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Abstract: If the recent indications of a possible state Φ with mass ∼ 750GeV decaying

into two photons reported by ATLAS and CMS in LHC collisions at 13TeV were to become

confirmed, the prospects for future collider physics at the LHC and beyond would be

affected radically, as we explore in this paper. Even minimal scenarios for the Φ resonance

and its γγ decays require additional particles with masses & 1
2mΦ. We consider here two

benchmark scenarios that exemplify the range of possibilities: one in which Φ is a singlet

scalar or pseudoscalar boson whose production and γγ decays are due to loops of coloured

and charged fermions, and another benchmark scenario in which Φ is a superposition of

(nearly) degenerate CP-even and CP-odd Higgs bosons in a (possibly supersymmetric)

two-Higgs doublet model also with additional fermions to account for the γγ decay rate.

We explore the implications of these benchmark scenarios for the production of Φ and

its new partners at colliders in future runs of the LHC and beyond, at higher-energy pp

colliders and at e+e− and γγ colliders, with emphasis on the bosonic partners expected in

the doublet scenario and the fermionic partners expected in both scenarios.
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1 Introduction

The world of particle physics has been set alight by the reports from the ATLAS and CMS

Collaborations in LHC collisions at 13TeV of hints of a possible state, that we denote Φ,

with mass ∼ 750GeV decaying into two photons [1–4], echoing the discovery of the 125GeV

Higgs boson [5, 6]. The product of the cross section and branching ratio for Φ → γγ decay

hinted by the data is ∼ 6 fb, with the ATLAS data hinting that it may have a significant

total decay width. If these hints are confirmed, a changed and much brighter light will be

cast on the future of particle physics, because the putative Φ particle must be accompanied

by additional massive particles.

The Landau-Yang theorem [7, 8] tells us that Φ cannot have spin one, and spins zero

and two are the most plausible options. Since a graviton-like spin-2 particle would in prin-

ciple have similar decays into dileptons, dijets and dibosons that have not been observed
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by the experiments [9–11], we focus here on the more likely possibility of spin zero. Gauge

invariance requires the Φγγ coupling to have dimension ≥ 5, and hence be induced by

additional physics with a mass scale & 1
2mΦ. Historical precedent (π0, H → γγ) [12–20]

and many models suggest that the Φγγ coupling is induced by anomalous loops of massive

charged fermions and/or bosons whose form factors vanish if their masses are much smaller

than MΦ. In addition, the absence of a strong Φ signal in LHC collisions at 8TeV moti-

vates gluon-gluon fusion as the Φ production mechanism, presumably mediated by massive

coloured fermions and/or bosons. The null results of LHC searches for coloured fermions

require them to have masses & MΦ, whereas new uncoloured ones might weigh ∼ 1
2MΦ.

These arguments apply whatever the electroweak isospin assignment of the possible Φ

particle. If it is a singlet, it need not be accompanied by any bosonic partner particles.

However, if it is a non-singlet, it must also be accompanied by bosonic isospin partners

that would be nearly degenerate with Φ in many scenarios, since MΦ is larger than the

electroweak scale. The minimal example of a non-singlet scenario for Φ is an electroweak

doublet, as in a 2-Higgs-doublet model (2HDM), e.g., in the context of supersymmetry.

The necessary existence of such additional massive fermions and/or bosons would yield

exciting new perspectives for future high-energy collider physics, if the existence of the

Φ particle is confirmed. In the absence of such confirmation, some might consider the

exploration of these perspectives to be premature, but we consider a preliminary discussion

to be appropriate and interesting, in view of the active studies of the physics of the high-

luminosity LHC (HL-LHC) [21, 22], possible future e+e− colliders (ILC [23–26], CLIC [27],

FCC-ee [28], CEPC [29]) and their eventual γγ options [30–37], and possible future higher-

energy proton-proton colliders (higher-energy LHC (HE-LHC) [38], SPPC [39] and FCC-

hh [40, 41].

In this paper we explore three aspects of the possible future pp and e+e− collider

physics of the Φ resonance and its putative partners. We consider single Φ production,

production of the fermions that are postulated to mediate its γγ decays and its production

via gluon-gluon fusion, production of Φ in association with fermionic mediators, and the

phenomenology of possible bosonic partners. For definiteness, we focus on two alterna-

tive benchmark scenarios that illustrate the range of different possibilities for the possible

Φ particle, in which it is either an isospin singlet state [42]1 or an isospin doublet in a

2HDM [85].2 Both scenarios have rich fermionic phenomenology, and the doublet scenario

also has rich bosonic phenomenology.

Section 2 of this paper discusses the singlet benchmark scenario, paying particular

attention to its production at the LHC and possible future higher-energy pp colliders, as

well as in γγ fusion at a high-energy e+e− collider. Section 3 of this paper discusses

the 2HDM benchmark scenario, in which the Φ signal is a combination of scalar and

pseudoscalar Higgs bosons H,A, and discusses their single, pair and associated production

in pp, e+e− and γγ collisions, with some comments on production in µ+µ− collisions. The

1The following is a sampling of phenomenological analyses of singlet models that are similar in philosophy

to ours. See refs. [43–84].
2The following is a sampling of phenomenological analyses of two-Higgs doublet models that are similar

in philosophy to ours. See refs. [86–101].
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capabilities of pp and e+e− colliders to observe directly the massive fermions postulated to

mediate Φ production by gluon-gluon fusion and Φ → γγ decay are discussed in section 4,

including the possibilities for pair and single production in association with Standard Model

fermions and vector bosons. Finally, section 5 summarizes our conclusions.

2 Singlet scenario

2.1 Singlet models of the Φ → γγ signal

We consider in this section the minimal scenario in which the Φ resonance is an isospin

singlet scalar state,3 unaccompanied by bosonic isospin partners. As already mentioned,

the Φγγ and Φgg couplings could be induced by new, massive particles that could be either

fermions or bosons, with spins 0 and 1 being possibilities for the latter. We concentrate

here on the fermionic option, since loops of scalar bosons make smaller contributions to the

anomalous loop amplitudes than do fermions of the same mass and, mindful of William of

Occam, we avoid enlarging the gauge group with new, massive gauge bosons. In view of

the stringent constraints on massive chiral fermions [102], we assume that the new fermions

are vector-like.

The couplings of a generic scalar S and pseudoscalar P state to pairs of photons and

gluons are described via dimension-five operators in an effective field theory

LS
eff =

e

v
cSγγ SFµνF

µν +
gs
v
cSgg SGµνG

µν

LP
eff =

e

v
cPγγ PFµνF̃

µν +
gs
v
cPgg PGµνG̃

µν (2.1)

with Fµν = (∂µAν − ∂νAµ) the field strength of the electromagnetic field, F̃µν = ǫµνρσF
ρσ

and likewise for the SU(3) gauge fields, where v ≈ 246GeV is the standard Higgs vacuum

expectation value. Within this effective theory, the partial widths of the Φ = S/P particle

decays into two gluons and two photons are given by

Γ(Φ → γγ) = c2Φγγ

α

v2
M3

Φ , Γ(Φ → gg) = c2Φgg

8αs

v2
M3

Φ . (2.2)

If the gluonic decay is dominant, one would have the following branching ratio for the

photonic decay:

BR(Φ → γγ) =
Γ(Φ → γγ)

Γ(Φ → γγ) + Γ(Φ → gg)
≈ Γ(Φ → γγ)

Γ(Φ → gg)
≈

c2Φγγ

c2Φgg

α

8αs
, (2.3)

leading to BR(Φ → γγ) ≈ 10−2 if cΦγγ ≈ cΦgg. In general, decays into WW,ZZ and Zγ

final states also occur through similar effective couplings. Writing the Lagrangian (2.1) in

terms of the SU(2)L ×U(1)Y fields ~Wµ and Bµ rather than the electromagnetic field Aµ,

3As mentioned before, we ignore the unlikely possibility of spin-2. There are also possibilities to circum-

vent the Landau-Yan theorem for spin-one particles (see for instance with Z′ bosons refs. [103–105]) but

we will ignore them here.
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one obtains for the coupling constants of the electroweak gauge bosons, where in the scalar

case we define the coefficients c1 ≡ cΦBB and c2 ≡ cΦ ~W ~W and s2W = 1− c2W ≡ sin2 θW :

cΦγγ = c1c
2
W + c2s

2
W , cΦZZ = c1s

2
W + c2c

2
W , cΦZγ = sW cW (c2 − c1) , cΦWW = c2 , (2.4)

and in the pseudoscalar case we denote the corresponding coefficients by c̃1,2.

Turning to the new fermionic content and following ref. [42], we consider here four

models for the massive vector-like fermions:

• Model 1: a single vector-like pair of charge 2/3 quarks, TR,L.

• Model 2: a vector-like doublet of charge 2/3 and charge - 1/3 quarks, (U,D)R,L.

• Model 3: a vector-like generation of quarks, including charge 2/3 and -1/3 singlets,

(U,D)R,L, TR,L, BR,L.

• Model 4: a vector-like generation of heavy fermions including leptons and quarks,

(U,D)R,L, TR,L, BR,L, (L
1, L2)R,L, ER,L.

For simplicity, we consider the case where the mixing between the Φ state and the

Standard Model Higgs boson is negligible, and favour the possibility that mixing between

the new heavy fermions and their Standard Model counterparts is also small.

The left panel of figure 1 reproduces figure 1 of ref. [42], and shows the possible

strengths of the Φ(750 GeV) signal found by the CMS collaboration in Run 1 at 8TeV

(green dashed line) and at 13TeV (blue dashed line), the ATLAS signal at 13TeV (dashed

red line) and their combination (black solid line). The figure is made assuming a gluon

fusion production mechanism, gg → Φ, and formally, this combination yields σ(pp →
Φ → γγ) = 6 ± 2 fb at 13TeV. The right panel of figure 1 is a simplified version of

figure 4 of ref. [42], and is obtained assuming that total width of the resonance is such that

Γ(Φ) ≈ Γ(Φ → gg). It shows that reproducing the ∼ 6 fb gg → Φ → γγ signal reported

by the ATLAS and CMS collaborations requires a relatively large value of the fermion-

antifermion-Φ coupling λ. For simplicity, both the masses mF and the couplings λ were

assumed in ref. [42] and here to be universal. If one requires λ2/4π2 ≤ 1 so as to remain

with a perturbative régime, corresponding to λ/4π ≤ 1/2, one finds no solutions in Model

1, whereas Model 2 would require mF . 800GeV even after allowing for the uncertainties.

On the other hand, Model 3 would be consistent with perturbativity for mF . 1.4TeV

and Model 4 could accommodate mF . 3TeV.4

As will be discussed in section 4, the LHC has good prospects to explore all the range

of the fermion masses mF allowed by perturbativity in Model 3, whereas a higher-energy

collider may be required to explore fully the range of mF allowed in Model 4.

4We do not discuss in this section the case where Γ(Φ) ≈ 45GeV as hinted by ATLAS, which would

require non-perturbative values of λ in all the models studied [42]. However, as discussed in section 3, this

value of Γ(Φ) could be accommodated within two-doublet models.
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Figure 1. Left panel: a compilation of the possible strengths of the 750GeV Φ resonance signal

found by CMS in Run 1 at 8TeV (green dashed line), CMS at 13TeV (blue dashed line), ATLAS at

13TeV (dashed red line) and their combination (black solid line) assuming a gg fusion production

mechanism. Right panel: values of the vector-like fermion mass mF and coupling λ (both assumed

to be universal) required in singlet Models 1, 2, 3 and 4 to accommodate the possible gg → Φ → γγ

signal reported by CMS and ATLAS [1–4]. The black lines are for the central value of the cross

section, 6 fb, and the coloured bands represent the 1-σ uncertainties. Plots adapted from [42].

In the following we discuss the production of the Φ resonance first at pp colliders,

focusing on the gluon fusion mechanism5 gg → Φ, and then at high energy electron-positron

colliders in both the e+e− and γγ modes.

2.2 Φ production in pp collisions

The dominant gluon-gluon fusion mechanism for Φ production in these singlet models in

pp collisions has the following leading-order partonic subprocess cross section σ(gg → Φ),

which is proportional to the Φ → gg partial width:

σ(pp → Φ) =
1

MΦs
CggΓ(Φ → gg) : Cgg =

π2

8

∫ 1

M2
Φ
/s

dx

x
g(x)g

(

M2
Φ

sx

)

, (2.5)

where g(x) is the gluon distribution inside the proton at a suitable factorization scale µF .

Since we assume here that Φ is an isospin singlet, production in association with a Standard

Model vector boson, W± or Z, is much smaller, and production in association with a t̄t

pair or a vector-like fermion pair is also relatively small (see section 2.4).

The gg → Φ → γγ production cross section times branching ratio at different pp centre-

of-mass energies can be obtained directly from the estimated rate σ × BR ≃ 6 ± 2 fb at a

centre-of-mass energy of 13TeV, simply by rescaling the gluon-gluon luminosity function as

shown in figure 2. In this figure we use MSTW2008 NLO parton distributions with various

choices of the factorization scale [106]: the central value µF = MΦ = 750GeV (solid green

line) and the choices µF = 2MΦ (red dotted line) and µF = MΦ/2 (blue dotted line). We

5Additional processes likes Higgs-strahlung qq̄ → ΦW,ΦZ and vector boson fusion qq → Φqq can occur

but will have smaller cross sections and will be discussed only in the context of e+e− collisions.
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Figure 3. The real and imaginary parts of the form factors AΦ
1/2 with fermion loops in the case of

CP-even H/S and CP-odd A/P states as functions of the variable τF = M2
Φ/4m

2
F .

with Nc a color factor, eF the electric charge of the fermions F , and gΦFF the Yukawa

coupling normalised to its Standard Model value, ĝSMΦFF = mF /v. The partial widths

are the same in the scalar and pseudoscalar cases, apart from the form factors AΦ
1/2(τF )

that characterize the loop contributions of spin-12 fermions as functions of the variable

τF = MΦ/4m
2
F , which depend on the parity of the spin-zero state. They are given by

A
H/S
1/2 = 2 [τF + (τF − 1)f(τF )] τ

−2
F , (2.7)

A
A/P
1/2 = 2τ−1

F f(τF ) , (2.8)

for the scalar/CP-even (S/H) and pseudoscalar/CP-odd (P/A) cases, respectively, where

f(τF ) =



















arcsin2
√
τF for τF ≤ 1 ,

−1

4



log
1 +

√

1− τ−1
F

1−
√

1− τ−1
F

− iπ





2

for τF > 1 .
(2.9)

The real and imaginary parts of the form factors for the different H/S and A/P CP cases

are shown in figure 3 as functions of the reduced variable τF .

