstrated (Linseman 1990; Silvestre et al.
1996; Files et al. 1998; Cohen et al. 1999; Melendez
et al. 2005; Ding et al. 2015).

The aim of this study was to determine the contribution
of dopamine D1 and D2 receptors to individual differences
in alcohol consumption under intermittent alcohol access
(IAA) conditions. IAA results in high and escalating levels
of alcohol intake, indicating that this paradigm is well suit-
ed to investigate biological mechanisms of AUD (Wise
1973; Simms et al. 2008; Hopf et al. 2010; Lesscher
et al. 2010; Loi et al. 2010; Hwa et al. 2011; Sabino et al.
2013; Spoelder et al. 2015). We recently observed marked
individual differences in alcohol intake in outbred rats
using the IAA paradigm, which was related to the motiva-
tional properties of alcohol and measures of compulsive
alcohol intake (Spoelder et al. 2015). We therefore used
the IAA paradigm to determine the effects of dopamine
D1 and D2 receptor-selective agonists and antagonists on
voluntary alcohol consumption in groups of high (HD) and
low alcohol drinking (LD) rats. We hypothesized that, if
variations in dopamine neurotransmission underlie individ-
ual vulnerability to AUD, treatment with dopaminergic
compounds should have differential effects on alcohol in-
take in HD and LD.

Materials and methods

Animals

Male Lister Hooded rats (Charles River, Germany) weighing
320–360 g at the start of the experiment were used. The rats
were housed individually under controlled temperature and
humidity conditions, a reversed light/dark cycle (lights off
7.00 AM), with ad libitum access to water and chow at all
times. All rats were weighed and handled at least once per
week throughout the experiment. All experiments were ap-
proved by the Animal Ethics Committee of Utrecht
University and conducted in agreement with Dutch laws
(Wet op de dierproeven, 1996) and European regulations
(Guideline 86/609/EEC).

Intermittent alcohol access in the home-cage

The rats were provided access to 20 % alcohol (v/v) and water
in a two-bottle choice IAA setup in the home-cage for 3 days a
week (Monday-Wednesday-Friday) using bottles that were
fitted with stainless-steel dual ball bearing drinking spouts.
Bottle positions were switched between sessions to avoid side
bias. Rats were provided with access to alcohol for 7 h/day in
the first month. Subsequently, access to alcohol was extended
to 24 h/day in the second month and for the remainder of the
experiment. The bottles were weighed prior to and after each
session to calculate alcohol intake (g/kg) and alcohol prefer-
ence (% of total fluid consumed). The selection of LD and HD
was performed as previously described (Spoelder et al. 2015).
Briefly, after 2 months of IAA, the rats were ranked based on
the animals’ average alcohol intake per week and were
assigned ranking scores. The weekly ranking scores were
summed to calculate a total ranking score per rat. The rats
within the lower and upper 25 % of the total ranking score
range were designated as LD and HD, respectively. The mid-
dle 50 %, designated as medium alcohol drinking rats, were
used in other experiments.

Drugs

Alcohol (99.5 %, Klinipath, The Netherlands) was freshly
diluted with tap water once per week to 20 % (v/v). The
dopamine D1 receptor agonist SKF 82958 hydrobromide
((±)-6-Chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-
tetrahydro-1H-3-benzazepine hydrobromide) and the do-
pamine D2 receptor agonist sumanirole maleate ((R)-5,6-
Dihydro-5-(methylamino)-4H-imidazo[4,5,1-ij]quinolin-
2(1H)-one maleate) were generously supplied by the
NIMH Chemical Synthesis and Drug Supply Program,
Bethesda, MD, USA. The dopamine D1 receptor antago-
nist SCH 23390 hydrochloride (R(+)-7-Chloro-8-hy-
droxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-
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benzazepine hydrochloride) and the dopamine D2 recep-
tor antagonist L741,626 ((±)-3-[4-(4-Chlorophenyl)-4-
hydroxypiperidin-l-yl]methyl-1H-indole) were purchased
from Tocris (UK). SKF 82958, sumanirole and SCH
23390 were dissolved in sterile saline (0.9 % NaCl).
L741,626 was dissolved in 5 % polyethylene glycol
(PEG) and 5 % Tween 80 in Milli-Q water. Saline was
used as a vehicle for SKF 82958, sumanirole and SCH
23390; a 5 % PEG/Tween solution served as the vehicle
for L741,626 treatments. Drug solutions were freshly pre-
pared daily.

