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Abstract

Background: DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such
play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA
ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase
orthologues between animals, yeast and plants. DNA ligase |, present in all eukaryotes, plays

critical roles in both DNA repair and replication and is indispensable for cell viability.

Results: Knockout mutants of atligl are lethal. Therefore, RNAI lines with reduced levels of
AtLIG| were generated to allow the roles and importance of Arabidopsis DNA ligase | in DNA
metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and
stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry
analysis revealed an increase of cells in S-phase in atligi-RNAi lines relative to wild type plants.
Comet assay analysis of isolated nuclei showed atlig/-RNAi lines displayed slower repair of single
strand breaks (SSBs) and also double strand breaks (DSBs), implicating AtLIG1 in repair of both

these lesions.

Conclusion: Reduced levels of Arabidopsis DNA ligase | in the silenced lines are sufficient to
support plant development but result in retarded growth and reduced cell size, which may reflect
roles for AtLIGI in both replication and repair. The finding that DNA ligase | plays an important
role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a
previously uncharacterised novel pathway, independent of the conserved NHEJ. These results
indicate that DNA ligase | functions in both DNA replication and in repair of both ss and dsDNA

strand breaks in higher plants.

Background which increase somatic recombination frequencies in
As sessile, photosynthetic organisms, plants are necessar-  plants and their progeny [1]. In plants, repair of DNA
ily exposed to high levels of environmental stresses  damage products is particularly important because
including UVB, gamma irradiation and heavy metals  somatic tissues give rise to germ cells at a relatively late
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stage in development, which means that mutations accu-
mulating in somatic cells from the effects of environmen-
tal genotoxins can be passed onto the next generation of
plants [2]. Effective cellular response mechanisms have
evolved to cope with DNA damage including cell cycle
delay or arrest and activation of DNA repair pathways [3].

DNA ligases play essential roles in all organisms by main-
taining the physical structure of DNA. These enzymes seal
gaps in the sugar-phosphate backbone of DNA that arise
during DNA replication, DNA damage and repair. In Ara-
bidopsis, as in other eukaryotes, the ligation reaction uses
ATP as a cofactor and the involvement of a covalent AMP-
ligase intermediate [4]. Eukaryotes have evolved multiple
DNA ligase isoforms, with both specific and overlapping
roles in the replication and repair of the nuclear and
organellar genomes. DNA ligase 1 (LIG1) is present in all
eukaryotes where it is required for joining DNA fragments
produced during DNA replication. DNA ligase 1 also
plays important roles in DNA single strand break (SSB)
repair pathways in mammals and yeast. These pathways
are less well characterised in plants, but orthologues of
several SSB repair genes are identifiable in the genomes of
higher plants [5]. LIGI is an essential gene with lethal
knockout phenotypes in yeast, mammalian cells and Ara-
bidopsis [6-8]. Whilst LIG1 is essential for cell division in
yeast and plants, mouse embryos are viable and develop
until mid-term without LIG1, indicating that a second
ligase may substitute for growth up to this point [9]. Sim-
ilarly, mouse cell lines deficient in LIG1 are also viable,
indicating that other DNA ligase activities can substitute
for LIG1 in DNA replication [10]. Interestingly, although
plants deficient in AtLIG1 are null, cell division in game-
tophytes prior to fertilisation appeared unaffected, sug-
gesting that either that a second ligase can partially
substitute for DNA ligase 1, or that ligase 1 levels in hap-
loid cells are sufficient to support gametogenesis [8].