When the fermion mass in the loop is much larger than the mass MΦ, namely in the

limit mF → ∞, one obtains AS
1/2 =

4
3 and AP

1/2 = 2 for the real parts of the form factors,

and in the opposite limit, mF → 0, one has AΦ
1/2 → 0. For MΦ ≤ 2mF (τF ≤ 1), so

that Φ → F̄F decays are forbidden, the maximal values of the form factors are attained

when τF = 1, i.e., just at the Φ → F̄F threshold. In this case, one has the real parts

Re(AS
1/2) ≈ 2 and Re(AP

1/2) ≈ 1
2π

2 ≈ 5, and Im(AΦ
1/2) = 0. In the case of the top quark

contributions, when MΦ = 750GeV, one has τt ≈ 4, the form factors have both real and

imaginary parts, and |AP
1/2/A

S
1/2|2 ≈ 2.
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Model Masses Γ(Φ→gg)
Γ(Φ→γγ)

Γ(Φ→Zγ)
Γ(Φ→γγ)

Γ(Φ→ZZ)
Γ(Φ→γγ)

Γ(Φ→W±W∓)
Γ(Φ→γγ)

1 all ≫ mΦ 180 1.2 0.090 0

2 all ≫ mΦ 460 10 9.1 61

3 all ≫ mΦ 460 1.1 2.8 15

all ≫ mΦ 180 0.46 2.1 11

4 S: mL = 400GeV 140 0.10 1.4 6.6

P: mL = 400GeV 110 0.12 1.5 6.9

Table 1. Ratios of Φ decay rates for the singlet models under consideration, where we have used

αs(mX) ≃ 0.092. Extended version of table 6 in ref. [42].

We have included in table 1 predictions in Model 4 for the ratios of scalar and pseu-

doscalar diboson decay rates if mL = 400GeV and the vector-like quark masses are much

larger than MΦ. We see that in both these low-lepton-mass cases, the γγ decay rate is

enhanced relative to all the other diboson decay rates, as compared with the case where

the vector-like quark and lepton masses are the same.

2.3 Φ production in γγ collisions

Since this state has been observed in the diphoton channel at the LHC at 13TeV, it is

natural to discuss Φ production via γγ collisions.7 Many aspects of a possible γγ collider

associated with a parent linear e+e− collider have been discussed quite extensively, see,

e.g., ref. [31–37], starting from the original idea [30]. A γγ collider can be constructed

using Compton back-scattering from a laser beam via the processes [30, 110]

e−(λe−) γ(λl1) → e− γ(λ1) , e
+(λe+) γ(λl2) → e+ γ(λ2) , (2.10)

The back-scattered laser photons then carry a large fraction of the parent e+/e− energy.

Their energy spectrum and polarization depend on the helicities of the lasers λl1 , λl2 and

of the leptons λe+ , λe− , as well as on the laser energy. The virtue of such a collider is

that it provides a direct and accurate probe of the γγ coupling of a diphoton resonance.

Moreover, it offers an unique opportunity to study the CP properties of such resonances.

For the production cross section, one has in general

σ(λe+ , λe− , λl1 , λl2 , Eb) =

∫

dx1dx2Lγγ(λe+ , λe− , λl1 , λl2 , x1, x2) σ̂(λ1, λ2, 2Eb
√
x1x2),

(2.11)

where Lγγ(λe+ , λe− , λl1 , λl2 , x1, x2) is the luminosity function for polarizations λ1(λe− , λl1 ,

x1) and λ2(λe+ , λl2 , x2) of the colliding photons. σ̂(λ1, λ2, 2Eb
√
x1x2) is the cross section

for the process under consideration, γγ → Φ → X in this case. The invariant mass of the

two-photon system is given by W =
√
ŝ = 2Eb

√
x1x2, where x1, x2 are the fractions of

the beam energy Eb carried by the two back-scattered photons. The cross section for Φ

7For a previous study of Φ phenomenology in γγ collisions see ref. [109].
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Γ(Φ → γγ)=1 MeV

MΦ=750 GeV

σ(γγ→Φ) [fb]

Ee−

beam [TeV]
1.41.210.80.60.4

100

10

1

Figure 4. Cross section for producing a singlet Φ boson with mass 750GeV via γγ fusion at an

e+e− collider as a function of the e+e− centre-of-mass energy in the range from
√
s = 0.8TeV to

3TeV. The Φ → γγ partial width is assumed to be 1MeV as can be inferred from σ(gg → Φ) ≈ 6 fb

at
√
s = 13TeV when the decay Φ → gg is dominant.

production via γγ fusion is given by

σ̂(W,λ1, λ2)=8π
Γ(Φ → γγ)Γ(Φ → X)

(W 2 −M2
Φ)

2 +M2
ΦΓ

2
Φ

(1 + λ1λ2) , (2.12)

where W is the centre-of-mass energy of the γγ system. The factor of (1 + λ1λ2) projects

out the JZ = 0 component of the cross section, thereby maximizing the scalar resonance

contribution relative to the continuum backgrounds.

We recall that in this singlet Φ resonance scenario, the total Φ decay width may be

dominated by Φ → gg, in which case it would be much narrower than the experimental

resolution in any measurable final state [42]. Accordingly, in this subsection we treat Φ

in the narrow-width approximation. The value of Γ(Φ → γγ) may be calculated directly

from the cross section for gg → Φ → γγ inferred from the LHC measurements, if Φ → gg

is indeed the dominant decay mode as would be the case if mixing between the heavy

and Standard Model fermions is negligible as we assume. In this case, σ(pp → Φ →
γγ) ∝ Γ(Φ → γγ) and the value σ(pp → Φ → γγ) ∼ 6 fb indicated by the ATLAS

and CMS collaborations would correspond to Γ(Φ → γγ) ∼ 1MeV. We note that this

should be regarded as a lower limit on Γ(Φ → γγ), which would be enhanced by a factor

Γ(Φ → all)/Γ(Φ → gg) if Φ → gg is not the dominant decay mode.

The value of Γ(Φ → γγ) inferred from the LHC data motivates the option of a γγ

collider discussed above. In the narrow-width approximation and assuming that Φ → gg

dominates ΓΦ we obtain for the gg final state the following expression for σ̂(
√
ŝ), where

ŝ = x1x2s with
√
s the centre-of-mass energy of the e+e− machine

σ̂(
√
ŝ) =

8π2

MΦ
Γ(Φ → γγ)δ(M2

Φ − sx1x2)(1 + λ1λ2) , (2.13)

– 9 –
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The dependence of the energies and the polarizations of the back-scattered photons, i.e.,

(Ebx1, λ1) and (Ebx2, λ2), on the electron and positron beam energy Eb as well as on the

frequency and the polarization of the laser, has been computed in ref. [30]. The results are

that the spectrum peaks in the region of high photon energy for λeλl = −1. If further one

chooses the laser energy ω0 such that x = 4Eb ω0/m
2
e = 4.8, the two-photon luminosity is

peaked at z = 0.5×W/Eb = 0.8. The mean helicity of the back-scattered photons depends

on their energy. For the choice λeλl = −1 and x = 4.8, in the region of high energy for

the back-scattered photon where the spectrum is peaked, the back-scattered photon also

carries the polarisation of the parent electron/positron beam. Thus, choosing λe− = λe+

ensures that the dominant photon helicities are the same, which in turn maximizes the Higgs

signal relative to the QED background, leading to a luminosity Lγγ ≡ Lγγ(λe− , x1, x2). The

relevant expressions used for Lγγ(λe− , x1, x2) as well as those for λ1(λe− , x1), λ2(λe+ , x2)

are taken from ref. [30], as presented in ref. [110].

The total cross section for γγ → Φ → gg, where we write down explicitly the expression

for Lγγ for the above choices of helicities, is then given by

σ =
8π2

MΦs
Γ(Φ → γγ)

∫ xM
1

xm
1

1

x1
f(x1)f(M

2
Φ/s/y1) (1 + λ1(x1, λe−)λ2(x2, λe+)) , (2.14)

where f(xi) denotes the probability that the backscattered photon carries a fraction xi of

the beam energy for the chosen laser and lepton helicities, with

xm1 =
M2

Φ

s

(1 + xc)

xc
, xM1 =

xc
1 + xc

with xc = 4.8 . (2.15)

Because of this cutoff on the fraction of the energy of the e−/e+ beam carried by the

photon, one needs a minimum energy Eb = 453GeV to produce the 750GeV resonance.

Our results for the cross section for Φ production via γγ collisions at different e+e−

collision centre-of-mass energies are presented in figure 4. The above-mentioned choices

of laser energy and the helicities of e−, e+ as well as those of the lasers l1, l2, are used

in our numerical calculations, ensuring that the JZ = 0 contribution is dominant for the

production of the scalar resonance. Our results include thus the folding of the expected

helicities of the backscattered photons with the cross section. We see that the Φ production

cross section is maximized for an e+e− centre-of-mass energy ∼ 950GeV.

2.4 Φ production in e+e− collisions

As the Φ state has the loop-induced couplings to electroweak gauge bosons given in

eqs. (2.1) and (2.4), it can be produced in the same processes as the Standard Model-like

Higgs boson, namely the WW and ZZ fusion processes e+e− → Φνν̄ and e+e− → Φe+e−

and the Higgsstrahlung process e+e− → ΦZ. We also consider the companion process

e+e− → Φγ, which occurs via the Φγγ and ΦZγ couplings that are generated through the
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same loops as the ΦZZ coupling. The couplings used in the discussion are8

S V µ(p1)V
ν(p2) : e/(vsW )(p1 · p2gµν − pµ1p

ν
2)cΦV V

P V µ(p1)V
ν(p2) : e/(vsW )(iǫµνρσp

ρ
1p

σ
2 )c̃ΦV V (2.16)

Neglecting the small standard-like contribution,9 the total cross section reads [114]

σ(e+e− → ZΦ) =
2πα2

s
λ1/2

[(

1 +
1

6

λ

z

)

(D2
+ +D2

−) +
1

6

λ

z
(D̃2

+ + D̃2
−)

]

, (2.17)

with z = M2
Z/s, and λ1/2 the usual two-particle phase-space function defined by λ1/2 =

√

(1−M2
Φ/s−M2

Z/s)
2 − 4M2

ΦM
2
Z/s

2 → 1−M2
Φ/s in the limit MZ ≪ √

s. The scalar con-

tributions D± are given in terms of the scalar coefficients c1 and c2 and reduced propagator,

PZ = 1/(1− z) by

D+ = c2(1− PZ)− c1(1 + PZs
2
W /c2W ) ,

D− = c2[1 + PZ(1− 2s2W )/(2s2W )]− c1[1 + PZ(1− 2c2W )/(2c2W )] , (2.18)

and the pseudoscalar contributions D̃± are given by similar expressions in terms of the

corresponding pseudoscalar coefficients c̃1 and c̃2.

The process e+e− → Φγ proceeds through the s-channel exchange of the Z boson and

the photon via, respectively, the ΦZγ and Φγγ induced couplings. Neglecting the small

Standard Model-like loop-induced contribution [115–118], the cross section is given by [114]

σ(e+e− → Φγ) =
πα2

3

λ3/2

M2
Zc

2
W s2W

[

(D1 + D̃1) + (D2 + D̃2) + (D3 + D̃3)
]

, (2.19)

with

D1 = c22[2s
4
W + PZ(1− 4s2W )s2W + P 2

Z(1/4− s2W + 2s4W )] ,

D2 = c21[2c
4
W − PZ(1− 4s2W )c2W + P 2

Z(1/4− s2W + 2s4W )] ,

D3 = c1c2[4s
2
W c2W + PZ(1− 4s2W )(1− 2s2W )− 2P 2

Z(1/4− s2W + 2s4W )] , (2.20)

and similarly for the CP-odd D̃i contributions. One should note that in the CP-odd

case both the e+e− → ZΦ and e+e− → γΦ cross sections behave like σ ∝ λ3/2 near

the kinematical threshold, and hence are strongly suppressed there, and have an angular

distribution that follow the 1 + cos2 θ law.10 These features also hold for a CP-even state

in the cases of both the e+e− → Φγ process eq. (2.19) and also in the e+e− → ΦZ process

at high enough energies when MZ ≪ √
s.

8In principle, the ΦV V ∗ induced couplings should be damped by the virtuality of the off-shell gauge

bosons, in much the same way as in pion scattering where the quadratic pion scalar radius plays an important

role; see for instance ref. [111–113]. Nevertheless, in the approximation that we are using in our exploratory

work, we ignore these corrections and consider only the “point-like” coupling below.
9The full differential cross section including a Standard Model-like contribution as well as the new

contributions and their possible interferences can be found in ref. [114].
10See for instance ref. [119].
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Φγ

c̃1 = c̃2 = 0.02
c1 = c2 = 0.02
MΦ=750 GeV

σ(e+e−→ΦZ,Φγ) [fb]

√
s [TeV]

32.521.751.51.2510.75

1

0.1

0.01

A
H

Φe+e−

Φν̄ν

c̃1 = c̃1 = 0.02
c2 = c̃2 = 0.02
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σ(e+e−→Φℓℓ) [fb]

√
s [TeV]
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0.1
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0.001

0.0001

Figure 5. Cross sections in e+e− collisions for producing a singlet scalar or pseudoscalar state

with MΦ = 750GeV state as functions of the energy
√
s, for induced couplings to electroweak

gauge bosons, c1 = c2 = 0.02 = c̃1 = c̃2. Left panel: Higgsstrahlung e+e− → ΦZ and associated

production with a photon e+e− → Φγ. Right panel: the WW fusion e+e− → Φνν̄ and ZZ fusion

e+e− → Φe+e− processes.

The production cross sections for the two processes e+e− → ZΦ and e+e− → γΦ are

shown in the left panel of figure 5 as functions of the centre-of-mass energy, where loop-

induced couplings c1 = c2 = 0.02 = c̃1 = c̃2 have been assumed in both the scalar and

pseudoscalar cases (these values yield a partial decay width Γ(Φ → γγ) ≈ a few MeV). As

can be seen, for such couplings, the cross sections are small but not negligible. They are

approximately (exactly) the same for the CP-even and CP-odd scalar particles sufficiently

above theMΦ+MZ threshold (for anyMΦ) in the ZΦ (γΦ) case and, for the chosen c1,2, c̃1,2
values, they are a factor of four larger in e+e− → Φγ than in the e+e− → ZΦ processes.

The most important message of the figure is that, contrary to the e+e− → ZH cross

section with standard-like Higgs couplings which drops like 1/s, the cross sections with the

anomalous induced couplings increase with energy (at least at the level of approximation

used here; see e.g. ref. [111–113]). Hence, the highest energies are favored and rates at the

1 fb level can be generated in the chosen example for couplings.