Drug administration and injection procedures

All drug solutions were administered subcutaneously in a vol-
ume of 1 ml/kg body weight, 20 min prior to the drinking
session in the home cage according to a within-subject Latin
square design. Alcohol and water bottles were weighed before
each session and 2, 7 and 24 h after the start of the session.
Because the effects of the drugs were examined under IAA,
each treatment session was always followed by at least one
alcohol-free day that also served as washout day. Thereafter,
there was at least one drug-free re-baseline session between
sessions for the same drug and there were at least three re-
baseline sessions between different drugs. Two batches of rats
were used for this study; the rats in the first batch were treated
with the dopamine D2 receptor agonist sumanirole (0, 0.1, 0.3
and 1.0 mg/kg) and the dopamine D2 receptor antagonist
L741,626 (0, 0.3, 1.0, and 3.0 mg/kg) in a counterbalanced
fashion. The rats in the second batch were treated with the
dopamine D1 receptor agonist SKF 82958 (0, 0.3, 1.0 and
3.0 mg/kg) and the dopamine D1 receptor antagonist SCH
23390 (0, 3, 10 and 30 μg/kg). In addition, the effects of the
highest dose of sumanirole (0 and 1.0 mg/kg) and L741,626 (0
and 3.0 mg/kg) on alcohol consumption were replicated in this
second batch. The order of drugs administered in the second
batch was similar for each animal; the rats were first treated
with SCH 23390, followed by sumanirole, SKF 82958 and
L741,626. All rats received two habituation injections (1.0ml/
kg saline (0.9 % NaCl) subcutaneously), prior to alcohol
drinking sessions 1 week before actual drug testing began.
The doses of the dopamine receptor agonists and antagonists
are based on previous studies that report behavioural effects of
these compounds within these dose ranges (Linseman 1990;
Dyr et al. 1993; George et al. 1995; Gnanalingham et al. 1995;
Silvestre et al. 1996; El-Ghundi et al. 1998; Cohen et al. 1999;
Barrett et al. 2004; McCall et al. 2005; Koffarnus et al. 2011;
Fernando et al. 2012; Watson et al. 2012).

Data analysis

Alcohol intake and preference data for the initial 2 months of
IAA were analyzed with two-way repeated-measures

ANOVAs with week as the within-subject variable and
group (LD;HD) as the between-subject variable. The ef-
fects of the pharmacological treatments were analyzed
using three-way repeated-measures ANOVAs with time
(2, 7 and 24 h) and dose as within-subject variables and
group (LD;HD) as the between-subject variable. In case
of a significant interaction effect involving the drug dose,
follow-up two-way repeated-measures ANOVAs per time-
point (2, 7 and 24 h) were conducted with dose as within-
subject variable and group (LD;HD) as the between-
subject variable. Post hoc pairwise comparisons of each
drug dose with vehicle were performed with LSD tests.
Mauchly’s test of sphericity was used to determine if var-
iances of the differences between treatment levels were
equal. If the assumption of sphericity was violated, de-
grees of freedom were corrected using Huynh-Feldt esti-
mates of sphericity to more conservative values.
Corrected degrees of freedom are presented rounded to
the nearest integer. All statistical analyses were conducted
using IBM SPSS Statistics for Windows, version 22.0
(IBM Corp., Armonk, NY, USA). The threshold for sta-
tistical significance was set at p< 0.05. All data are pre-
sented as mean ± SEM. Graphs were made using
GraphPad Prism 6.

Results

Alcohol consumption during IAA in LD and HD

In agreement with our previous study (Spoelder et al. 2015),
when comparing alcohol intake of the first month (7 h/day
IAA) to the second month (24 h/day IAA), HD showed in-
creased alcohol intake to a greater extent than to LD (batch 1:
F(1,30) month x group =96.33, p<0.001; batch 2: F(1,10) month x

group = 29.53, p<0.001). Statistical analyses confirmed the
group differences in alcohol intake and preference over the
initial 2 months of IAA (batch 1: intake: F(1,30) group =179.78,
p<0.001; preference: F

(1,30) group
= 208.34, p<0.001; batch 2:

intake: F(1,10) group = 113.31, p< 0.001; preference: F(1,10)

group = 120.55, p<0.001) (Table 1). Total fluid intake was
not different between LD and HD (batch 1: F(1,30) group=0.39,
n.s.; batch 2: F

(1,10) group
= 3.34, n.s.) (data not shown).