DNA ligase 4 (LIG4) is also present in all eukaryotes and
mediates the final step in the non-homologous end join-
ing (NHEJ) pathway of DSB repair. However, there are
clear differences between eukaryotes regarding the pres-
ence of other forms of DNA ligase. Plants lack a DNA
ligase III (LIG3) orthologue, which in mammals partici-
pates in base excision repair of the nuclear genome and
also functions in the maintenance of the mitochondrial
genome [11]. Whilst yeast has two DNA ligases (LIG1 and
LIG4), there are three DNA ligase genes in Arabidopsis thal-
iana, two of which (LIG1 and LIG4) have been function-
ally characterised [12]. An additional third DNA ligase
unique to plants, termed ligase VI, has been cloned from
rice and Arabidopsis [13,14] although the in planta func-
tion of this DNA ligase remains to be determined.

http://www.biomedcentral.com/1471-2229/9/79

In addition to the nuclear genome plants possess chloro-
plast and mitochondrial genomes. AtLIG1 has been
shown to be targeted to both the nucleus and the mito-
chondria [15]. This dual targeting is controlled via an evo-
lutionarily conserved posttranscriptional mechanism that
involves the use of alternative start codons to translate dis-
tinct ligase proteins from a single transcript.

Whilst a role for Arabidopsis LIG4 in NHEJ is well estab-
lished, the role of the other DNA ligases in Arabidopsis
DNA repair remains unclear. Previous studies have dem-
onstrated that LIG1 is an essential gene in plants, consist-
ent with a non-redundant role in nuclear DNA replication
[8]. However, the lethality of AtLIG1 mutations prevents
analysis of the potential roles of this enzyme in DNA
repair processes in plants. To address this question, we
created Arabidopsis lines with reduced AtLIG1 levels which
were sufficient to allow growth and development, but
which produced plants which were potentially compro-
mised in DNA repair. Analysis of these plants identified
lines which exhibited growth defects and a reduced capac-
ity for the repair of both SSBs and DSBs, providing evi-
dence that AtLIG1 is involved in recombination pathways
in higher plants. This has provided the first report of a role
for AtLIG1 in DSB repair and identification of a novel
DNA DSB repair pathway in plants.

Results

Phenotypic analyses of DNA ligasel deficient plants

In the absence of viable knockout lines, Arabidopsis plants
with reduced levels of LIG1 were generated using an RNAi
approach to gain further insight into gene function (Fig-
ure 1A). Both Arabidopsis DNA LIGASE 1 (AtLIG1) tran-
script and protein levels in the silenced lines were
determined by semi-quantitative RT-PCR and Western
blotting respectively (Figures 1B and 1C). Two lines with
reduced levels of AtLIG1 protein were selected for further
analysis and designated atligl-RNAiA and atligl-RNAiB.
These plants displayed an approximate four-fold reduc-
tion in AtLIG1 protein (Figure 1B), which although result-
ing in severe growth defects, was sufficient for
propagation of these lines through to seed production.

LIG1-deficient plants displayed a stunted and stressed
phenotype (Figure 2A-D) which became more pro-
nounced with age. Leaf and root growth were measured to
quantify growth differences between AtLIG1-silenced
lines and wild type plants. Interestingly the lines with
reduced AtLIG1 protein did not display any delay in ger-
mination (data not shown). During the first one to two
weeks growth roots were significantly smaller in the atligl-
RNAiIA compared to wild type or atligl-RNAiB plants (p <
0.01 t-Test, Figure 3A-C).
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A reduction in length and width of the third and fourth
leaves became more pronounced with plant age in both
silenced lines relative to wild type controls (Figure 3B, C).
By 30 days the average length of the third leaves was 4.2
mm in atlig]-RNAi lines as compared to a wild-type value
of 15 mm (p < 0.01 t-Test). Corresponding leaf widths
were 10.4 mm for the wild-type and significantly less for
the RNAI lines at 3.8-4.6 mm (p < 0.01 t-Test). The daily
growth rate was 1.25 + 0.14 mm for wild-type, 0.37 + 0.10
mm for atligl-RNAiIA and 0.35 + 0.14 mm for atligl-

RNAIB line. The final size of mature Arabidopsis leaves is a
function of both cell division and cell expansion [16].
Therefore, further investigation of the reduced organ size
in the atligl-RNAi lines analysed cell size in protoplasts
isolated from rosette leaves of wild type and silenced lines
after four weeks growth. Cell size was significantly
reduced in the atligl-RNAi lines (Figure 3D) with mean
cell diameters of 22.9 + 0.5 um and 29.6 + 0.8 um in the
atligl-RNAiIA and atligl-RNAiB lines respectively, com-
pared to 40.5 + 0.8 pm in wild type plants. This 43% and
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Figure 2