The other processes for the production of a scalar or a pseudoscalar resonance in

e+e− collisions are due to vector boson fusion, e+e− → V ∗V ∗ℓℓ̄ → Φℓℓ̄, which leads to

the Φνν̄ and Φe+e− final states in the WW and ZZ fusion modes, respectively. In

the Standard Model, the spin-summed and -averaged amplitude squared of the e−(k1) +

e+(k2) → ν(p1) + ν̄(p2) + Φ(p3) process for WW fusion is given by [120]

|M|2SM = σ0[4M
4
W u1t2] with σ0 =

4π3α3

s6WM2
W

1

(t1 −M2
W )2 (u2 −M2

W )2
, (2.21)

where the variables are defined as s = (k1 + k2)
2, s′ = (p1 + p2)

2, t1 = (k1 − p1)
2, u1 =

(k1 − p2)
2, t2 = (k2 − p1)

2 and u2 = (k2 − p2)
2. In the case of the scalar resonances S and
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P the amplitudes-squared would become [120]

|M|2S = σ0g
2
SWW

[

t1u2(u
2
1 + t22 + t1u2 − 2ss′) + (ss′ − t2u1)

2
]

,

|M|2P = σ0g
2
PWW

[

t1u2(u
2
1 + t22 − t1u2 + 2ss′)− (ss′ − t2u1)

2
]

. (2.22)

A similar expression can be obtained for the ZZ fusion process e+e− → Φe+e− and for

equal gΦZZ = gWWΦ induced couplings, but the cross section is about a factor of ten smaller

compared to σ(e+e− → Φνν̄), as a result of the smaller Ze+e− couplings compared to the

Weν couplings. We have calculated the cross section for the WW and ZZ fusion processes

using the calculations that were developed to study vector boson fusion for anomalous

vertices at the e+e− colliders [121, 122] and the LHC [123, 124]. The cross sections are

shown in figure 5 (right) as a function of
√
s again for c2 = c̃2 = 0.02. Here again they are

the same for CP-even and CP-odd particles. The WW fusion cross section is comparable

to that of e+e− → ZΦ and that of ZZ an order of magnitude smaller. Hence, even if

the couplings of the Φ resonances to γγ, γZ, ZZ and WW states are loop-induced, the

production rates are not negligible at high-energy and high-luminosity e+e− colliders.

3 Benchmark two-Higgs-doublet models

3.1 Properties of the scalar resonances

3.1.1 Review of models and couplings

In this section, we discuss a second possibility [85]: namely that the observed scalar Φ

resonance is the heavier CP-even H state and/or the CP-odd A state of a two Higgs doublet

model (2HDM)11 as realised, for instance, in the Minimal Supersymmetric extension of the

Standard Model (MSSM) [126, 127]. We start by reviewing the CP-conserving 2HDM and,

more precisely, a special MSSM scenario called the hMSSM [128–131], which will be the

basic framework for our second benchmark scenario for the Φ resonance.

The scalar potential of this model, in terms of the two Higgs doublet fields Φ1 and Φ2,

is described by three mass parameters and five quartic couplings and is given by [125]

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 +Φ†

2Φ1) +
1
2λ1(Φ

†
1Φ1)

2 + 1
2λ2(Φ

†
2Φ2)

2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

1
2λ5[(Φ

†
1Φ2)

2 + (Φ†
2Φ1)

2] . (3.1)

The model contains two CP-even neutral Higgs bosons h and H, a CP-odd neutral boson

A and two charged H± bosons, whose masses Mh,MH ,MA and MH± are free parameters.

We assume that the lighter CP-even h boson is the light Higgs state with a mass of Mh =

125GeV that was discovered at the LHC in 2012 [5, 6]. Three other parameters characterize

the model: the mixing angle β with tanβ = v2/v1, where v1 and v2 are the vacuum

expectation values of the neutral components of the fields Φ1 and Φ2, with
√

v21 + v22 =

v = 246GeV, the angle α that diagonalises the mass matrix of the two CP-even h and H

bosons, and another mass parameter m12 that enters only in the quartic couplings among

the Higgs bosons, which is not relevant for our analysis.

11For a review on 2HDMs see ref. [125].
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Φ ĝΦūu ĝΦd̄d ĝΦV V

Type I Type II Type I Type II Type I/II

h cosα/ sinβ cosα/ sinβ cosα/ sinβ − sinα/ cosβ sin(β − α)

H sinα/ sinβ sinα/ sinβ sinα/ sinβ cosα/ cosβ cos(β − α)

A cotβ cotβ cotβ tanβ 0

Table 2. The couplings of the h,H,A states to fermions and gauge bosons in Type-I and -II

2HDMs relative to standard Higgs couplings; the H± couplings to fermions follow those of A.

In this parametrisation, the neutral CP-even h and H bosons share the coupling of

the Standard Model Higgs particle to the massive gauge bosons V = W,Z and one has, at

tree level, the following couplings normalised relative to those of the standard Higgs

ĝhV V = sin(β − α) , ĝHV V = cos(β − α) , (3.2)

while, as a consequence of CP invariance, the CP-odd A does not couple to vector bosons,

ĝAV V = 0. There are also couplings between two Higgs and a vector boson which, up to a

normalization factor, are complementary to the ones above. For instance, one has

ĝhAZ = ĝhH±W = cos(β − α) , ĝHAZ = ĝHH±W = sin(β − α) . (3.3)

For completeness, additional couplings of the charged Higgs boson will be needed in our

discussion: they do not depend on any extra parameter and one has, for instance, ĝAH±W =

1 and gH+H−Z = −e cos 2θW /(sin θW cos θW ).

The interactions of the Higgs states with fermions are more model-dependent, and there

are two major options that are discussed in the literature; see again ref. [125]. In Type-II

2HDMs, the field Φ1 generates the masses of down-type quarks and charged leptons, while

Φ2 generates the masses of up-type quarks, whereas in Type-I 2HDMs the field Φ2 couples

to both up- and down-type fermions. The couplings of the neutral Higgs bosons to gauge

bosons and fermions in the two models are summarized in table 2. (The couplings of the

charged Higgs to fermions follow those of the CP-odd Higgs state.)

We see that the Higgs couplings to fermions and gauge bosons depend only on the

ratio tanβ and on the difference β − α. However, one needs to take into account the

fact that the couplings of the light h boson have been measured at the LHC and found

to be Standard Model-like [132]. With this in mind, we set β − α = π
2 , which is called

the alignment limit [133]. In this limit, the h couplings to fermions and vector bosons are

automatically standard-like, ĝhV V = ĝhuu = ĝhdd → 1, while the couplings of the CP-even

H state reduce exactly to those of the pseudoscalar A boson. In particular, there is no H

coupling to vector bosons, ĝHV V → ĝAV V = 0, and the couplings to up-type fermions are

ĝHuu = cotβ, while those to down-type fermions are ĝHdd = cotβ and ĝHdd = tanβ in

Type-I and -II models, respectively.

Finally, there are also some triple couplings among the Higgs bosons that depend in

addition on the parameter m12. However, in the alignment limit β − α = π
2 the most

important ones involving the lighter h boson are simply λ̂hhh ≈ 1 and λ̂Hhh ≈ 0.
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In addition to tanβ, the other 2HDM parameters are the three Higgs masses MH ,MA

and MH± , which are in principle free. In our scenario we assume that the possible Φ

resonance is a superposition of the H and A states and set MH ≈ MA ≈ 750GeV. This

assumption has several motivations. First, it is a property of the MSSM in the decoupling

limit [134] as will be seen shortly. Then, there is only one hint of a peak at the LHC (not

two) and having two degenerate states enhances the signal (which is a necessity in the

2HDM). Finally, a small breaking of the mass degeneracy would yield a larger signal width

(as may be favoured by the ATLAS data), as will be seen later.

The charged Higgs boson mass and tanβ will thus be the only free parameters, and

in most of our discussion we assume MH± to be comparable to the H/A masses: MH ≈
MA ≈ MH± , as happens in the MSSM scenario in the decoupling limit MA ≫ MZ [134].

Indeed, the MSSM is essentially a 2HDM of Type II in which supersymmetry imposes

strong constraints on the Higgs sector so that only two parameters, generally taken to

be MA and tanβ, are independent. This remains true also when the important radiative

corrections that introduce dependences on many other supersymmetric model parame-

ters [135–137] are incorporated. These corrections shift the value of the lightest h boson

mass from the tree-level value, predicted to be Mh ≤ MZ | cos 2β| ≤ MZ , to the value

Mh = 125GeV that has been measured experimentally [132]. Assuming a very heavy

supersymmetric particle spectrum, as indicated by LHC data [102], and fixing these radia-

tive corrections in terms of Mh, one can write the parameters MH ,MH± and α in terms of

MA, tanβ and Mh in the simple form (writing cβ ≡ cosβ etc..)

hMSSM :

MH =

√

(M2
A
+M2

Z
−M2

h
)(M2

Z
c2
β
+M2

A
s2
β
)−M2

A
M2

Z
c2
2β

M2
Z
c2
β
+M2

A
s2
β
−M2

h

MA≫MZ−→ MA ,

MH± =
√

M2
A +M2

W

MA≫MZ−→ MA ,

α = − arctan

(

(M2
Z+M2

A)cβsβ
M2

Z
c2
β
+M2

A
s2
β
−M2

h

)

MA≫MZ−→ β − 1
2π .

(3.4)

This is the so-called hMSSM approach [128–131], which has been shown to provide a

very good approximation to the MSSM Higgs sector [138].

When MA≫MZ , one is in the so-called decoupling régime, where one has α ≈ β − π
2

implying that the light h state has almost exactly the standard Higgs couplings, ĝhV V =

ĝhff = 1. The other CP-even boson H and the charged bosons H± become heavy and

degenerate in mass with the A state, MH ≈MH± ≈MA, and decouple from the massive

gauge bosons. The strengths of the couplings of the H and A states are the same. Thus, in

this régime the MSSM Higgs sector looks almost exactly like that of the 2HDM of Type-

II in the alignment limit, especially if we use the additional assumption MH± = MA on

the Higgs masses that simplifies further the model. Hence, our discussion below covers

two scenarios: the 2HDM in the alignment limit and the MSSM in the decoupling limit,

augmented by extra vector-like fermions as we discuss in the next subsection.

3.1.2 Boosting the Φ = H/A production rates at the LHC

Loops of the top quark (and lighter standard fermions) are, by themselves, insufficient to

explain the magnitude of the Φ = H,A → γγ signal hinted by the LHC experiments. How
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large is the contribution from heavy vector-like fermions12 that we need to enhance the

Γ(Φ → γγ) rate to fit the estimated LHC cross section at 13TeV, σ(Φ → γγ) ≈ 6 fb?

For MH = MA = 750GeV and tanβ = 1, one has in principle branching ratios of the

order of BR(A → γγ) ≈ 7 × 10−6 and BR(H → γγ) ≈ 6 × 10−6 for the A and H

resonances and total decay widths ΓΦ
tot ∼ Γ(Φ → tt̄) ≈ 32 GeV for the H and ≈ 35 GeV

for the A boson13 which, as discussed previously, are consistent with the total width of

∼ 45GeV favoured by the ATLAS Collaboration.14 At
√
s = 13TeV, the cross sections

in the dominant gg → Φ processes are σ(gg → H) ≈ 0.6 pb and σ(gg → A) ≈ 1.3 pb for

the chosen MΦ and tanβ values. This leads to the following cross section times branching

fraction when the two states are added (the numbers are for the hMSSM),
∑

Φ=H,A σ(gg →
Φ)×BR(Φ → γγ) ≈ 1.2× 10−2 fb. This is to be compared with the reported cross section

σ(gg → Φ) × BR(Φ → γγ) ≈ 6 fb. We conclude that an enhancement factor KH+A
gg×γγ of

about 500 is required when the rates for the two resonances H and A are added in order

to accommodate the observations.

Such an enhancement can be obtained by including singly- or doubly-charged vector-

like leptons in the Φγγ loop vertices and/or also some vector-like quarks in both the Φγγ

and Φgg loops. The contributions of some representative scenarios with vector-like fermions

are illustrated in figure 6 (left), where the boost factors Kgg×γγ obtained as functions of

the charged fermion mass (assumed, for simplicity, to be universal) can be compared with

the factor ∼ 500 that is needed to reach the hinted gg→Φ→γγ rate.

Three scenarios are considered in the left-hand side of figure 6. The first scenario

includes three vector-like pairs of left- and right-handed leptonic doublets (green dotted

line), which leads to the presence of six charged leptons. In this case, the enhancement

factor can reach the level of ∼ 200 when the (common) masses of the vector-like leptons

are close to the 1
2MΦ threshold for which the form factors AΦ

1/2 are maximal; see figure 3.

A second scenario is when three charged dileptons E−− contribute to the Φγγ loop (blue

dotted line). Because of the higher electric charge, the enhancement factor is larger than

in the previous case (a factor of two at the amplitude level). A final scenario is when an

entire generation of vector-like quarks and leptons is added to the standard spectrum (red

solid line). In this case, as in the singlet scenario discussed in the previous section, up- and

down-type quarks (U,D) contribute to both the Φgg and Φγγ loops, and the additional

vector-like charged leptons L also contribute to the Φγγ amplitude.

In this last scenario, in order to suppress the cross section for σ(gg → Φ → tt̄), which

would also be enhanced by the presence of the new U and D quarks, we assume that

tanβ = 3. In this case, ΓΦ ≈ 3GeV in the absence of novel Φ decay modes. A large Φ

width could be recovered, e.g., by allowing invisible Φ decays into the neutral vector-like

leptons,15 Φ→N̄N , with the mass mN adjusted in order to obtain the desired total width.

12The easiest option would have been the introduction of a fourth generation of fermions but it is com-

pletely excluded by the observation of the light h state with standard-like couplings [139–142].
13The numerical analyses on Higgs decays are performed using the program HDECAY. See refs. [143, 144].
14In fact, the best fit to the ATLAS value ΓΦ ≃ 45GeV can be obtained by allowing a 10–15GeV mass

difference between the H and A states. Curiously enough, this is just what happens in the hMSSM: with

MA ≈ 750GeV, one obtains MH ≈ 765GeV for tanβ ≈ 1 [128–130].
15This would be the case if, for instance, the partner neutral lepton is the dark matter particle, with

interactions mediated by the Φ; see, e.g., ref. [145–149].
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Figure 6. Left: the enhancement factors, KH+A
gg×γγ as a function of the lepton mass, in scenarios

with vector-like fermions, of the prospective σ(gg → Φ) × BR(Φ → γγ) signal, compared to

the 2HDM case in which only the top quark contribution for tanβ = 1 is included. Right: the

Φ = H,A line-shape calculated assuming as in the hMSSM MA = 750GeV, MH = 765GeV,

ΓH = 32GeV and ΓA = 35GeV for tanβ = 1, and normalizing the combined signal curve to

σ × BR(pp→H,A→γγ) = 6 fb.

This would also suppress the fraction BR(Φ → tt̄), allowing us to evade even more easily

the constraints from the ATLAS and CMS searches for tt̄ resonances [150, 151].

The right-hand side of figure 6 shows the expected Φ = H,A line-shape, assuming

MA = 750GeV, MH − MA = 15GeV as in the hMSSM, σ × BR(pp → A → γγ)/σ ×
BR(pp → H → γγ) = 2, Γtot(H) = 32GeV and Γtot(A) = 35GeV as in the hMSSM

for tanβ = 1 (modelled as non-interfering Breit-Wigners), and normalizing the combined

signal curve to σ × BR(pp → Φ = H,A → γγ) = 6 fb. The A contribution is the dashed

green line, the H contribution is the dotted blue line, and the sum is the solid red line.

In principle, this line-shape could be distinguished from a single Breit-Wigner, e.g., by its

asymmetry around the peak of the distribution, though this would require large statistics.