During the phase of treatment with the dopaminergic
drugs, HD consumed more alcohol than LD (see figure
legends). The differences in alcohol intake between HD
and LD typically became more pronounced as the session
progressed (significant time × group interaction for all
compounds, except for L741,626 in the second batch).
Preference for alcohol was also greater in HD than LD
(significant effect of group for all compounds, with near
significant trends for SKF 82958 and for the second batch
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treated with sumanirole and L741,626, independent of ses-
sion time) (Figs. 1, 2 and 3).

Dopamine D1 receptor agonist—SKF 82958

Treatment with SKF 82958 decreased alcohol intake (F(3,30)

dose =9.58, p<0.001), independent of session time (F(6,55) dose

x time=1.43, n.s.) or group (F(3,30) dose x group =0.41, n.s.; F(6,55)

time x dose x group = 1.38, n.s.) (Fig. 1a). Post hoc analyses
showed that alcohol intake was reduced after treatment with
1.0 and 3.0 mg/kg SKF 82958 (Fig. 1a).

SKF 82958 decreased the preference for alcohol (F(3,30)

dose =4.04, p<0.02), independent of session time (F(5,49) dose

x time=1.33, n.s.) or group (F(3,30) dose x group =0.41, n.s.; F(5,49)

time x dose x group = 0.90, n.s.) (Fig. 1b). Post hoc analyses
showed that the preference for alcohol was decreased after
treatment with 1.0 and 3.0 mg/kg SKF 82958 (Fig.1b).

Because treatment with SKF 82958 reduced alcohol intake
and preference after 24 h of alcohol exposure, we examined if
SKF 82958 affected alcohol consumption in the subsequent
re-baseline session, during which the animals received no
treatment. Alcohol intake and preference during the re-
baseline session were not affected by SKF 82958 treatment

Table 1 Alcohol intake and
preference for HD and LD during
the initial 2 months of IAA, prior
to pharmacological treatment

Alcohol intake Alcohol preference

7 h/day 24 h/day 7 h/day 24 h/day

Batch 1 HD (n = 16) 2.61 ± 0.16 5.46± 0.25 46.84± 2.47 57.97± 2.40

LD (n= 16) 1.00 ± 0.06 1.71± 0.12 17.11 ± 1.01 18.30± 1.42

Batch 2 HD (n = 6) 2.02 ± 0.15 5.25± 0.42 59.58± 3.87 60.04± 3.43

LD (n= 6) 0.49 ± 0.08 1.30± 0.26 20.28± 4.91 17.30± 4.02

Fig. 1 The effects of the dopamine D1 receptor agonist SKF 82958 and
the dopamine D1 receptor antagonist SCH 23390 on alcohol intake and
preference in HD and LD. SKF 82958 decreased alcohol intake and
preference during the entire session to a similar extent in HD and LD
(a, b). SCH 23390 did not alter alcohol intake (c). Alcohol preference was
affected by SCH 23390 but post hoc analyses did not reveal significant
differences from vehicle for any of the doses tested (d). HD consumed
more alcohol than LD (with a near significant trend for SKF 82958): SKF
82958:F(1,10) group = 4.83, p = 0.053, SKF 82958:F(1,12) time x group = 4.88,

p< 0.05; SCH 23390: F(1,10) group = 16.09, p< 0.003, SCH 23390: F(1,14)
time x group = 17.62, p< 0.001. The preference for alcohol was also higher
for HD compared to LD and was independent of session time (with a near
significant trend for SKF 82958): SKF 82958: F(1,10) group = 4.74,
p = 0.055; SCH 23390: F(1,10) group = 17.11, p < 0.003. Data are
presented as the mean+ SEM. The effect of SKF 82958 did not interact
with the session time. Therefore, the asterisk reflects the overall
differences from vehicle in post hoc pairwise comparisons (p< 0.05)
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in the previous session (alcohol intake: F(3,30) dose =0.13, n.s.;
preference: F(3,30) dose= 0.20, n.s.) (data not shown).