Phenotypic analyses of AtLIG| deficient plants. A) Comparison of wild-type and atlig/-RNAIA lines. B) WT and atlig!-
RNAi plants photographed 6 weeks after germination. Adaxial leaf from WT (C) and atlig/-RNAi lines (D) Abaxial surface of WT
(E) and atligl-RNAi lines (F). Bar = | cm
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AtLIG| silencing results in reduced tissue and cell size, but endoreduplication is not affected. A) Root growth in
wild-type compared to atlig/-RNAi silenced plants B) Leaf length in wild-type compared to atlig/-RNAi silenced plants C) Leaf
width of the third leaves was measured. D) Protoplast cell size from rosette leaves from plants at first bolting. Error bars indi-
cate SE. E) Flow cytometry of wild type 2 week seedlings with Col-0 (red coloured plot) and atlig/-RNAIA (black line). F) Flow
cytometry of wild type 2 week seedlings with Col-0 (red coloured plot) and atlig/-RNAiB (black line). Error bars indicate SE.

Page 5 of 12

(page number not for citation purposes)



BMC Plant Biology 2009, 9:79

27% reduction in cell size of atligl-RNAIA and atligl-
RNAIB plants respectively was not sufficient to explain the
approximate 70% reduction in leaf length and 60% reduc-
tion in leaf width observed relative to wild type plants.
This indicated that reduced cell number was also respon-
sible for the decreased organ size in the atligl-RNAi lines.

The extent to which cells have undergone endoreduplica-
tion is an important factor in the determination of plant
cell size [17]. Flow cytometry was performed on the
silenced and wild type plants to determine the ploidy lev-
els of leaf cells. Distinct peaks were observed with wild
type and the atligl-RNAi lines, corresponding to 2C, 4C,
8C, 16C and 32C, with no significant difference between
the wild type and LIG1 depleted lines in terms of peak
height (Figure 3E, F). However, the atligl-RNAi lines both
displayed an increase in cells between 2C and 4C indica-
tive of slowed progression or arrest in S-phase. This is con-
sistent with a requirement for AtLIG1 not only in DNA
replication and may also reflect impairment in DNA
repair pathways leading to compromised S-phase. Nor-
mal endoreduplication in the atligl-RNAi lines was con-
firmed by the development of typical tricomes and a wild
type-like etiolation response, both of which are compro-
mised in mutants affecting the endocycle [18] (data not
shown).

Analysis of atligl-RNA.:i single strand break repair kinetics
Single cell electrophoresis (Comet) assay under strictly
neutral (N/N) or neutral with alkaline unwinding step (A/
N) conditions quantifies the repair kinetics of double or
single strand DNA breaks respectively [19,20]. The Comet
assay was used here to investigate the kinetics of DNA
repair in atligl-RNAi lines compared to wild-type plants.
DNA single strand breaks were induced by MMS treat-
ment in ten-day old seedlings of wild type and AtLIG1
depleted lines, with a linear dose response curve up to 2
mM MMS (Figure 4A). Background DNA damage contrib-
uted around 20% DNA comet tails in untreated (control)
seedlings and 60% of comet tail DNA after 1 hour treat-
ment with 2 mM MMS (t = 0). The effects seen were simi-
lar in wild type and atliglA lines (Figure 4B). Seedlings
treated with 2 mM MMS were analysed using the comet
assay and the atligl-RNAi lines displayed reduced repair
rates of induced DNA SSB damage in comparison to wild-
type with around 50% of damage remaining after 360 min
in controls compared to 85% in atligl-RNAi plants (Figure
4C). Notably, atligl-RNAi plants, but not wild type con-
trols, demonstrated an initial increase in SSB accumula-
tion in the first 60 min of recovery following MMS
treatment (Figure 4C). This may be attributable to the
accumulation of SSBs arising from unrestricted removal of
alkylated bases induced by MMS in genomic DNA and a
delayed ligation step arising from the limited availability
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of DNA ligase activity during base excision repair in the
RNAI line.