3.1.3 Decays of the Φ = H/A states

We turn now to the decays of the Φ = H/A states which, in the two limits of alignment in

the general 2HDM and decoupling in the MSSM, are almost the same (this is particularly

true as we assume that the supersymmetric particle spectrum is very heavy and do not

enter the decays either directly or indirectly in the loop-induced modes). The pattern of

these decays is, to a large extent, dictated by the value of tanβ and the fact that for low

values, the top quark Yukawa coupling ∝ 1/ tanβ is very large, while at high tanβ the

Higgs couplings to bottom quarks and τ leptons, ∝ tanβ, are enhanced; see table 2.
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We start with the modes by which the Φ signal has been observed, i.e., the Φ → γγ

mode and the (inverse of the) Φ → gg mode. In these two cases, the partial decay widths,

assuming that only heavy fermions are running in the loops,16 are given by the same

expressions eqs. (2.6), (2.8), (2.9) shown previously [18–20, 108], see also figure 3.

The other important decays of the Φ states would be into fermion pairs, with partial

widths given, in terms of the fermion velocity βf = (1− 4m2
f/M

2
Φ)

1/2, by [108]

Γ(Φ → ff̄) = Nc

Gµm
2
f

4
√
2π

ĝ2Φff MΦ βpΦ
f , (3.5)

with pΦ = 3 (1) for the CP-even (odd) Higgs boson. In principle, the only relevant decays

at low tanβ values are those into tt̄ pairs, while at high tanβ values the decays into

bb̄ and τ+τ− pairs are dominant. All other decay modes17 are strongly suppressed in

the alignment/decoupling limits of 2HDMs/MSSM. In particular, this is the case for the

H → WW,ZZ decays of the CP-even H state and the A → hZ decays of the CP-odd A

state, which involve the couplings ĝHV V = ĝZhA = cos(β − α) → 0. The decay H → hh,

which involves the trilinear coupling gHhh that is small or vanishing, is also suppressed.

The branching fractions for the main decay modes of the H/A states, namely Φ →
tt̄, bb̄, τ+τ− and the loop-induced decays Φ → γγ, gg are shown in the left panel of figure 7

for MH = MA = 750GeV as functions of tanβ. A Type-II 2HDM like the MSSM has been

assumed, and the value of tanβ is restricted to lie in the range 1
3 . tanβ . 60 for which

both the top and bottom quark Yukawa couplings, yt = mt/v tanβ and yb = m̄b tanβ/v,

are perturbative at the weak scale (using the pole t-mass mt = 172GeV and the running

b-mass at the scale of the Higgs mass m̄b = 3GeV [102]).

As expected, the decay Φ → tt̄ dominates by far when tanβ . 5, for which the top

Yukawa coupling is the largest: yt≫yb. On the other hand, for tanβ & 10 one has yb ≫ yt
and the decay Φ → bb̄ is the dominant one. The branching fractions for decays into τ

pairs is BR(Φ → τ+τ−) ≈ 10%, a simple reflection of the fact that 3m̄2
b/m

2
τ ≈ 10, with 3

being the colour factor. For intermediate tanβ values, tanβ ≈ 5–10, the suppression of the

Φtt̄ coupling is already effective, whereas the Φbb̄ coupling is not yet strongly enhanced,

resulting in decay rates into tt̄ and bb̄ that are comparable. The cross-over point is at

tanβ ≈
√

mt/m̄b ≈ 7.

The decays Φ → γγ have constant branching fractions of the order of 10−5 at low tanβ

and, starting from tanβ ≈ 5, they decrease with increasing tanβ reaching BR(Φ → γγ) ≈
10−7 for tanβ ≈ 30. The branching ratio for the Φ → gg decay is more than two orders of

magnitude higher, O(32α
2
s/α

2) ≈ 400. Thus the maximal values of the Φ → γγ and Φ → gg

branching ratios, and hence the Φ cross section at a pp collider, will be obtained at low

tanβ values. We note also that, for MΦ = 750GeV, values tanβ & 20 are excluded by the

search for heavy Higgs particles decaying into τ+τ− pairs [131].18

16There is no W contribution in the H case as the coupling ĝHV V → 0 is suppressed in these limits and

the contribution of the charged Higgs boson is very small [85].
17There is, however, one exception: the decays Φ → H±W∓ with light charged Higgs bosons. In general,

we assume this channel to be kinematically closed, an assumption that we revisit later.
18The ATLAS and CMS bounds are less restrictive, with only values tanβ & 30 being excluded for

MΦ = 750GeV [152, 153]. However, these searches were interpreted in a benchmark scenario in which

additional decays of the A/H bosons, namely supersymmetric decays into charginos and neutralinos, are

present, reducing the interesting A/H branching ratios into τ+τ− final states.
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Figure 7. The branching ratios for Φ = H/A decays into various final states for MΦ = 750GeV

as functions of tanβ (left) and the corresponding total decay width (right).

The total decay width of Φ = H,A is shown in the right panel of figure 7 as a function

of tanβ. For the reasons discussed above, the total width is large at low and high tanβ

values, and values tanβ < 1 lead to an unacceptably large width for Φ. The width has a

minimum of about 1GeV at the cross-over tanβ value, tanβ ≈
√

mt/m̄b ≈ 7. If the total

width ΓΦ ≈ 45GeV apparently observed by the ATLAS Collaboration [3] is to be attained,

values tanβ ≈ 1 or tanβ ≈ 60 would be required, but the high-tanβ option is completely

excluded by the H/A → τ+τ− searches at the previous LHC run [152, 153].

Another argument that disfavours the tanβ < 1 option is that searches for resonances

decaying into tt̄ final states have been conducted at
√
s = 8TeV with 20 fb−1, setting an

upper limit on σ(pp → X → tt̄) of about half a pb [150, 151], which is attained in our

model for the Φ signal for tanβ ≈ 1. Any value tanβ < 1 would lead to a gg → Φ → tt̄

rate that is too high and hence excluded by the ATLAS and CMS searches.19

Hence, the value tanβ ≈ 1 seems to be optimal for coping with the LHC data on the

Φ signal, when all constraints from other search channels are fulfilled. We therefore use

the value tanβ = 1 as a benchmark. This choice has the additional advantage that, in the

2HDM context, the predictions of the Type-I and -II variants are quite similar, so that our

discussion then becomes more general.

Nevertheless, even for this optimal value of tanβ, the partial decay widths of the Φ

states into γγ and gg are far too small to explain the large cross section for the diphoton

19We note that these searches have in fact been performed only for electroweak spin-one resonances, like

new neutral gauge bosons or electroweak Kaluza-Klein excitations decaying into tt̄ pairs [150, 151]. In

these cases, the main production channel is qq̄ annihilation and there is no interference with the (coloured)

QCD qq̄ → tt̄ continuum background. In our case, the signal is due to gg → Φ → tt̄, which interferes in a

complicated way with the gg → tt̄ QCD background as discussed in e.g. ref. [131]. A more detailed analysis

is thus needed to interpret more accurately the ATLAS and CMS exclusion limits but, grosso modo, they

should be of the same order as those derived for spin-1 resonances.
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Figure 8. Generic Feynman diagrams for Φ production at pp colliders.

signal, as discussed in [85] and in the singlet model considered previously. However, in our

particular 2HDM/MSSM scenario, the presence of heavy vector-like quarks which couple to

the Φ states is in general strongly disfavoured: vector-like quarks would enhance strongly

the cross section for gg → Φ production and, since the main decay mode is Φ → tt̄, the

rate for gg → Φ → tt̄ will exceed by far the limit imposed by the null results of searches

for tt̄ resonances [150, 151] in the previous LHC Run 1. The mitigating strategy, as was

discussed in the previous subsection, would be to suppress the top quark contribution to

the Φgg vertex by choosing intermediate values of tanβ in an attempt to allow for such

vector-like quarks.20 In this case the total width of Φ, which will be suppressed because

it is controlled by the decay Φ → tt̄ as the vector-like quarks are supposed to be much

heavier than 1
2MΦ [155–158], would be much smaller than the value ΓΦ ≈ 45GeV favored

by the ATLAS measurement [3]. This value can be recovered by allowing for decays into

the lighter neutral leptons. On the other hand, charged vector-like leptons enter only in

the Φγγ couplings, so here we consider their presence only.

Summarizing this 2HDM/MSSM scenario, we have two (near-)degenerate neutral Higgs

bosons, one CP-even, H, and one CP-odd, A, both with masses MΦ = 750GeV. We

assume that tanβ = 1, so that they couple strongly to the top quark, but not to other

standard particles. There is also a charged Higgs boson, H±, with a constraint on its

mass MH± & 160GeV [159–161], though we favour MH± ∼ 750GeV. We postulate a

number of charged electroweakly-interacting particles with masses not too far from 1
2MΦ,

that enhance strongly the Φγγ coupling, and we also have neutral partners, N , of these

particles that are invisible, which might appear in the decays of the Φ states.

3.2 Production of the Φ = H,A states at pp colliders

We come now to the production of the Φ, interpreted in this section as a pair H,A of Higgs

particles, at pp colliders; some generic Feynman diagrams are shown in figure 8.

As already mentioned, the leading production mechanism would be gluon-gluon fusion,

gg → Φ, generated by triangular loops of top quarks, figure 8a, neglecting the possibility

of new colored particles such as vector-like quarks. Referring back to eqs. (2.6), (2.8)

and (2.9) for the partial decay width Γ(Φ → gg) and the form factors AΦ
1/2 that govern

20Vector-like quarks could be useful in order to explain another excess, albeit smaller, observed at the

LHC: namely a 2σ deviation of the cross section for the associated pp → tt̄h production process for the

standard Higgs boson [132]. This excess can be explained by the presence of vector-like quarks that enhance

the top Yukawa coupling through mixing with no alteration of the gg → h cross section and the h → γγ

decay branching ratio [154]. Note, however, that care should be taken with the interactions of the new

fermions introduced here not to alter too much the properties of this standard Higgs boson [85].
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high collider energies. In this case, one is approximately in the chiral limit MΦ ≫ mt,

which leads to almost exactly the same cross sections for the CP-even H and CP-odd A

states. Because of the reduced phase space, the production rates are at least two orders

of magnitude smaller than in the dominant gg → Φ fusion modes even at
√
s = 100TeV,

as seen in figure 9. The rates are nevertheless significant as, for the planned integrated

luminosities, one can collect more than 104 and 106 events, respectively at HL-LHC and

FCC-hh/SPPC, with the Φ states decaying into tt̄ pairs, resulting in four-top final states.

The processes would give direct measurements of the tt̄Φ coupling, a key test of this model

and a possible discrimination between the CP-even and odd possibilities [174–176].21

We should note that the cross sections for these processes have been obtained using

a modified version of the leading-order program HQQ [183]22 with the renormalisation and

factorisation scales fixed to µ0 = mt +
1
2MΦ, and again using the MSTW2008 set of

structure functions. The QCD corrections have been known to NLO [185–189] in the case

of a CP-even Higgs state for some time and have been derived more recently for the CP-odd

case. However, at
√
s = 14TeV, they lead to a K-factor that is of order unity for a Higgs

boson with a mass ∼ 125GeV. Considering the process at LO only as is done here should

therefore be an adequate approximation.

There are several processes in which a pair of heavy Higgs bosons is produced, see, e.g.,

ref. [190–193]. First there is HA production that, at moderate energies, proceeds primarily

via the qq̄ → HA process with the s-channel exchange of a virtual Z boson that has a

maximal coupling to the Higgs pair in the alignment/decoupling limit, ĝZHA = 1. At higher

energies, because of the significantly larger gluon luminosity, the dominant production

mode becomes gg → HA, which is mediated almost exclusively by top quark loops. Their

contribution comes primarily from box diagrams in which two Higgs states are emitted

from the internal quark lines, but there are additional ones from the triangular loops that

produce an off-shell CP-odd A boson which splits into HA final states: gg → A∗ → HA.

The latter process involves the trilinear HAA coupling that is expected to be small in the

alignment limit of the 2HDM or the decoupling limit of the MSSM.

One can also produce HH and AA pairs in gluon-fusion processes with contributions

from both the box diagrams and triangular loops with intermediate h,H virtual states

that then split into to the two Φ bosons, gg → h∗, H∗ → HH or AA; figure 8. The cross

sections, evaluated at LO using the programs HPAIR [183, 184] and the LO MSTW2008

PDFs, are also shown in figure 9c. As can be seen, these cross sections are rather small,

barely reaching the 10 fb level even at
√
s = 100TeV. Their signature, dominated by final

states with four top quarks, will be similar to that of the tt̄Φ process discussed above.

We may also consider the possibility of deviating from the alignment or decoupling

limit, with ĝHV V = cos(β − α) small but non-zero. In this case two interesting types of

process become possible. First, one can produce singly the heavy CP-even H boson in

21Further, if Φ indeed has invisible decays into dark matter particles, then the associated tt̄Φ process [177]

and the mono jet channel [178, 179] are the only ways to search for such a mode at the LHC, as the VBF

(see for example ref. [180]) and VH modes (see for example ref. [181, 182]) modes are no longer available

in this aligned 2HDM context.
22A summary is given in ref. [184].
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case, and would enable additional decays to occur. In the case of the CP-even H boson,

important possibilities would be H → ZZ and H → WW , which would grow like M3
H ,

to be contrasted with MH for the H → tt̄ decay, as a consequence of the growth of the

longitudinal gauge boson wave functions with energy, and would dominate at high mass if

not for the ĝHV V coupling suppression. Another interesting decay for a pseudoscalar Higgs

boson, A → hZ, would also have a non-zero branching ratio if ĝZhA were not small. This

would also be the case of the other very interesting decay of the CP-even H state, H → hh,

which involves the triple coupling gHhh that is somewhat model-dependent23 in a 2HDM,

but is in general small in the alignment limit.

The cross sections for the processes gg → H → WW,ZZ, hh and gg → A → hZ are

shown in the right panel of figure 10 as functions of
√
s, assuming the couplings found in

the hMSSM (2HDM of Type II). The decay rates have been evaluated using the program

HDECAY [143, 144], which includes the relevant higher-order effects. As can be seen, even

for the very small value cos2(β − α) ≈ 8 × 10−4 used for illustration (and which leads to

very tiny branching ratios of the order of a few times 10−3 for the H → ZZ,WW and

A → hZ modes and of the order of 10−2 for the H → hh decay), the rates are small but

not negligible at the high luminosities planned for high energies.

3.3 Φ = H,A production at e+e−, γγ and µ+µ− colliders

We study now the production of the Φ = H,A states at high-energy e+e− colliders. For

at least two decades, these machines have been discussed as possible follow-ups for the

LHC. Two options for high-energy e+e− linear colliders24 have been discussed. One is the

ILC [23–26], which could ultimately reach energies of the order of 1TeV, as required for

Φ production. The other is CLIC [27], which is planned to cover the multi-TeV scale and

can certainly reach a centre-of-mass energy & 1.5TeV that is favoured in the context of

this analysis. Both colliders are designed to reach an integrated luminosity of 1 ab−1.