Dopamine D1 receptor antagonist—SCH 23390

Treatment with SCH 23390 did not affect alcohol intake (F(3,

30) dose =0.27, n.s.) at any of the time points tested (F(4,35) time x

dose = 0.51, n.s.), independent of group (F(3,30) dose x

group =0.20, n.s.; F(4,35) time x dose x group =0.14, n.s.) (Fig. 1c).
SCH 23390 treatment had no main effect on alcohol pref-

erence (F(3,30) dose = 1.68, n.s.), but there was a three-way in-
teraction with group and session time (F(6,60) time x dose x

group =3.08, p<0.02) (Fig. 1d). Subsequent analyses per time
point indicated that SCH 23390 influenced the preference for
alcohol during the first 2 h of the session (F(3,30) dose 2 h=2.99,
p<0.05), independent of group (F(3,30) dose x group 2h=2.04,
n.s.), without a clear dose-dependent direction. Indeed, post
hoc analyses did not reveal a significant difference of any of
the doses of SCH 23390, when compared to vehicle. Alcohol
preference was not affected by SCH 23390 after 7 h (F(3,30)

dose 7 h =1.29, n.s.; F(3,30) dose x group 7 h=0.69, n.s.) and 24 h of
alcohol exposure (F(3,30) dose 24 h=0.74, n.s.; F(3,30) dose x group

24 h=0.56, n.s.) (Fig. 1d).

Dopamine D2 receptor agonist—Sumanirole

Treatment with sumanirole affected the level of alcohol intake,
dependent on the time in the session (F(5,136) time x dose= 9.29,
p< 0.001), but independent of group (F(5,136) time x dose x

group =1.55, n.s.) (Fig. 2a). Follow-up analyses per time point
indicated that sumanirole decreased alcohol intake during the
first 2 h of the session (F(3,90) dose 2 h =20.87, p<0.001) to a
similar extent in LD and HD (F(3,90) dose x group 2 h=1.68, n.s.).
Post hoc analyses showed that alcohol intake was reduced
after treatment with 0.3 and 1.0 mg/kg sumanirole (Fig. 2a).
Alcohol intake was no longer affected by sumanirole after 7 h
of alcohol access (F(3,90) dose 7 h=1.30, n.s.; F(3,90) dose x group

7 h=0.92, n.s.). By contrast, analyses of the entire 24 h showed
a trend towards an increase in alcohol intake (F(3,90) dose

24 h=2.39, p=0.074), independent of group (F(3,90) dose x group

24 h =0.95, n.s.) (Fig. 2a). Analysis of the alcohol consumption
data between 2 and 24 h after session onset confirmed that
alcohol intake was increased during the last 22 h of the session
(F(3,90) dose 2–24 h=12.16, p<0.001) in both groups (F(3,90) dose

x group 2–24 h =0.99, n.s.) (data not shown).
The effects of sumanirole on alcohol intake were replicated

in the second batch of animals (Fig. 3a, b), again revealing
session time-dependent effects (F(2,20) time x dose = 6.80,

Fig. 2 The effects of the dopamine D2 receptor agonist sumanirole and
the dopamine D2 receptor antagonist L741,626 on alcohol intake and
preference in HD and LD. Sumanirole decreased alcohol intake after
2 h of alcohol exposure in both groups, without affecting alcohol intake
after 7 or 24 h of alcohol exposure (a). Sumanirole had no effect on the
preference for alcohol (b). L741,626 did not affect alcohol intake and
preference (c, d). HD consumed more alcohol than LD: Sumanirole:

F(1,30) group = 27.34, p < 0.001, F(1,35) time x group = 29.78, p < 0.001;
L741,626: F(1,30) group = 38.51, p < 0.001, F(1,37) time x group = 40.19,
p< 0.001. The preference for alcohol was also higher for HD compared
to LD and was independent of session time: Sumanirole: F(1,29)

group = 12.21, p < 0.003; L741,626: F(1,30) group = 22.36, p < 0.001. Data
are presented as the mean+ SEM. Asterisk means different from vehicle
in post hoc pairwise comparisons (p < 0.05)
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p < 0.007), independent of group (F(2,20) time x dose x

group = 0.07, n.s.). Subsequent analyses indicated that
sumanirole decreased alcohol intake after 2 and 7 h (F(1,10)

dose 2 h =13.03, p<0.006; F(1,10) dose 7 h =7.38, p<0.03) in
both LD and HD (F(1,10) dose x group 2 h=0.05, n.s.; F(1,10) dose

x group 7 h =0.21, n.s.), without affecting alcohol intake over
the full 24 h of the session (F(1,10) dose 24 h =1.09, n.s.; F(1,10)

dose x group 24 h =0.41, n.s.) (Fig 3a, b). Interestingly, alcohol
intake increased between 2 and 24 h of exposure to alcohol
(F(1,10) dose 2–24 h=10.96, p<0.009) in both groups (F(1,10) dose

x group 2–24 h=0.13, n.s.), similar to the results from the initial
experiment (data not shown).

Sumanirole treatment did not affect alcohol preference in
the first batch (F(3,87) dose =0.88, n.s.; F(4,119) time x dose= 1.81,
n.s.; F(4,119) time x dose x group=0.10, n.s.) (Fig. 2b), but did alter
alcohol preference in the second batch (F1,10) dose = 5.75,
p< 0.04), independent of group (F(1,10) dose x group = 0.53,
n.s.). The effect of sumanirole on alcohol preference in the
second batch was dependent on the time in the session (F(1,

15) time x dose= 9.53, p<0.005), but was independent of group
(F(1,15) time x dose x group=0.51, n.s.). Subsequent analyses for
the second batch revealed that sumanirole decreased

preference for alcohol after 2 h (F(1,10) dose 2 h = 11.52,
p<0.008) but had no effects after 7 h (F(1,10) dose 7 h=1.21,
n.s.) and 24 h of alcohol exposure (F(1,10) dose 24 h =0.30, n.s.),
independent of group (2 h: F(1,10) dose x group 2 h =0.79, n.s; 7 h:
F(1,10) dose x group 7 h = 0.10, n.s; 24 h: F(1,10) dose x group

24 h=0.03, n.s.) (Fig. 3b).

Dopamine D2 receptor antagonist—L741,626

There was a trend for an effect of L741,626 treatment on
alcohol intake (F(3,90) dose= 2.63, p=0.055), independent of
the time in the session (F(4,124) time x dose = 1.85, n.s.) or the
group (F(4,124) time x dose x group=1.04, n.s.) (Fig. 2c). L741,626
did not affect alcohol intake in the second batch (F(1,10)

dose =1.38, n.s.; F(1,15) time x dose= 0.05, n.s.; F(1,15) time x dose

x group =0.13, n.s.) (Fig. 3c).
Treatment with L741,626 did not influence the rats’ pref-

erence for alcohol in the first (F(3,90) dose =1.58, n.s.; F(5,141)
time x dose = 0.56, n.s.; F(5,141) time x dose x group = 0.52, n.s.)
(Fig. 2d) or the second batch (F(1,9) dose= 0.69, n.s.; F(2,18) time

x dose= 0.25, n.s.; F(2,18) time x dose x group=0.11, n.s.) (Fig. 3d).

Fig. 3 Replication of the effects of the highest dose of the dopamine D2
receptor agonist sumanirole and the dopamine D2 receptor antagonist
L741,626 on alcohol intake and preference in HD and LD. Sumanirole
decreased alcohol intake in both groups after 2 and 7 h of alcohol
exposure, but was without effect after 24 h of alcohol exposure (a).
Sumanirole decreased the preference for alcohol after 2 h of alcohol
exposure but had no effects after 7 and 24 h of alcohol exposure (b).
L741,626 did not affect alcohol intake and preference (c, d). HD

consumed more alcohol than LD: Sumanirole: F(1,10) group = 11.36,
p < 0.008, F(1,13) time x group = 11.80, p < 0.004; L741,626: F(1,10)

group = 5.82, p < 0.04, F(1,13) time x group = 1.68, n.s. There were near
significant trends for a higher preference for alcohol in HD compared to
LD, and the preference was independent of session time: Sumanirole:
F(1,10) group = 4.03, p = 0.073; L741,626: F(1,9) group = 4.51, p = 0.063.
Data are presented as the mean + SEM. Asterisk means different from
vehicle in post hoc pairwise comparisons (p< 0.05)
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Discussion