Reduced rates of DNA double strand break repair in
atligl-RNA.i lines

Single cell electrophoresis under neutral conditions was
used to analyse the repair of DNA double strand breaks in
the wild type and silenced lines. This analysis revealed
similar levels of background (non-induced) DNA damage
in all mutant and wild-type seedlings, with approximately
25% of DNA migrating in the comet tail (Figure 5A, B).
This indicated there was no significant accumulation of
DSBs in 10 day old seedlings deficient in AtLIG1 in the
absence of genotoxin treatment. As differences in growth
between WT and AtLIG1 deficient lines become more pro-
nounced at around 20 days onwards, the effect of dimin-
ished levels of AtLIG1 on the long term growth and
development of the plants may well be attributable to the
accumulation of unrepaired damage.

The radiomimetic bleomycin [21] causes DNA double
strand breaks in DNA. A one hour treatment of the ten-
day seedlings with the bleomycin (30 pg/ml) resulted in a
large shift in the migration of the genomic DNA with 60-
80% migrating in the comet tail, indicative of extensive
fragmentation, with AtLIG1 deficient and wild type plants
displaying similar responses (Figure 5A). Most DSBs were
removed within one hour of bleomycin treatment in wild
type lines (Figure 5). The kinetics of DSB repair in mutant
and wild type plants were then determined by the comet
assay over a time course of recovery from bleomycin treat-
ment, with the extent of DNA damage remaining being
calculated from the percentage of DNA in the tail (as
defined in the Methods). Wild type seedlings displayed
very rapid repair of DSBs. The repair was biphasic, with a
very rapid initial phase followed by a slower phase in
which the small remainder of DNA damage was repaired.
The initial rapid removal of the majority of DSBs from
genomic DNA followed first order kinetics. Analysis of the
first ten minutes following bleomycin treatment found
significantly slower DSB repair in the RNAIi lines com-
pared to wild type plants with a t 1/2 of 6.7 and 9.1 min
for two independent RNAi lines compared to 4.9 min for
wild type plants (Figure 5B). These differences led to the
presence of a residual 10-20% of DSBs remaining in the
RNAI lines at 60 min as compared to hardly detectable
levels in wild type plants, equating to the level of DSBs
seen in wild type lines at 20 min. This contrasts with the
repair kinetics of atlig4 mutant plants, which do not dis-
play a reduction in the initial rapid repair observed in the
atligl-RNAi lines [22]. These results were consistent with
a role for AtLIG1 in a novel pathway for the rapid repair
of DSBs in plants, although the essential roles of this
ligase in plant cells makes it difficult to determine the full
extent of the role of AtLIG1 in this pathway.
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Figure 4 (see previous page)

Kinetics of single strand break repair is altered in the atligl-RNAi lines. (A) Induction of SSBs by methyl methanesul-
fonate (MMS). Ten day old seedlings of Arabidopsis ColO were treated with for | hour. Nuclei isolated from treated and
untreated seedlings were analysed by the alkali/neutral version of comet assay and evaluated for comet formation. The mean
percentage of DNA in the comet tail for 300 comets for each concentration of MMS are shown. Induction of SSBs is linear in
the 0—2 mM MMS concentrations range (R2= 0.9638 Col0 and R2=0.9365 atlig/-RNAi respectively). (B) Time course of SSB
repair in Col0 and atlig/-RNAi lines over 6 hour repair period. Background DNA damage in untreated (control) seedlings and
damage after | hour treatment with 2mM MMS (t = 0) is similar in both lines. Contrary to wild type plants, the number of SSBs
in atlig|-RNAIA increases for 60 minutes after the end of treatment suggesting delayed ligation during repair. (C) Kinetics of SSB
repair. The percentage of SSBs remaining were calculated for 0, 20, 60, 180 and 360 minute repair time points after the treat-

ment with 2 mM MMS. Maximum damage is normalised as 100% at t = O for all lines.