In the exact alignment or decoupling limit, the most important channel for Φ produc-

tion in e+e− collisions [201–203] is associated production of the HA states through the

s-channel exchange of a virtual Z boson, e+e− → HA in figure 11a, as the coupling is then

maximal, ĝZHA = sin(β − α) → 1. The cross section is simply given by

σ(e+e− → HA) =
G2

µM
4
Z

96πs
(v̂2e + â2e)ĝ

2
ZHA

λ3

(1−M2
Z/s)

2
, (3.6)

23This coupling may also appear in the MSSM, where the coupling gHhh depends on the supersymmetric

spectrum that enters the radiative corrections in the Higgs sector [127]. However, if only the dominant

radiative correction that also enters the lightest h boson mass [135–137] is taken into account, the coupling

is fixed in terms of tanβ and MA for Mh = 125GeV [131]. This coupling is also small in the decoupling

limit that applies for MΦ = 750GeV.
24We do not discuss here the FCC-ee [28] and CEPC [29] circular machines, which are planned for a

maximum centre-of-mass energy of
√
s = 350GeV, far below the kinematical threshold for probing directly

the 750GeV Φ states and the associated matter particles. However, these machines would be able to probe

these scenarios indirectly via precise measurements of the standard-like h boson couplings, which would

be affected by the presence of the new particles. We note, however, that a very precise determination

of the hγγ coupling could be performed already at the HL-LHC by measuring the ratio of h → γγ and

h → ZZ∗ → 4ℓ± signal strengths, as a precision of O(1%) can be achieved [199, 200].

– 24 –



J
H
E
P
0
3
(
2
0
1
6
)
2
0
5

e+

e

Z H

A

a)
t

t̄

,Ze+

e

b) c)

F

Figure 11. Feynman diagrams for Φ production at e+e− colliders.

where, as usual, the reduced vector and axial-vector couplings of the electrons to the Z

boson are given by the Z charges of the electron, âe = −1 and v̂e = −1 + 4s2W , and λ is

the usual two-particle phase-space function that, in the case of two equal particle masses,

reduces to the velocity of the H/A bosons: λ → β =
√

1− 4M2
Φ/s.

The production rate is shown in the left panel of figure 12 for MH = MA = 750GeV

as a function of the centre-of-mass energy
√
s. As it scales like 1/s, the cross section is not

that large, namely O(1) fb above the 2MΦ threshold, leading to a thousand events that

can be fully reconstructed for the anticipated luminosity of 1 ab−1. The main detection

channel would be the four-top final state but, the enhanced tt̄gg and possibly tt̄γγ final

states could also be observed with very high luminosities.

The other important Φ production processes are associated production with top quark

pairs [204, 205], e+e− → tt̄Φ and figure 11b, for which the combined cross sections are at

the level of 0.1 fb at high enough energy, i.e., sufficiently far above the kinematical threshold√
s ≈ 1.1TeV. The cross sections are shown for H and A as functions of

√
s in the left panel

of figure 12, again for MA = MH = 750GeV and tanβ = 1. The signature would be four

top quarks in the final state, which should have little background, except from the process

e+e− → HA before the two H,A states are reconstructed. We note that the cross sections

for H and A production are slightly different because, at energies below
√
s ≈ 3TeV, one

is not yet in the chiral limit in which top quark mass effects are negligible. In fact, the

threshold rise of the cross sections is completely different for e+e− → tt̄A and e+e− → tt̄H,

as has been shown in ref. [206, 207], and a scan around the 2mt+MΦ threshold could allow

for a distinction between the CP-even and CP-odd Higgs cases.

Finally, there are also processes for the single production of the CP-even H boson,

such as vector boson fusion, e+e− → Hνν̄ and e+e− → He+e−, and Higgs-strahlung,

e+e− → HZ, as well as the associated production of the pseudoscalar A and the standard-

like h state, e+e− → hA. The rates are, however, suppressed by the small couplings

ĝV V H = ĝZhA = cos(β − α) → 0 in the alignment/decoupling limits of the 2HDM and

MSSM scenarios, respectively. The cross sections for these processes are shown in the right

panel of figure 12 as functions of
√
s for cos(β − α) = 0.1.

The rates for the s-channel processes e+e− → Z∗ → hA/HZ, which have comparable

cross sections at centre-of-mass energies sufficiently above the kinematical thresholds, as

MA = MH and Mh ≈ MZ , scale like 1/s and are therefore small. In turn, as it grows

like log(s/M2
W ), the rate for the WW fusion process e+e− → Hνν̄ is very large and,

at high enough energies, it could dominate all other Φ production processes, despite the
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Figure 12. Production cross sections for the Φ = H,A states at an e+e− collider as a function of

the centre-of-mass energy
√
s, assuming MΦ = 750GeV and tanβ = 1. The processes considered

are: e+e− → HA and e+e− → tt̄Φ with Φ = A or H in the alignment limit cos2(β − α) = 0 (left

panel) and e+e− → Hνν̄,He+e− and e+e− → hA,HZ for cos2(β − α) = 10−2 (right panel).

cos2(β − α) suppression factor. The ZZ fusion process e+e− → He+e−, which has an

order of magnitude smaller rate compared to WW fusion as can be inferred from the W/Z

couplings to electrons, could also be observable for not too tiny ĝHV V couplings.

In addition to the conventional e+e− mode, future high-energy e+e− linear colliders

can be made to run in the γγ mode by using Compton back-scattering of laser light off

the high-energy electron beams [30]. As discussed earlier, these colliders could have up to

∼ 80% of the energy of the e+e− collider, with a luminosity that is quite similar. In the

context of the Φ = H,A states, the motivation for such a γγ machine would again clearly

be the direct and precise measurement of the Φγγ coupling, since the s-channel production

of resonances, figure 11c, is possible in such a mode [31–37].

As discussed previously, the production of a spin-zero particle at such a collider occurs

through the JZ = 0 channel. In the 2HDM studied in this section, in contrast to the

singlet model studied earlier, the total decay widths of the 750GeV Φ states are significant,

namely about ΓΦ ≈ 30GeV. For polarized initial-state photons, taking into account the

total decay width ΓΦ and the partial widths for decays into two photons Γ(Φ → γγ) and

into a given final state X, Γ(Φ → X), the cross section for the process γγ → Φ → X

is given by eq. (2.12). As explained earlier, with appropriate choices of the helicities of

the e−, e+ as well as the two laser beams, one can arrange that the two back-scattered

photons dominantly have identical helicities: λ1λ2 = 1, so as to project out the JZ = 0

component and therefore favour the resonant Higgs signal. In order to maximize the

effective cross section for Higgs production, the γγ energy should be tuned so that the

peak of the luminosity function at ∼ 0.8
√
se+e− (for a perfect photon spectrum) occurs at

MΦ. As in our present case the Φ particles decay almost exclusively into tt̄ final states

with BR(Φ → tt̄) ≈ 1, the main background is the γγ → tt̄ process whose cross section in
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Figure 13. The invariant mass distribution dσ/dMγγ in fb/GeV for the process γγ → tt̄ in

the γγ mode of a linear e+e− collider. Shown are the pure continuum QED contribution, the

additional separate contributions due to s-channel exchanges of the H and A states, and the full

set of contributions QED+H + A. We assume MA = 750GeV, MH = 770GeV, ΓA = 35GeV,

ΓH = 32GeV and tanβ = 1. In the left panel, only the top quark loops are taken into account

in the Φγγ couplings. In the right panel, additional vector-like fermion contributions that increase

H → γγ and A → γγ amplitudes by factors 10 and 15, respectively, are included.

the JZ =0 mode is significant as there is no mass suppression like for light fermions. One

can impose a polar cut in the centre of mass of the two-photon system to eliminate part

of the background events at high invariant masses, which are peaked in the forward and

backward directions, with only a moderate loss of the signal.

Figure 13 displays the prospects for measuring the doublet Φ signal in γγ collisions,

taking into account the interference between signal and background. The cross section σ̂

is for the process γγ → tt̄, taking into account both the QED process and the resonance

production γγ → Φ → tt̄ and including the interference. We again make the analysis

choosing λe−λl1 = λe+λl2 = −1 and λe− = λe+ . These choices ensure that the photon

luminosity Lγγ peaks at around 80% of the energy of the parent e+e− collider and that

the two colliding photons dominantly have the same helicities. This analysis was made

assuming MA = 750GeV, MH = 770GeV, ΓA = 35GeV, ΓH = 32GeV and tanβ = 1 for

a 1TeV parent e+e− collider. In the left panel, we show for illustration the case where

only the top loop contributions to the Φγγ couplings are taken into account, whereas in

the right panel additional contributions that enhance the previous H → γγ and A → γγ

amplitudes by factors 10 and 15, respectively, are also included. Like figure 6 these figures,

too, display how two closely spaced states would look like a single wide resonance.

For completeness, we close this section with a few words about high-energy muon

colliders. In µ+µ− collisions, the production cross section for a Higgs state decaying into
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a final state X is given, in terms of the partial decay widths, by [208]

σ(µ+µ−→Φ→X)=
4πΓ(Φ→µ+µ−)Γ(Φ→X)

(s−M2
Φ)

2 +M2
ΦΓ

2
Φ

≃ 4π

M2
Φ

BR(Φ→µ+µ−)BR(Φ→X), (3.7)

where the second term, which gives the effective cross section, is obtained assuming that

the energy spread of the µ+µ− machine is much smaller than the Higgs total decay width.

In our case, the relevant final state to be considered is Φ → tt̄, which has a branching ration

of order 1. As the Φ mass that we consider here, MΦ = MH,A ≈ 750GeV, is large and

the branching fraction BR(Φ → µ+µ−) low, BR(Φ → µ+µ−) ≈ 1.5 × 10−7 for tanβ ≈ 1,

the production rate would, in this case, be extremely small. We will therefore not pursue

further this µ+µ− option.

3.4 Production of charged Higgs bosons

We now turn to the discussion of the charged Higgs bosons, which is complicated by the

fact that we do not know their mass. Indeed, the only available information on MH± is

that it should be heavier than about 160GeV, as a result of the negative searches in top

decays t → bH+ → bτν at LHC Run 1 with
√
s = 8TeV and about 20 fb−1 data [159–161].

Therefore, we consider the production cross sections at pp and e+e− colliders as functions

of MH± for different centre-of-mass energies. For the other model parameters, we continue

with tanβ = 1, cos2(β − α) = 0 and MΦ = MH,A = 750GeV.

We first discuss H± production at pp colliders, for which our results are shown in

figure 14 for the two centre-of-mass energies
√
s = 14TeV and

√
s = 100TeV, borrowing

some results from the recent analysis of ref. [209]. The dominant process by far is the

associated gb → tH± mechanism, which for
√
s = 14TeV and tanβ ≈ 1 has a cross section

above the pb level for MH± . 400GeV, dropping to 30 fb for a mass MH± ≈ 1TeV. For

low H± masses, it is followed by the qq̄ → γ∗, Z∗ → H+H− process, which has a rate that

is two orders of magnitude lower. A third possibility would be associated HH± and AH±

production viaW exchange, qq̄′ → W ∗ → ΦW±, with a rate comparable to that of pair pro-

duction for MH± ≈ 400GeV and larger beyond. The cross sections are nevertheless small,

below the fb level. Moving to
√
s = 100TeV, all cross sections increase by two to three

orders of magnitude. Hence, production of the H± states is copious at these high energies.

Turning to high-energy e+e− colliders, the most important process for producing

charged Higgs states is the pair production process [201–203], which proceeds via γ∗, Z∗

exchange, and for which the cross section depends only on the centre-of-mass energy and

MH± . It is shown as a function of MH± in figure 15 for a fixed centre-of-mass energy of√
s = 2TeV. As can be seen, it drops from about 10 fb at low masses MH± ≈ 160GeV to

about 2 fb at MH± ≈ 750GeV. Thus, the cross section is approximately a factor of two

larger than for HA production, as a result of the additional photon exchange. For masses

above 750GeV, the cross section drops quickly as a consequence of the velocity suppression

near the kinematical threshold, σ(e+e− → H+H−) ∝ β3
H± . Another process in the context

of e+e− colliders would be associated production with heavy quarks, e+e− → tbH±. Sim-

ilarly to associated Φ production with top quarks, the cross sections may reach the 0.1 fb

level for tanβ = 1 and H± states that are not too heavy [204, 205].
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Figure 16. Branching ratios for the decays of the Φ = H/A states and their total decay widths

(in TeV) as functions of MH± for tanβ = 1, cos2(β − α) = 0 and MΦ = 750GeV.

decays H± → W±Φ take place as the coupling gH±W∓Φ is O(1) in the alignment limit of a

2HDM (in the MSSM, this channel is kinematically closed at the two-body level since we

have MH± ≈ MΦ and it is strongly suppressed at the three-body level [210]). Nevertheless,

BR(H± → ΦW ) is small and does not exceed 50% even for MH± = 1TeV. Hence the main

topology in the search for the H± states at proton colliders would be gb → tH− → ttb,

which would be similar to tt̄ plus jet production, rendering its detection not very easy. In

e+e− collisions, one should focus on the tt̄bb̄ final-state topology.

Another possibility that should be considered is the decay of the Φ = H,A states into

H± bosons. Indeed, if we are in the opposite situation to that considered above, i.e., with

MΦ & MH± + MW , the decays Φ → H±W∓ will take place (although in an MSSM-like

scenario with MH± ≈ MΦ, these features do not occur). For our baseline choice tanβ = 1,

the two dominant branching ratios are shown in figure 16, where one can see that, when

the decays Φ → H±W± are accessible, they tend to dominate over the tt̄ channels. At the

same time, the total decay widths of the Φ states would become much larger than the value

ΓΦ ≈ 30GeV that seem to be favoured by the ATLAS search. Beyond MH± ≈ 650GeV,

these special decays are closed, and one has BR(Φ → tt̄) ≈ 1. These decays are hence

disfavoured if we want to stay in a minimal scenario for the observed production rate and

the total width of the diphoton enhancement, with only a few ingredients.

4 Vector-like fermions

The existence of massive vector-like fermions is a common feature of both the singlet

models discussed in section 2 and the 2HDM scenarios discussed in section 3. Therefore, in

addition to further studies of the Φ particle itself and searches for possible bosonic partners

at the LHC and future colliders, a useful way to probe different models would be via direct

production of vector-like fermions. In this section, we focus on this important aspect of
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model testing, considering both pair and single production of these fermions. We start by

summarising the couplings of these particles, which have also been discussed frequently

elsewhere, see, e.g., refs. [214, 215, 228, 229].25,26

4.1 Couplings, mixing and decays of vector-like fermions

Except for singlet neutrinos, which have no electromagnetic and weak charges, all the other

vector-like fermions couple to the photon and to the electroweak gauge bosons W/Z with

typical electroweak strength. These couplings allow for the pair production processes at

colliders. To obtain the cross sections, one needs in addition to the electric charge eF in

units of the proton charge, the vector couplings of the vector-like fermion F to the photon

and Z boson, which are given by

vγF = eF , vZF ≡ vF =
2IF3L + 2IF3R − 4eF s

2
W

4sW cW
, vWF =

IF3L + IF3R√
2sW

, (4.1)

where IF3L, I
F
3R are the third components of the left- and right-handed weak isospins of the

fermions, and s2W = 1 − c2W ≡ sin2 θW . The axial-vector couplings of the fermions to the

Z boson, aF = (2IF3L − 2IF3R)/(4sW cW ), are zero by construction for vector-like fermions,

unlike for Standard Model quarks and leptons. In addition, there is a charged-current

coupling between the two components of each fermion doublet and the W boson. As

seen in eq. (4.1), this charged coupling is twice as large in the case of the vector fermions

compared to standard ones, because of the vectorial nature of the fermion F .