In the present study, we found that treatment with the dopa-
mine D1 receptor agonist SKF 82958 reduced alcohol intake
and preference in rats. Treatment with the dopamine D2 re-
ceptor agonist sumanirole induced a transient reduction
followed by an increase in alcohol intake. By contrast, the
dopamine D1 and D2 receptor antagonists, SCH 23390 and
L741,626, did not alter alcohol consumption. Interestingly, the
effects of the dopamine D1 and D2 receptor agonists were
similar in LD and HD, suggesting that individual variation
in alcohol consumption does not involve altered dopamine
signaling.

The reductions in voluntary alcohol consumption upon
treatment with dopamine D1 and D2 receptor agonists are in
agreement with previous studies (Linseman 1990; Dyr et al.
1993; George et al. 1995; Silvestre et al. 1996), despite differ-
ences in experimental procedures (e.g. continuous vs. intermit-
tent alcohol access; sweetened vs. unsweetened alcohol, differ-
ent alcohol concentrations, food restriction procedures, inclu-
sion criteria, species and strain). Interestingly, the current
study, as well as previous reports shows that dopamine D1
receptor agonists are more powerful in reducing alcohol intake
than dopamine D2 receptor agonists (Linseman 1990; Ng and
George 1994; Silvestre et al. 1996; El-Ghundi et al. 1998).
After dopamine D1 receptor stimulation using SKF 82958,
alcohol intake and preference was reduced throughout the ses-
sion. In contrast, the selective dopamine D2 receptor agonist
sumanirole mainly reduced alcohol intake during the first
phase of the alcohol consumption session, and concurrently
reduced preference for alcohol during the first 2 h of the ses-
sion. Importantly, upon the initial decrement in alcohol intake,
sumanirole increased alcohol intake during the remainder of
the session. The initial decrease in alcohol intake, followed by
a subsequent rise in alcohol intake after treatment with
sumanirole, suggests a rebound effect after the initial suppres-
sion of alcohol intake. Importantly, however, a similar incre-
ment in alcohol intake did not occur upon SKF 82958 treat-
ment, indicating that an initial decrease in alcohol intake is not
necessarily followed by a rebound increase in alcohol intake.
The behavioural effects of sumanirole have been reported to be
longer in duration than those of SKF 82958 (Gnanalingham
et al. 1995;McCall et al. 2005). Based on these kinetic profiles,
a longer-lasting reduction in alcohol consumption upon
sumanirole treatment would have been expected. Rather, we
observed an initial decrement in alcohol consumption for both
sumanirole and SKF82958, followed by an increase in alcohol
intake for sumanirole. These effects are therefore unlikely to be
explained by differences in the kinetics of the two compounds.
Together, these data indicate that dopamine D1 and D2 recep-
tors play different roles in the modulation of alcohol drinking,
whereby dopamine D1 receptor stimulation evokes a clear-cut
reduction in alcohol intake and preference.

Treatment with the dopamine D1 and D2 receptor antago-
nists SCH 23390 and L741,626 did not alter alcohol intake and
preference. These findings are in agreement with the lack of
effect of dopamine D1 and D2 receptor antagonists on volun-
tary alcohol consumption that has been reported previously
(Brown et al. 1982; Goodwin et al. 1996; Silvestre et al.
1996). However, decreases in voluntary alcohol consumption
upon treatment with either dopamine D1 and D2 receptor an-
tagonists have been reported as well by several studies (Pfeffer
and Samson 1986; Dyr et al. 1993; Panocka et al. 1995; El-
Ghundi et al. 1998; Bulwa et al. 2011; Sabino et al. 2013),
while only one study reported an increase in alcohol consump-
tion (Dyr et al. 1993). Importantly, the doses that reduced al-
cohol consumption often also decreased water intake, possibly
reflecting a non-specific suppression of fluid intake or a more
general impairment in motor activity (Linseman 1990; Hubbell
et al. 1991; Dyr et al. 1993). In any event, the lack of an effect
of dopamine receptor antagonists on alcohol consumption sug-
gests that endogenous dopamine does not play a primary role
in alcohol consumption, at least not under IAA conditions.