Discussion

DNA ligases play essential cellular roles in sealing the
phosphodiester backbone during DNA repair and replica-
tion. Although a role for Arabidopsis LIG4 in NHE] is well
established, the role of the other ligases in Arabidopsis
DNA repair processes remains unclear. In the present
study, the effects of reduced AtLIG1 levels on plant growth
and DNA repair kinetics were investigated by analysis of
RNAI silenced plant lines.

AtLIG1 silenced lines displayed a number of growth
defects associated with reduced organ size and activation
of stress responses. The slowed leaf growth of AtLIG1 defi-
cient lines as compared to wild-type became increasingly
evident with age. This is consistent with a gradual
increased accumulation of DNA damage products with
leaf age due to reduced levels of AtLIG1 resulting in com-
promised repair capacity. AtLIG1 silenced lines displayed
a number of growth defects including reduced organ size
and activation of stress responses. The lack of normal
AtLIG1 levels resulted in reduced cell size and an increase
in cells in S-phase, which over the plant's life span was
manifested phenotypically as retarded leaf growth. This
becomes increasingly evident with plant age and is con-
sistent with a requirement for AtLIG1 for normal growth
and development. The oldest leaves of AtLIG1 deficient
plants began to develop a dark green and eventually pur-
ple colouration, especially marked on the abaxial leaf sur-
face (Figure 2A-D). The development of this stressed
phenotype is similar to previous accounts of the Arabidop-
sis stress response, where the changes in colouration were
due to elevated levels of anthocyanin production [2,23].
The oldest leaves eventually bleached, similar to plants
exposed to a wide range of treatments including high UVC
irradiation [24]. This finding demonstrates that reduction
in normal AtLIG1 levels produces phenotypic changes
associated with environmental stresses, consistent with
the accumulation of DNA damage in the RNAi lines with
age. Environmental stresses often induce reactive oxygen
species resulting in forms of DNA damage are predomi-
nantly repaired via base and nucleotide excision repair
pathways. Chronic exposure to these stresses may also

result in accumulation of DSBs in the plant genome with
time as a consequence of unrepaired single strand breaks
being converted into more cytotoxic DSBs [25,26]. The
stress response exhibited by the atligl-RNAi lines may be
activated by the presence of DNA strand breaks usually
associated with oxidative DNA damage. The AtLIG1 defi-
cient plants displayed reduced growth but interestingly
the RNAI lines bolted and flowered significantly earlier
than wild-type lines (data not shown) in common with
previous studies that reported precocious flowering in
plants stressed by exposure to low levels of gamma-radia-
tion [25] or UVC [27].