The vector-like leptons and quarks can mix with the Standard Model fermions that

have the same U(1)Q and SU(3)C assignments. This mixing would give rise to new interac-

tions that determine to a large extent the decay properties of the vector-like fermions, and

allow for a new production mechanism, namely single production in association with a light

fermion partner. Generic Feynman diagrams for these processes are shown in figure 17.

The mixing pattern depends sensitively on the model considered and is, in general, rather

complicated, especially if one includes the mixing between different families. However, this

intergenerational mixing should be very small as it could induce flavour-changing neutral

currents that are severely constrained by existing data [102].

In the present analysis, we neglect the intergenerational mixing and treat the remaining

mixing angles as phenomenological parameters. The interactions of the electron and its

partner neutrino with vector-like charged and neutral leptons N,E may be written as

LV = gW [ζWνE ν̄eγµE + ζWeN ēγµN ]Wµ + gZ [ζZeE ēγµE + ζZνN ν̄eγµN ]Zµ + h.c. , (4.2)

where gW = e/
√
2sW and gZ = e/2sW cW , and we have anticipated a small mixing angle27

so that we have written sin ξi ≃ ξi. The generalization to the other lepton families and to

vector-like quarks is straightforward. At least in the case of couplings to third-generation

25For recent reviews of vector-like quarks see refs. [211–213].
26For discussions of vector-like leptons in particular at the LHC see for instance refs. [216–227].
27For a detailed and relatively recent discussion see for instance ref. [230].
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quarks and leptons, one should also consider the mixing via the scalar sector,28 including

the Standard Model-like h state as well as the Φ and (in doublet models) the H± states.

Normalizing the mixing through the Z and Higgs bosons in the same way by also defining

gS = e/2sW cW , the Lagrangian describing this mixing, where the sum is over all scalars

and fermions, is given by

LS = gS
∑

S,f

ζSfF f̄FS + h.c. , (4.3)

which we now use in analysis of some possible phenomenological signatures.

The heavy fermions can decay through mixing into massive gauge bosons plus their

ordinary light partners, F → V f with V = W,Z or F → hf (and eventually even F → Φf

for very heavy fermions); see figure 17a (left). Using the scaled masses vX = M2
X/m2

F and

neglecting the ordinary fermion masses (which should be an excellent approximation even

in the case of the top quark), the partial decay widths are given by [214, 215, 229]

Γ(F → Wf ′) =
α

16s2W c2W
ζ2WFf ′

m3
F

M2
W

(1− vW )2(1 + 2vW ) ,

Γ(F → Zf) =
α

32s2W c2W
ζ2ZFf

m3
F

M2
Z

(1− vZ)
2(1 + 2vZ) ,

Γ(F → Sf) =
α

32s2W c2W
ζ2SFf

m3
F

M2
S

(1− vS)
3 , (4.4)

When there is no Higgs channel, the charged-current decay mode is always dominant

compared to the neutral one and, for fermion masses much larger than MV , the branching

ratios are 1/3 and 2/3 for the F → fZ and F → f ′W modes, respectively. Note that for

Majorana neutrinos, both the N → l−W+/νlZ and N → l+W−/ν̄lZ decays are possible.

This gives nice like-sign lepton search signatures, and makes the Majorana neutrino total

decay widths twice as large as for Dirac neutrinos.

The decay pattern above assumes at least an approximate mass degeneracy between

the members of the same weak isodoublet, for instance mL ≈ mN in the case of vector-like

leptons. However, if one allows for a mass difference between the two states, one would have

charged current decays such as L± → W±N or N → W±L∓; see figure 17a (right). IfmL &

mN+MW , the L± decay is at the two-body level and, since it has a partial width that is not

suppressed by any mixing angle, it is the dominant one. In turn, N decays through mixing

to ordinary leptons and gauge bosons. An interesting situation is when 0 < mL −mN <

MW , so that the decay occurs at the three-body level with the virtual W boson decaying

into almost massless fermions, L → NW ∗ → Nff̄ . In this case, depending in the virtuality

of the W boson and the mixing with light fermions, the L → Nff̄ and L → ℓZ, νW modes

might compete with each other rendering the situation quite model-dependent.

28One could assume that the magnitude of the mixing through the Higgs boson is proportional to the

fermion masses and hence is negligible for the first two generations of fermions, compared to the mixing

through the vector bosons. Note, however, that such an intergenerational mixing might provide an expla-

nation for the flavour-changing h → µ±τ∓ decay of the standard-like Higgs boson hinted during Run 1 of

the LHC [231].
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Figure 17. Generic Feynman diagrams for the processes involving vector-like fermions. a) Two-

body decays through mixing and two- or three-body decays through gauge interactions. b) Pair

production of heavy quarks in pp collisions. c) Pair production in e+e− and pp collisions via

electroweak gauge couplings. d) Single production of heavy fermions in e+e− and pp collisions

through mixing. e) Production of one heavy quark in association with a gauge boson V = W,Z in

the gq subprocess at hadron colliders. The symbol • at a vertex indicates mixing between heavy

and ordinary fermions.
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Note finally that for small mixing angles (and also if only three-body decays into lighter

vector-like fermions are kinematically accessible), the vector-like fermions have rather nar-

row widths if they are not too heavy, but the widths increase rapidly with the vector-like

fermion mass, Γ ∼ m3
F . However, for mixing angles of order ζ . 0.1, the total widths do

not exceed the 100GeV range even for mF ∼ O(1TeV).

4.2 Experimental constraints

We now summarize briefly the present experimental constraints on the masses of the vector-

like fermions and their mixings with the ordinary fermions. The mixing will, in general,

alter the couplings of the electroweak gauge bosons to light quarks and leptons from

their Standard Model values. The Zff̄ couplings, which are reduced by mixing factors

cos2 ξ ≈ 1− ξ2, have been very accurately determined at LEP through the measurements

of total, partial and invisible decay widths, as well as forward-backward and polarization

asymmetries. As they have been found to agree with the Standard Model predictions

to the level of at least one percent, the mixing angles are constrained to be smaller than

O(10−1) [230]. The vector-like quark mixing with the top quark can presumably be slightly

larger [211–215], as the Tevatron and LHC data on the top quark production cross sections

and asymmetries are at the level of 10% accuracy only [102].

Note that in the case of vector-like leptons, the precise measurements of the anomalous

magnetic moments of the electron and muon lead to even more stringent constraints: ζi <

O(10−2) for light vector-like leptons with masses of the order of 100GeV [232–234]. Indeed,

because there is no chiral protection, the contribution of heavy lepton loops to (g − 2)e,µ
is proportional to me/mL, in contrast to m2

e,µ/m
2
L for chiral couplings, and very small ζi

and/or large mL are needed to accommodate the data.

Turning to the masses, the constraints in the vector-like lepton case are rather weak.

From the null results of searches for new states and from the measurement of Z decay

widths at LEP, one can infer a bound mL & O(100)GeV independently of the mixing [235],

except for singlet neutrinos that have no weak couplings to the Z boson. For small mixing

angles, one could push these bounds up to mL & O(200)GeV for single production at

LEP2 in favourable cases [236, 237]. For these single production processes, the limits from

the Tevatron are not competitive with the LEP2 limits while those of the previous LHC

run are comparable. For instance, CMS searched for Majorana neutrinos29 that couple to

muons in the same-sign muon plus two jet final states and, for mixing angles ζWNµ . 0.1,

they obtain a bound of mN & 200GeV on the Majorana neutrino masses [246].

The most constraining searches on vector-like leptons have been conducted by the AT-

LAS collaboration [247, 248].30 A first search [247] has been performed in the context of the

Type-III seesaw model originally introduced in order to explain the smallness of the neu-

trino masses [250–253], which contains triplets with a neutral and two charged L± leptons

that are assumed to be degenerate in mass. Their decays into ordinary third-generation

leptons are suppressed, so that only the easier final states with e/µ that have higher sen-

sitivity are considered. The dominant search channel is pp → L±N → W±νW∓ℓ±, where

29For Majorana neutrinos see e.g. refs. [238–245].
30There are similar CMS analyses [249], but only at

√
s = 7TeV and hence with reduced sensitivity.
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one W boson decays leptonically and the other hadronically, resulting in same-sign or

opposite-sign lepton pairs in the final state. In a subsequent analysis [248], the additional

pp → L+L− channel has been considered as well as the decay mode L± → Zℓ±, which

leads to three-lepton final states. In addition, a different model was considered with a

single charged vector-lepton state that we denote by one-VLL.

For heavy leptons with masses mL = 200GeV, the cross sections assumed in the

ATLAS analyses at
√
s = 8TeV were 34 fb and 844 fb for the one-VLL and Type-III seesaw

models, the huge difference being mainly due to the fact that Type-III has both charged

and neutral leptons than can be produced in the pp → L±N process. The 95% confidence

level exclusion limits obtained by ATLAS are then mL & 170GeV in the one-VLL model

and mL & 400GeV in the Type-III model.

In our analysis, we will assume a lower bound on the charged vector-like lepton mass

of mE = 400GeV and sometimes we will fix mE to this specific value in order to enhance

their loop contributions to the Φγγ couplings, as can be seen from figure 3. For the neutral

vector-like lepton, a comparable mass mN ≈ mE will be assumed in general, though

sometimes one can consider a relatively smaller mass in order to allow for the (possibly

invisible) decay Φ → NN̄ . We note that, if mN . mE +MW , the E decay will be more

involved and the experimental constraint on mE would become much weaker.

The case of vector-like quarks is completely different, since the bounds on their masses

from negative searches at Run 1 of the LHC are much more severe. This is particularly true

in the case of vector-like partners of the top and bottom quarks. Indeed, depending on the

decay branching fractions, one has for instance the bounds mT > 950GeV for a branching

ratio BR(T → ht) = 1 and mB > 813GeV for if BR(B → Wt) = 1 [155–158]. (Similar

limits can be set on quarks with exotic charges that we do not discuss here.) Although

these limits are model-dependent, we assume as a general rule that vector-like quarks are

heavier than about 800GeV to 1TeV, in order to evade these bounds.

4.3 Production of vector-like fermions in pp collisions

We discuss now the production of the new fermions at hadron colliders. First, because

they couple to gluons like ordinary quarks, vector-like quarks can be pair produced in the

strong interaction process pp → QQ̄ with rates that depend only on the heavy quark mass

mQ and the strong coupling constant αs = g2s/4π. As can be seen from figure 17b, two

processes are in play, qq̄ annihilation and gg fusion, with the latter largely dominating at

higher-energy colliders for relatively small quark masses. The partonic cross sections at

leading order (LO) are given in term of the velocity βQ =
√

1− 4m2
Q/ŝ by [254–258]

σ̂(qq̄ → QQ̄) =
4πα2

s

27ŝ
βQ(3− β2

Q) ,

σ̂(gg → QQ̄) =
πα2

s

48ŝ

[

1

4
βQ(β

4
Q − 2β2

Q + 143) + (33− 18β2
Q + β4

Q) log
1 + βQ
1− βQ

]

. (4.5)

The total hadronic cross section, i.e., after folding with the parton luminosities which are

chosen here to be those of the MSTW2008 fit [106], is shown in figure 18 as a function of

the heavy quark mass for several pp collider centre-of-mass energies
√
s = 8, 13, 14, 33 and
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Figure 18. The production cross sections in pp collisions of vector-like quark pairs as functions

of the mass for several collider energies. Only the LO contributions are included and the MSTW

parton distributions have been adopted.

100TeV. For the value mQ = 1TeV that is close to the experimental lower bound, the cross

section, which is at the few fb level at
√
s = 8TeV, increases by one order of magnitude at√

s = 13 or 14TeV and by four orders of magnitude at
√
s = 100TeV. For higher quark

masses, the increase of the rate with energy is even steeper. For instance, the production

rate of about 100 fb at
√
s = 100TeV for mQ = 3TeV is five orders of magnitude larger

than at
√
s = 14TeV. This clearly shows the advantage of a higher energy proton-proton

collider. Note that we have evaluated the rate only at the leading order. At NLO in QCD,

supplemented by the next-to-leading threshold logarithmic corrections (NLO+NLL), one

has to multiply the production rate above by a factor K ≈ 1.5 at the LHC [259] for heavy

quark masses between 1 and 2TeV.

Vector-like leptons can also be pair produced in proton-proton collisions via their

electroweak couplings to V = γ,W/Z bosons in the Drell-Yan process qq̄ → V ∗ → LL̄ [260],

figure 17c. The cross section for the qq̄ → LL̄ subprocess where L can be either a charged

E or a neutral N lepton with a velocity βL = (1− 4m2
L/ŝ)

1/2 reads

σ̂(qq̄ → LL̄) =
2πα2

9ŝ
βL(3− β2

L)

[

e2qe
2
L +

2eqeLvqvL
1−M2

Z/ŝ
+

(a2q + v2q )v
2
L

(1−M2
Z/ŝ)

2

]

. (4.6)

In the case of an electrically-charged E state, both the γ and Z boson channels and their

interference have to be considered, while only the channel with Z boson exchange has to

be considered for a non-singlet neutral lepton N (an iso-singlet would not couple through

the usual gauge interactions). In addition, one could produce pairs of charged and neutral

leptons via the exchange of a virtual W boson, qq̄′ → W ∗± → E±N . For comparable

masses, mE ≈ mN , the cross section is simply given by

σ̂(qq̄ → LN̄ + L̄N) =
4πα2

9ŝ

βL(3− β2
L)

(1−M2
W /ŝ)2

× 1

8s4W
, (4.7)

where we assume unit CKM-like matrix elements for simplicity.
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Figure 19. Cross sections in pp collisions for the pair production of vector-like lepton pairs as

functions of the centre-of-mass energy for two values of the lepton mass: mL = 400GeV (left) and

mL = 800GeV (right). The produced particles have the following electric charge and weak isospin

assignments: L(−1,− 1

2
), N(0,+ 1

2
) and E(−1, 0).

The cross sections for producing pairs of vector-like charged and neutral leptons of

masses mL = 400GeV and mL = 800GeV are shown in figure 19 as functions of
√
s.

(Here also, we omitted the enhancement factor K≈1.5 due to QCD corrections [261–263]).

The heavy leptons considered are those of Model 4 discussed in section 2, which have

the following assignments for electric charge and weak isospin L(−1,−1
2), N(0,+1

2) and

E(−1, 0). One notices that, because of the smaller electroweak gauge coupling compared

to the QCD coupling, the cross sections for vector-like leptons are three to four orders

of magnitude smaller than those for vector-like quarks. In addition, the rates are much

smaller for the neutral-current processes with the photon and/or Z exchanges than for the

charged-current W exchange. While the cross sections for NN,LL,EE production are

comparable and barely reach the fb level for mL = 400GeV at the 8TeV LHC, they are

a factor 20 larger for NL production. The latter process is thus the best probe of vector

leptons in pair production. Note again that the cross sections increase by about two orders

of magnitude when moving from
√
s = 8TeV to

√
s = 100TeV.