Comparable dopamine receptor drug treatments have been
performed in the context of operant alcohol self-administration.
These studies show that treatment with dopamine D1 and D2
receptor agonists and antagonists reduced responding for alco-
hol, but not its actual consumption (Pfeffer and Samson 1988;
Rassnick et al. 1993; Files et al. 1998; Cohen et al. 1999;
Czachowski et al. 2001; Czachowski et al. 2002; Samson and
Chappell 2004). Dopamine receptor agonists have been sug-
gested to substitute for the reinforcing effects of alcohol
(Hodge et al. 1993; Samson and Chappell 1999), whereas do-
pamine receptor antagonists may attenuate the reinforcing prop-
erties of alcohol (Imperato et al. 1987; Imperato and Di Chiara
1988; See et al. 1991; Santiago et al. 1993). Taken together with
the consumption studies, these findings suggest that both dopa-
mine D1 and D2 receptors are important for the regulation of
alcohol intake when an effort is required to obtain alcohol
(Salamone and Correa 2012).

Individual susceptibility to AUD has been related to dopa-
mine receptor deficiency and an altered dopaminergic response
to alcohol. Previous preclinical studies, for example, showed
that alcohol-preferring rodents have reduced levels of dopamine
in the terminal regions of the mesolimbic dopamine system
(Murphy et al. 1987; Gongwer et al. 1989; McBride et al.
1990; George et al. 1995), which led to the hypothesis that their
response to dopamine D1 or D2 receptor stimulation or inhibi-
tion might be altered. Interestingly, both humans at risk for
AUD and rats bred or selected for high alcohol intake respond
to alcohol exposure with greater increases in extracellular do-
pamine levels (Weiss et al. 1993; Katner and Weiss 2001;
Doyon et al. 2005; Bustamante et al. 2008; Setiawan et al.
2014). However, in both AUD patients and social drinkers,
treatment with a dopamine D2 receptor antagonist has been
shown to reduce alcohol craving and to increase control over
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alcohol intake (Borg 1983; Modell et al. 1993; Peters and
Faulds 1994; Enggasser and de Wit 2001; Martinotti et al.
2010). The effect of treatment with dopaminergic drugs on
the subjective effects of alcohol has been shown to differ among
individuals (Holdstock and deWit 1998; Holdstock and deWit
1999; Enggasser and deWit 2001; Holdstock and deWit 2001).
For example, the dopamine D2 receptor antagonist haloperidol
reduced the alcohol-induced euphoric effects in subjects who
experienced stimulant effects upon alcohol intake, whereas
these effects were absent in individuals who primarily reported
sedative-like effects (Enggasser and de Wit 2001). In rodents,
treatment with dopamine D1 and D2 receptor agonists and
antagonists in alcohol-preferring animals resulted in similar
changes in voluntary alcohol consumption as observed in out-
bred cohorts (Weiss et al. 1990; Dyr et al. 1993; George et al.
1995; Panocka et al. 1995; Goodwin et al. 1996; Sabino et al.
2013). The current findings are in line with these studies; the
dopamine D1 andD2 receptor agonists and antagonists affected
alcohol intake to a similar extent in LD and HD. Together, the
current and previous findings suggest that individual differ-
ences in voluntary alcohol intake are not primarily related to
alterations in dopaminergic signaling.

To conclude, treatment with both dopamine D1 and D2
receptor agonists reduced voluntary alcohol consumption,
whereby the reduction in alcohol intake and preference
was most pronounced after activation of dopamine D1
receptors. Thus, drugs that stimulate dopamine D1 recep-
tors may aid in the treatment of AUD. Dopamine receptor
antagonist treatment did not alter alcohol intake and alco-
hol preference, suggesting that endogenous dopamine is
not essential for alcohol consumption under IAA condi-
tions. Moreover, the comparable effects of dopamine D1
and D2 receptor agonists in LD and HD suggest that the
individual level of alcohol intake is not related to differ-
ences in dopamine signaling. Taken together, these data
increase our knowledge on the modulatory role of dopa-
mine in alcohol intake.
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