Further analysis investigated the repair kinetics of single
and double strand DNA breaks induced in wild type and
silenced lines. Of the different forms of DNA damage,
DSBs are one of the most cytotoxic and, if left unrepaired,
can result in chromosome fragmentation and loss of
genetic information. In eukaryotes, DSBs are repaired by
homologous recombination or NHE] pathways. In Arabi-
dopsis the NHE] pathway components KU70, KU80 and
LIG4 are all required for survival of gamma irradiated
plants [28]. However, several lines of evidence strongly
support the existence of end joining pathways which are
independent of KU and LIG4 in higher plants. Knockout
mutants of classical NHE] (C-NHEJ) pathway compo-
nents in higher plants such as atku80 and atlig4 are able to
integrate T-DNA at random sites in the genome with fre-
quencies of between 10-100% of that found in wild type
plants [29-31]. Consistent with these observations, illegit-
imate end-joining is still active in non-homologous end
joining mutants, observed by chromosomal fusions and
plasmid re-joining assays in planta [32,33]. Recent studies
revealed that atligd mutants display rapid rates of DSB
repair, similar to those of wild type plants, indicating
either that a second ligase activity or an independent path-
way can effectively substitute for loss of LIG4 [22]. Analy-
sis of the RNAI lines indicated that AtLIG1 was required
for the initial rapid phase of repair, with reduced AtLIG1
levels resulting in an increase in the halflife of a DSB. This
was not attributable to increased background levels of
DSBs in the untreated atligl-RNAi lines, as these basal lev-
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DSB repair in Arabidopsis Col0 and atligl-RNAIA and atligl-RNAiB lines determined by neutral comet assay. (A)
Time course of DSB repair during |-hour repair period. Background DNA damage in untreated (control) seedlings and damage
after | hour treatment with 30 ug/ml bleomycin (t = 0) is similar in all lines. Defects in DSB repair is manifested by DNA
remaining in comet tails (% tail DNA). (B) Kinetics of DSB repair measured over the first 60 min show biphasic kinetics. Per-
cents of DSB remaining were calculated from % tail DNA as described in Comet data evaluation.
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els of genome fragmentation were similar to wild type
lines. The decreased rates of DSB repair in the silenced
plants suggests that AtLIG1 does not simply substitute for
AtLIG4 in C-NHE]J, as atlig4 mutants do not display a
reduction in this initial rapid phase of DSB repair. Rather,
these results indicate that AtLIG1 is required for the fast
rejoining of the majority of DSBs within 10 min after the
removal of bleomycin. While AtLIG4 is not required for
the rapid initial phase of DSB repair, atlig4 mutants are
hypersensitive to genotoxic agents. This suggests that a
subset of DSBs may persist in atlig4 mutants that cannot
be repaired by the rapid, AtLIG1 dependent mechanism.
The repair of these DSBs requires the KU and LIG4 medi-
ated slower repair pathway, and failure to eliminate these
lesions from the genome results in the IR hypersensitivity
of NHE] mutants. Parallel pathways for end joining have
also been identified in mammals, where a LIG4 and KU
independent pathway has been characterised [34,35]. The
molecular mechanisms of these pathways are beginning
to be determined, with one pathway mediated by PARP1
and LIG3 displaying greatest activity in the G2 phase of
the cell cycle [35]. In vitro studies using human cell
extracts showed that both LIG1 and LIG3 can function in
microhomology mediated end joining, whereas LIG4 was
not required [34]. A significant difference between DSB
repair in plants and mammals is the requirement for LIG4
for the rapid repair of DSBs [35] in contrast to the rapid
DSB repair observed in Arabidopsis lig4 mutant lines [22].
This rapid repair pathway is dependent on the structural
maintenance of chromosome (SMC)-like proteins MIM
and RAD21.1 and analysis of the RNAi lines suggest a role
for LIG1 in this DNA repair pathway. Future studies will
further delineate the molecular mechanism of this repair
pathway in plants.

Conclusion

While atligl null mutants are non-viable, plants with
reduced AtLIG1 levels display growth defects, reduced cell
size and a greater proportion of cells in S-phase, consistent
with roles for Arabidopsis DNA ligase 1 in both DNA repair
and DNA replication pathways. Additionally atligl-RNAi
plants show reduced rates of DNA repair, including a sig-
nificant delay in the initial rapid phase of DSB repair.
These results indicate that AtLIG1 is required for the rapid
KU/LIG4 independent repair of DSBs in plants.

Methods

Generation and characterisation of AtLIGI — RNAi
silenced lines

Vector pFGC5941 (TAIR) was used for generation of the
silencing constructs [36]. This has a CaMV 35S promoter
to drive the expression of the inverted repeat target
sequence separated by a 1,352-bp ChsA intron from the
petunia Chalcone synthase A gene to stabilize the inverted
repeat of the target gene fragment. A 458 bp region of