Let us finally mention that, for mL = 200GeV, the cross section for single Nℓ and

associated NL pair production at the LHC with
√
s = 8TeV are, respectively, σ(pp →

Nl̄ + Nl̄) ≈ 15 fb and σ(pp → L±N) ≈ 600 fb. These values will be needed when we will

discuss the sensitivity of future searches on the vector-like fermions.

The other important set of processes for vector-like fermion production is provided

by single production through mixing. In the case of vector-like leptons, the situation is

rather simple, as there is only one relevant process which is qq̄ → V ∗ → Lℓ where the

intermediate state can be either a W or Z boson, see figure 17d (left). For instance, the

partonic cross section for the production of a heavy neutrino in association with a charged
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Figure 20. Cross sections for the associated production of the heavy neutral vector-like leptons

with Standard Model leptons (left) and for the associated production of heavy vector-like quarks

and Standard Model quarks (right) as functions of the heavy fermion masses. In both cases, the

mixing angles have been taken generically to be ξ2 = 10−2 and the rates are shown at various

collider energies.

ordinary lepton is simply given by

σ̂(qq̄ → N̄ℓ+ ℓ̄N) =
πα2

18ŝ

(1− µ2
N )2(1 + 1

2µ
2
N )

(1−M2
W /ŝ)2

ξ2WNℓ

s4W
, (4.8)

where µN ≡ mN/
√
ŝ. This is the cross section that led to the constraints mN & 200GeV

for ξ2WNℓ ≈ 0.01 derived by the CMS collaboration in the search for Majorana neutrinos

decaying into two same-sign muons and jets [246]. The cross sections for other leptonic

final states can be obtained by simply adapting the couplings.

The production rates in the process pp → N̄ℓ+ ℓ̄N are shown in the left-hand side of

figure 20 for various collider energies as a function of the heavy lepton mass for a mixing

angle ξ2 = 10−2. They are not too small and, for mN = 400GeV, they increase from the

level of 1 fb at
√
s = 8TeV to about 100 fb at

√
s = 100TeV. The chances of observing

such a process are therefore not negligible at very high energy pp colliders.

There are also processes for the single production of the vector-like quarks in association

with their light quark partners through mixing as seen above for leptons. The rates are

indeed suppressed by the small mixing angles but, for high masses, some compensation is

provided by the more favourable phase space, compared to the pair production channels.

Several single production processes exist but we will consider the two which should, in

principle, lead to the largest cross sections.

First are the processes in which the production occurs through the virtual exchange

of the V = W,Z vector bosons. There is the possibility of s-channel Z boson exchange in

qq̄ → Qq̄ but also W exchange in qq̄ → Qq̄′ as already mentioned for vector-like leptons.

These diagrams lead in general to contributions ∝ 1/ŝ, given by an expression similar to
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eq. (4.8), that are small. There are also contributions that are generated by the exchange

of the V = W,Z bosons in the t-channel and which involve the mixing between the heavy

Q and the initial state light q parton; see figure 17c (right). This gives rise to an extremely

large enhancement of the cross section, which can be approximated in this case by

σ̂(qq → qQ) =
2πα2

3ŝ
ζ2V qQ (v2q + a2q)(1− µ2)F(v) , (4.9)

where v = M2
V /ŝ, µ

2 = m2
Q/ŝ and aq, vq are the full axial and vector V qq̄ couplings: aq =

2I3q /(4cW sW ) and vq = (2I3q −4eqs
2
W )/(4cW sW ) for the Z boson and aq = vq = 1/(2

√
2sW )

for the W boson. The function F(x), obtained when only the leading contributions at high

energies are included, is given by (the complete expressions can be found in ref. [229])

F(x) ≈ 1

x
+ 2 log

1

x(1− µ2)
. (4.10)

Note that in eq. (4.9) above the generic parton q stands for both quarks and antiquarks.

The cross sections of the pp → qQ mechanism (they have been multiplied by a factor

of two to obtain the rates for the charged conjugate process with Q̄), where Q is a “first

generation” vector-like quark that couples to the u quark with a mixing angle ξ = 10−1,

are displayed in the right-hand side of figure 20 as a function of mQ for the usual collider

energies. As can be seen, they are quite substantial for the assumed mixing and at the LHC

with
√
s = 14TeV, one obtains cross sections of the order of 100 fb (10 fb) for mQ = 1.5TeV

(2TeV). For such masses, the rates are much larger than for pair production, despite the

mixing and the smaller electroweak coupling. The rates increase more rapidly with centre-

of-mass energy and for mQ = 5TeV the cross section is still at the pb level at a 100TeV

collider for the chosen mixing angle ξ = 10−1.

A second process that is relevant for single vector-like production is the associated

production with a vector boson, qg → V Q with V = W,Z. There are two channels

involved in this mechanism: one in which the qg pairs annihilates through the s-channel

exchange of q∗ which splits into the V Q pair, and another in which the heavy quark Q is

exchanged in the t-channel; see figure 17e. The total production cross section, in the limit

ŝ,mQ ≫ MV which is appropriate in our case, is given by the very simple expression31

σ̂(qg → V Q) =
αsGµ

12
√
2
ĝ2V ξ

2
V qQµ

2
Q

[

(1 + 2µ2
Q + 2µ4

Q) log
1

µ2
Q

− 1

2
(1− µ2

Q)(3 + 7µ2
Q)

]

(4.11)

with Gµ the Fermi coupling constant, ĝW =
√
2 and ĝZ = 1/cW and again µQ = mQ/

√
ŝ.

We have evaluated the cross sections in the case of a heavy vector-like quark Q that couples

to the first generation u, d quarks with final states involving both the W and Z bosons

with masses that have been neglected (when folding with the parton distributions, we have

thus summed over all first generation quark and antiquark contributions). The results for

31All these processes for single vector-like quark production are similar to those involved in single top

quark [264–270]. Surprisingly enough, we did not find in the literature the simple formula of eq. (4.11) for

the total cross section in this specific single top production case.
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Figure 21. The production cross sections in pp collisions of single vector-like quarks in the process

qg → QW and qg → QZ as a function of the mass for several collider energies; a mixing angle

ξ = 0.1 is assumed.

the production cross sections are displayed in figure 21 as a function of the mass mQ for

several energies of the pp colliders and a mixing angle fixed to ξ = 0.1.

Despite of the ξ2 suppression, the cross sections are extremely large. Already for a

1TeV quark, the rates at the
√
s = 14TeV LHC are an order of magnitude larger than in

the QCD pair production process. At
√
s = 100TeV, the rates relative to

√
s = 14TeV

are of the same order, σ ≈ 25 pb, for a mass mQ = 1TeV. But for higher Q masses, there

can be a huge difference: the rates for pp → V Q are larger than those of pp → QQ̄ by an

order of magnitude for mQ = 3TeV and by three orders for mQ = 10TeV.

Hence, these single production processes are the most copious sources of vector-like

quarks and they allow to probe mixing angles that are very small (more than an order of

magnitude smaller than ξ = 0.1). With such large rates, one could even probe second and

third generation heavy quark if inter-family mixing is not prohibitively small.

We close this section by discussing the sensitivity of future searches at the LHC and

at higher-energy pp colliders to the masses and couplings of the vector-like fermions. The

LHC experiments have already searched for the coloured heavy quarks during Run 1,

with exclusion sensitivity to masses above 800GeV [155–158] from pair production as

discussed above (we will not discuss single production which is more model-dependent). In

order to extrapolate this sensitivity to higher energies and luminosities, we assume that a

similar number of events would be required at another centre-of-mass energy, while noting

that more efficient multivariate discrimination and boosted techniques might lead lead to

improved sensitivity at the future LHC runs and higher-energy pp colliders.

Neglecting this possibility of improved analyses techniques and simply considering the

cross sections for the pair production processes discussed in the previous subsection, we have

evaluated the prospective sensitivities to heavy vector-like quarks at the LHC with various

energies and luminosities and at higher-energy pp colliders. Our results are summarised in
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Vector-like quark mass sensitivity Vector-like lepton mass sensitivity

model 100fb−1 300fb−1 300fb−1 20ab−1 100fb−1 300fb−1 300fb−1 20ab−1

13TeV 14TeV 33TeV 100TeV 13TeV 14TeV 33 TeV 100 TeV

1 1.4 1.7 3.1 11.7 -

2 1.5 1.8 3.4 12.7 -

3 1.6 2.0 3.7 13.7 -

4 1.6 2.0 3.7 13.7 0.56 0.73 1.7 5.3

Table 3. Prospective model sensitivities to massive vector-like quarks (left) and leptons (right)

[with the particle masses in TeV] in the indicated pp collider and scenario.

table 3 in the four models with vector-like fermion content discussed in section 2. We have

used the facts that Models 2, 3 and 4 have, respectively, twice, four times and four times

as many heavy quark degrees of freedom as Model 1.

As can be seen, depending on the considered model, sensitivities to vector-like quark

masses between 1.7TeV and 2.0TeV can be reached at the LHC with
√
s = 14TeV and

300 fb−1 of data. Thanks to the huge increase in the production cross sections when moving

to higher centre-of-mass energies, the sensitivity improves by a factor of approximately 8

at a pp collider with
√
s = 100TeV energy and 20 ab−1 of data, allowing one to probe

vector-like masses higher than the 10TeV level; see also ref. [41].

Turning to vector-like leptons, future sensitivities may be derived from the ones ob-

tained by the ATLAS collaboration in searches at the 8TeV LHC with approximately

20 fb−1 of data in the Type-III seesaw model discussed previously [247, 248] and which

led to a bound mL & 400GeV in this model (assuming of course the specific multi-lepton

decay pattern which simplified the search and led to the quite stringent bound).

In the singlet Model 4 of section 2, which includes a family of vector-like fermions,

there are SU(2) lepton doublets with charged and neutral components and an SU(2) singlet

charged lepton. The cross sections at the LHC are σ(pp → Nl̄) ≈ 13 fb (for ξ2 ≈ 0.01) and

σ(pp → L±N) ≈ 600 fb, i.e., ≈ 30% smaller than those assumed by ATLAS to set the limits

that were discussed previously. The present sensitivity in Model 4 will be thus slightly worse

and, if the vector-like leptons are degenerate, may be assumed to be mL ≈ 300GeV from

pair production (the limit from single production depends on the mixing angle). Using

the same equal-sensitivity assumption as for vector quarks, we find the prospective future

sensitivities to vector-like leptons of Model 4 that are shown in the last column of table 3

for the LHC and for higher-energy pp colliders.

We conclude that hadron colliders have indeed some sensitivity to heavy leptons; see

also ref. [41]. Nevertheless, the sensitivities above should be taken only as indications,

as they are quite model-dependent. For instance, they are weaker if decays into third

generation leptons are allowed or even dominant. The sensitivity also weakens if there is

a mass difference between the neutral leptons that would lead to cascade decays. Finally,

if the lightest vector-like lepton is the dark matter particle and is thus stable, all these

searches become extremely difficult because the N lepton escapes detection.
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4.4 Production of vector-like fermions in e+e− collisions

We turn now to e+e− colliders. Thinking that the vector-like leptons might be the lightest,

we focus first on lepton pair production: e+e− → L+L−, which is kinematically possible

for mL . 1
2

√
s. The total cross section for fermion pair depends on the electric charge and

the vector-like ZFF̄ coupling given in eq. (4.1)

σ(e+e− → FF̄ ) = σ0Nc
1

2
βF (3− β2

F )

[

e2ee
2
F +

2eeeF vevF
1−M2

Z/s
+

(a2e + v2e)v
2
F

(1−M2
Z/s)

2

]

, (4.12)

where Nc is the colour number, σ0 = 4πα2/3s is the point-like QED cross section for muon

pair production, βF = (1−4m2
F /s)

1/2 the velocity and the reduced couplings of the electron

to the Z boson are ve = (−1 + 4s2W )/(4sW cW ) and ae = −1/(4sW cW ).

The cross sections for lepton pair production are shown in the left panel of figure 22

as functions of
√
s for the masses mL = mN = 400GeV. We note that in the case of

neutral vector-like leptons the cross section for e+e− → NN proceeds only through Z-boson

exchange, figure 17c, and the rate is in general much smaller than for charged leptons. For

Dirac particles the cross section rises as βN close to threshold, whereas Majorana fermions

have a β3
N behaviour, like scalars, which could be a useful diagnostic tool.

We note that, since they have no axial couplings to the Z boson, there is no forward-

backward asymmetry in e+e− → L+L−, AFB ∝ aF = 0. Furthermore, the polarization

vectors of the heavy leptons have vanishing longitudinal components with respect to the

flight direction, whereas the transverse components are small and positive [229].

The right panel of figure 22 shows the pair production cross sections at
√
s = 3TeV for

the vector-like fermions U,D,E and N as functions of mF . It is clear that a 3TeV e+e−

collider such as CLIC would be able to produce copiously and study in detail any of these

vector-like fermions, even if they have masses close to the beam energy.

Single production of vector-like leptons is possible in e+e− collisions in association

with the light Standard Model leptons, e+e− → L±
i l

∓
i and e+e− → Niνi, via the mixing

angles ξi [229, 271]. These processes are, in contrast to pair production, not democratic.

One would have, in terms of the reduced electron couplings, âe = −1 and v̂e = −1 + 4s2W ,

σ(e+e− → F f̄) = σ0Nc

ζ2ZFf

128c4W s4W
(â2e + v̂2e)

(1− µ2)2(1 + 1
2µ

2)

(1− z)2
, (4.13)

with µ2 =m2
F /s and z=M2

Z/s. In addition, for vector-like leptons with couplings to the

electron, one needs to include additional t-channel vector boson exchanges: W -exchange

for the neutral leptons and Z-exchange for the charged leptons; figure 17d. Complete

expressions for the angular distributions and the total cross sections for these processes in

the general case can be found in refs. [228, 229]. Here we simply give the dominant piece

in the limit where MW ,MZ ≪ √
s, with only the leading logarithms being retained:

σ(e+e− → Ēe) = σ0
3ζ2ZeE

64c4W s4W
(v̂2e + â2e)(1− µ2)F(z) ,

σ(e+e− → N̄eνe) =
3σ0
16s4W

(v̂2e + â2e)(1− µ2)F(w) , (4.14)
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Figure 22. Left panel: cross sections for pair-production of the heavy vector-like charged and

neutral leptons at an e+e− collider as functions of the centre-of-mass energy
√
s for the mass values

mL = mN = 400GeV, ordered with decreasing cross sections. In addition to the pair production

processes e+e− → NN̄,L+L− with the isospin of the particles given in brackets, we also include

the pair-production of doubly-charged leptons, e+e− → L++L−−. Right panel: cross sections at√
s = 3TeV for the pair production of vector-like fermions U,D,E and N as functions of mF .

where the function F is given in eq. (4.10). The cross sections are shown in figure 23 as

functions of
√
s for mL = mN = 400GeV, assuming ξ2i = 10−2 for all mixing angles. They

are much smaller in the case of neutral and charged leptons with couplings only to the

second- and third-generation Standard Model leptons, since the cross sections for vector-

like leptons coupled to electrons are enhanced by some two to three orders of magnitude

thanks to the t-channel exchanges. This effect is particularly marked for neutral vector-like

leptons, where rates of the order of 1 pb for N̄νe + ν̄eN production can be obtained for

mixing angles ζ2 = 10−2, larger than in pair production, which is not mixing suppressed.