http://www.biomedcentral.com/1471-2229/9/79

AtLIG1 was amplified by PCR with primers incorporating
Xbal and Swal sites for the forward primer: 5'-
GGTCTAGAGGCGCGCCGATACTGAATAAATTCCAGGA-
CATC-3' (LIG1if) and Ascl and BamHI sites for the reverse
primer: 5'-GGTGGGATCCATTITAAATCATCGATATCGT-
TAGATGTTACAG-3' (LIG1lir). The PCR product was
cloned into pFGC5941 in a two-step cloning procedure
that integrates the fragment in opposite orientations on
either side of the ChsA intron. The RNAi construct was
then used to transform Arabidopsis allowing plant selec-
tion by basta resistance. The extent of AtLIG1 silencing in
plants was determined by Western analysis of AtLIG1 pro-
tein levels (Fig 1A). Polyclonal antiserum was raised to
full length AtLIG1 overexpressed in E. coli. AtLIG1 cDNA
[36] was cloned into the plasmid pCal-c (Stratagene) and
expressed with a C-terminal calmodulin binding protein
(CBP) tag. Expression was induced by the addition of iso-
propylthiogalactoside (1 mM) for 3 h in E. coli strain BL21
(DE3) pLysS (Promega). Bacteria were recovered by cen-
trifugation, resuspended in RS buffer (50 mM Tris-Cl pH
7.5, 50 mM NaCl, 2 mM CaCl,, 5% (v/v) glycerol, 0.1%
(v/v) Triton X100) and lysed by freeze thawing and soni-
cation. The extract was cleared by centrifugation at 13 000
g for 10 min, applied to a calmodulin affinity resin (Strat-
agene) and washed with RS buffer. Purified AtLIG1 pro-
tein was eluted in 50 mM Tris-Cl pH 7.5, 50 mM NaC(l, 2
mM EGTA, 5% (v/v) glycerol, 0.1% (v/v) Triton X100.
Further purification was achieved by preparative SDS-
PAGE and coomassie stained bands were electroeluted
(BioRad) and used for immunisation. In Western analysis
of Arabidopsis cell extracts, antiserum to AtLIG1 (but not
preimmune) identified a band of the expected molecular
weight, detected using alkaline phosphatase coupled anti-
sheep IgG secondary antiserum and visualised by incuba-
tion with nitrotetrazolium blue chloride/5-bromo-4-
chloro-3-indolyl phosphate (Sigma).

Comet assay

DSBs were detected by a neutral comet assay [37] and SSB
by A/N version of comet assay as described previously
[20,38] In brief, approximately 100 mg of frozen tissue
was cut with a razor blade in 500 pl PBS+10 mM EDTA on
ice and tissue debris removed by filtration through 50 pm
mesh funnels (Partec, Germany) into Eppendorf tubes on
ice. 30 - 50 pl of nuclei suspension was dispersed in 300
pl of melted 0.5% agarose (GibcoBRL, Gaithersburg,
USA) at 40°C. Four 80 ul aliquots were immediately
pipetted onto each of two coated microscope slides (in
duplicates per slide) on a 40°C heat block, covered with a
22 x 22 mm cover slip and then chilled on ice for 1 min
to solidify the agarose. After removal of cover slips, slides
were dipped in lysing solution (2.5 M NaCl, 10 mM Tris-
HCl, 0.1 M EDTA, 1% N-lauroyl sarcosinate, pH 10) on
ice for at least 1 hour to dissolve cellular membranes and
remove attached proteins. The whole procedure from
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chopping tissue to dipping into lysing solution takes
approximately 3 minutes. After lysis, slides were twice
equilibrated for 5 minutes in TBE electrophoresis buffer to
remove salts and detergents and then electrophoresed at 1
V/cm (app. 20 mA) for 5 minutes. After electrophoresis,
slides were dipped for 5 min in 70% EtOH, 5 min in 96%
EtOH and air-dried. Comets were viewed in epifluores-
cence Nikon Eclipse 800 microscope after staining with
GelRed stain (Biotium, Hayward, USA) and evaluated by
Comet module of Lucia cytogenetics software suite (LIM,
Praha, Czech Republic). Wild-type Col0 were used as con-
trols for experiments with atligl-RNAiA and atligl-RNAiB.

Comet data evaluation

The comet slides were coded and blind evaluated. The
fraction of DNA in comet tails (% tail-DNA) was used as
a measure of DNA damage. Data in this study were meas-
ured in at least 3 independent experiments, each starting
with newly grown Arabidopsis seedlings. In each experi-
ment, the % tail-DNA was measured at 5 time points: 0,
20, 60, 180 and 360 minutes after treatment and in con-
trol seedlings without treatment. Measurements included
4 independent gel replicas of 25 evaluated comets total-
ling at least 300 comets analyzed per experimental point
[38]. The percentage of damage remaining as plotted in
Figure 4 and 5 after a given repair time (t,) is defined as:

mean %T DNA (tx)-mean %T DNA (control)

% damage remaining (t,) =
’ 8 g () mean%T DNA (tg)-mean %T DNA (control)

Preparation of polyclonal antiserum to Arabidopsis ligase
I protein

The ORF of the cloned Arabidopsis thaliana ligase 1 cDNA
in the pCR2.1 vector (Invitrogen, Leek, The Netherlands)
was amplified with primers containing Bglll (AGCAA-
GATCTTTAAACAATAGTTATCTTGGGATCA) and Nhel
(TGCAACATATGGCGTCGACAGTCTCAG) sites at the 5'
and 3' ends of the ORF respectively using the proof-read-
ing DNA polymerase Pfu (Stratagene, UK). The DNA frag-
ment was introduced at the Ndel site of the pET-11b
vector (Calbiochem-Novabiochem, Nottingham, UK) in
frame with a 6xHis tag coding region, yielding 6xHis-
ligase 1 E. coli BL21(DE3)pLysS was transformed with
6xHis -PHR1 and cultured in LB medium supplemented
with 50 mg.l"! ampicilin until an OD 600 nm of 0.6-1.0
was reached. Expression of 6xHis-ligase 1 was induced by
the addition of 1 mM isothiopropylgalactoside and
growth continued for 3 h. Bacterial cell extracts were pre-
pared by sonication of 36 ml cells suspended in 50 mM
Tris-HCI, pH 7.5, 2 mM EDTA, 0.1% Triton X-100 (1:10
buffer: culture media ratio used) and incubated with 100
pg.ml-! lysozyme at 30°C for 15 min. The resultant sus-
pension was centrifuged at 10 000 g for 30 min at 4°C.
The pelleted proteins were purified by preparative SDS-
PAGE using 10% acrylamide gels. The 6xHis-AtLIG1 band
was excised from the Coomassie-blue stained gel and
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destained using several changes of 100 mM Tris-HCI pH
7.0. Protein was electroeluted from the gel slices, mixed
with Freud's adjuvent and used to raise antiserum in
sheep (Scottish Antibody Production Unit, Carluke, Scot-
land).

Western blotting

Proteins were extracted from wheat tissue as described by
Pang and Hays (1991). Protein concentrations were deter-
mined by the Bio-Rad protein assay (Bio-Rad Laborato-
ries, Hemel Hempstead, UK) using bovine serum albumin
(BSA) as a standard. Protein samples were separated by
SDS-PAGE (10% gel) and transferred to PVDF membrane
(Bio-Rad) for 3 h at 100 V. The blots were probed with
anti-ligase 1 antiserum. The immune complexes were
detected by alkaline-phosphatase conjugated antisheep
IgG (Sigma-Aldrich, Poole, UK) and developed using
premixed BCIP/NBT solution (Sigma). Primary and sec-
ondary antisera were used at 1/10000 and 1/30000 dilu-
tions respectively.

Flow cytometry

Ploidy analysis was performed using the Cystain absolute
P kit (Partec) according to the manufacturer's instructions.
Plant nuclei were isolated by chopping fresh leaf material
in extraction buffer (Partec) before filtering through a 50
pm membrane. RNase digestion and staining with pro-
pidium iodide was followed by analysis using a Becton
Dickinson FACSCalibur cytometer.

Cell size

Cell size was determined by brightfield microscopy (Zeiss
LSM 510 META Axiovert 200 M inverted confocal micro-
scope) and image analysis using LSM Image browser soft-
ware (Zeiss).
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