The reason is that there is a contribution that grows like 1/w = s2/M2
W and another like

log(1/w). The cross section for charged vector-like leptons is an order of magnitude less as

a result of the smaller Z couplings, is nevertheless also significant.

Regarding their detection, as mentioned previously, these fermions decay through mix-

ing into gauge bosons and ordinary leptons, L± → ℓ±Z, νW± and N → νZ, e±W∓, with

rates that are in general twice as large for the charged decays as for the neutral ones.

There are potentially also decays involving the light h boson in the final state, which have

magnitudes that are strongly dependent on the mixing pattern. If only these decays are

considered, detecting the vector-like leptons in an e+e− environment is not a problem,

provided that the production rates are large enough (such decays involving leptons and

missing energy could be relatively easily detectable even at pp colliders).

However, there is a special and more complicated situation that could be of interest.

If the lightest vector-like fermion is a neutral lepton, it might be (meta-)stable and a

candidate for the dark matter particle. This vector-like lepton would be invisible and
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Figure 23. Cross sections for single production of the heavy vector-like charged and neutral leptons

in association with ordinary leptons at an e+e− collider, as functions of the centre-of-mass energy√
s for the mass values mL = mN = 400GeV, assuming mixing ξ2 = 10−2 with ordinary leptons e

or µ, τ . The cross section in the case of vector-like quarks with the same mass is also shown.

escape detection, except in a ‘neutrino counting’ experiment where the heavy neutrino is

pair-produced in association with a photon radiated from the initial state, e+e− → NN̄γ.

However, the charged vector lepton E could decay into the neutral one and a W boson,

which would be off-shell if the mass difference mE −mN is small, E→NW ∗→Nff̄ , with

the N state again escaping detection. These channels with soft leptons and a large amount

of missing energy will be more difficult to probe (in particular at hadron colliders) since

they have signatures similar to supersymmetry with a compressed spectrum.

Finally, a very interesting set of processes for the vector-like leptons would be produc-

tion in association with a Higgs boson,32 e+e− → LL̄ + Higgs, taking advantage of the

large Yukawa couplings ∝ mL/v. Most favoured by phase space is the process e+e− → hLL̄

with h the standard-like Higgs boson with a mass Mh = 125GeV. This is similar to the

associated tt̄h processes discussed in ref. [204, 205], and the cross sections are shown in the

left panel of figure 24 as functions of
√
s, again for a mass mL = 400GeV.

We consider the cases of the N state with isospin +1
2 and the L−, L−− states with

isospin −1
2 , and assume that the Yukawa couplings are simply proportional to the vector-

like lepton masses YLi
= YNi

= mi/v. Here, the dominant contribution to the cross section

comes from vector-like lepton pair production through s-channel γ and Z exchange, with

one of them emitting the h boson, e+e− → L̄L∗ → hL̄L, and this is the only contribution

retained in the figure. As expected, simply because of the electric charge, the largest cross

section is obtained for L−−, followed by that for L− and then that for N . One has rates of

32In addition, vector-like lepton production in association with a vector boson might be important. As

the cross sections for e+e− → W+W− and ZZ production are rather large, the emission of heavy plus

light leptons by virtual V bosons through mixing, e+e− → V V ∗ → V Lℓ̄, might lead to rates that are not

negligible compared to the single production processes, in particular for heavy leptons that do no mix with

the electrons and whose rates are thus not enhanced.
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Figure 24. Cross sections for production of the heavy charged and neutral vector-like leptons

in association with the Standard Model-like h boson (left panel) and the Φ = H/A states (right

panel). We assume mL = mN = 400GeV and consider the L−−, L−, N cases with standard-like

Yukawa couplings ∝ mi/v.

a few fb to a few tens of fb at centre-of-mass energies
√
s ≈ 1.5TeV, where the phase space

and the 1/s behaviours are not too penalizing.

Another mechanism is Φ = H,A production in association with a pair of heavy leptons,

e+e− → L̄LΦ (there is also single production in the channels e+e− → L̄ℓΦ, but this is

suppressed by the mixing in addition to phase space) and the rates are shown in the right

panel of figure 24 for the L−−, L−, N lepton and H/A cases. Except for the phase-space

suppression, the production rates follow those of the hL̄L processes, dominated by the

e+e− → L++L−−Φ channel, for which the cross section can reach the fb level. This is the

case for production with the H state, in particular, as the rate is twice as large as in the

case of A for energies below 3TeV where the chiral limit is not yet attained.

We close this section by noting that the charged vector-like fermions can also be pair

produced at photon colliders in the processes γγ → FF̄ , which would be particularly

interesting for doubly-charged leptons since the production rates are proportional to e4F ;

for singly charged leptons, the rate is a factor of four higher than for the scalar case shown

in figure 15. Heavy leptons having couplings to the electron can also be singly produced in

the eγ option of linear e+e− colliders and the relevant processes, eγ → NW and eγ → EZ

(similar to figure 17e), might have large rates for not too tiny mixing angles.

5 Conclusions

The first question for the continuation of LHC Run 2 is whether the initial hint of the

750GeV Φ resonance decaying into two photons will be confirmed. If so, measurements of

its strength and width would provide information on the parameters of the state (or states)

that could discriminate between different models. For example, the 2HDM benchmark
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Φ = singlet resonance Two Higgs doublet model Φ = H/A

production detection channels production detection channels

pp gg → Φ γγ, γZ, ZZ,WW gg → Φ γγ, γZ, ZZ,WW

gg tt̄,H±W (?)

qq → qqΦ all main modes pp → tt̄Φ all main modes

qq̄ → V Φ all main modes pp → AH,HH,AA all main modes

pp → tbH± all main modes

pp → H+H−, H±Φ all main modes

γγ γγ → Φ γγ, γZ, ZZ,WW γγ → Φ tt̄, γγ (?)

γγ → H+H− all main modes

e+e− e+e− → ZΦ, γΦ all main modes e+e− → HA all main modes

e+e− → Φℓℓ all main modes e+e− → tt̄Φ all main modes

e+e− → H+H− all main modes

Table 4. The principal production channels and detection modes of the Φ in singlet scenarios

(left column) and in two Higgs-doublet models (right column, in the exact alignment limit and

with Φ = H/A) that could be probed at the various colliders discussed in this paper: a pp collider

with a c.m. energy from
√
s = 14 TeV (LHC) to 100TeV, a γγ collider running at an energy of√

s = 750GeV and an e+e− collider with an energy
√
s = 1TeV to 3TeV.

models studied here suggest that there may be two near-degenerate Φ states, with natural

widths greater than the experimental resolution, yielding an asymmetric lineshape. As

follow-ups, more detailed measurements would be possible at a higher-energy pp collider,

and it would be possible to make a precision measurement of Γ(Φ → γγ) via γγ collisions

at an e+e− collider with centre-of-mass energy ≃ 1TeV [23–26], as discussed in sections 2

and 3. A summary of the principal production and decay channels that can be probed at

these colliders in the singlet and two-Higgs doublet scenarios is displayed in table 4.

In the case of the 2HDM benchmarks, the decay Φ → tt̄ decay would be dominant,

and its detection may lie within reach of the LHC experiments. One should also search

for the other diboson decays of the Φ state, Φ → Zγ, ZZ and W+W−, which would help

distinguish between different singlet models as seen in table 1, as well as other fermionic

decay modes such as b̄b and τ+τ− that could show up in the 2HDM benchmarks, along

possibly with the interesting H → hh and A → hZ channels. If invisible Φ decays occur,

the missing energy can be searched for in the gg → Φ+ j channel and, in the doublet

case, associated tt̄Φ production could provide an additional probe. Thorough searches for

these decay modes will require high-luminosity running for the LHC [21, 22] followed by a

higher-energy pp collider such as HE-LHC [38], SPPC [39] or FCC-hh [40].

A common feature of the benchmark scenarios considered here is the need for ad-

ditional vector-like matter particles, which we assume to be fermions. As discussed in
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production mechanism generating interaction

pp gg/qq̄ → QQ̄ QCD gauge interaction

qq → Qq, qq̄ → Qq̄, qg → QV quark mixing

qq̄ → E+E−, NN̄, E±N electroweak interaction

qq̄ → ℓN, ℓE± lepton mixing

γγ γγ → E+E− electromagnetic interaction

e+e− e+e− → E+E−, NN̄,QQ̄ gauge interactions

e+e− → E±e±, Nν,Qq̄ fermion mixing

e+e− → E+E−h,NN̄h gauge + Yukawa interactions

e+e− → E+E−Φ, NN̄Φ gauge + Yukawa interactions

Table 5. The principal production channels for the vector-like quarks Q and leptons E,N in pp, γγ

and e+e− collisions discussed in this paper, and the interactions that generate the processes: QCD

or electroweak gauge interactions for pair production, fermion mixing for single production and

Yukawa interactions for associated production with scalar bosons.

section 4, future LHC searches for these particles are very promising, with the capability

to explore all the parameter spaces of some singlet models. Measurements of pair produc-

tion of vector-like fermions at e+e− machines are also promising, particularly for vector-like

leptons. These may well be lighter than vector-like quarks, which could help explain the

magnitude of the Φ → γγ signal: see figures 3 and 6. Single production of vector-like

fermions in association with Standard Model fermions would have lower thresholds than

pair production, and hence may be more accessible to the LHC and/or an e+e− collider,

depending on the magnitudes of their mixing with their Standard Model counterparts. Sin-

gle production processes would be very interesting for measuring their mixing, and thereby

constraining models of the vector-like fermions. A summary of all the processes for the pro-

duction of the vector-like quarks and leptons at the various high-energy colliders discussed

in this paper, with a mention of the interactions that generate them, is given in table 5.

The 2HDM benchmark scenarios have the distinctive feature that they predict the

existence of two neutral Higgs bosons H,A contributing to the Φ signal, as well as a pair

of accompanying charged Higgs bosons H±. The two H,A states would not be exactly

degenerate. A typical separation is ∼ 15GeV, which might also help explain the hint of a

non-negligible width for Φ reported by ATLAS. The LHC and other experiments might be

able to resolve the Φ structure into two peaks, each with a measurable natural width. As

discussed in section 3, there are many interesting opportunities to search for pair production

of the H,A and H± states in pp collisions, as well as their production in association with

W , Z or h bosons, or t̄t pairs. Similar final states may also be accessible in e+e− collisions,

as may various processes for H± production. CLIC [27], with its centre-of-mass energy up

to 3TeV would be particularly well placed for such studies.

We have in this paper barely skimmed the surface of the physics possibilities that would

be opened up if the existence of the Φ state is confirmed. Such a discovery would open a
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new era in particle physics, with a new layer of degrees of freedom at the TeV scale. If the

Φ discovery is confirmed, it will shine a new light on options for possible future colliders,

placing a premium on those with sufficient energy to produce the new particles, while also

suggesting a new motivation for precision low-energy experiments. We await with interest

the verdicts of the ATLAS and CMS Collaborations.
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[49] R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750GeV diphoton

resonance, arXiv:1512.05332 [INSPIRE].

[50] A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750GeV singlet,

JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].

[51] E. Molinaro, F. Sannino and N. Vignaroli, Minimal composite dynamics versus axion origin

of the diphoton excess, arXiv:1512.05334 [INSPIRE].

[52] Y. Nakai, R. Sato and K. Tobioka, Footprints of new strong dynamics via anomaly,

arXiv:1512.04924 [INSPIRE].

[53] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, Interpretation of the diphoton excess

at CMS and ATLAS, arXiv:1512.05439 [INSPIRE].

[54] Q.-H. Cao, Y. Liu, K.-P. Xie, B. Yan and D.-M. Zhang, A boost test of anomalous diphoton

resonance at the LHC, arXiv:1512.05542 [INSPIRE].

[55] P. Cox, A.D. Medina, T.S. Ray and A. Spray, Diphoton excess at 750GeV from a radion in

the bulk-Higgs scenario, arXiv:1512.05618 [INSPIRE].

[56] A. Ahmed, B.M. Dillon, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs-radion

interpretation of 750GeV di-photon excess at the LHC, arXiv:1512.05771 [INSPIRE].

[57] S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750GeV at the LHC,

arXiv:1512.05751 [INSPIRE].

[58] R. Martinez, F. Ochoa and C.F. Sierra, Diphoton decay for a 750GeV scalar boson in an

U(1)′ model, arXiv:1512.05617 [INSPIRE].

[59] W. Chao, R. Huo and J.-H. Yu, The minimal scalar-stealth top interpretation of the

diphoton excess, arXiv:1512.05738 [INSPIRE].

[60] R. Benbrik, C.-H. Chen and T. Nomura, Higgs singlet as a diphoton resonance in a

vector-like quark model, arXiv:1512.06028 [INSPIRE].

[61] H. Han, S. Wang and S. Zheng, Scalar explanation of diphoton excess at LHC,

arXiv:1512.06562 [INSPIRE].

[62] T.-F. Feng, X.-Q. Li, H.-B. Zhang and S.-M. Zhao, The LHC 750GeV diphoton excess in

supersymmetry with gauged baryon and lepton numbers, arXiv:1512.06696 [INSPIRE].

[63] I. Chakraborty and A. Kundu, Diphoton excess at 750GeV: singlet scalars confront

triviality, Phys. Rev. D 93 (2016) 055003 [arXiv:1512.06508] [INSPIRE].

[64] S.M. Boucenna, S. Morisi and A. Vicente, The LHC diphoton resonance from gauge

symmetry, arXiv:1512.06878 [INSPIRE].

[65] K. Das and S.K. Rai, The 750GeV diphoton excess in a U(1) hidden symmetry model,

arXiv:1512.07789 [INSPIRE].

[66] F. Goertz, J.F. Kamenik, A. Katz and M. Nardecchia, Indirect constraints on the scalar

di-photon resonance at the LHC, arXiv:1512.08500 [INSPIRE].

[67] L. Bian, N. Chen, D. Liu and J. Shu, A hidden confining world on the 750GeV diphoton

excess, arXiv:1512.05759 [INSPIRE].

[68] W. Chao, Symmetries behind the 750GeV diphoton excess, arXiv:1512.06297 [INSPIRE].

– 51 –

http://dx.doi.org/10.1016/j.physletb.2016.02.033
http://arxiv.org/abs/1512.05326
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05326
http://arxiv.org/abs/1512.05332
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05332
http://dx.doi.org/10.1007/JHEP02(2016)152
http://arxiv.org/abs/1512.05777
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05777
http://arxiv.org/abs/1512.05334
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05334
http://arxiv.org/abs/1512.04924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04924
http://arxiv.org/abs/1512.05439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05439
http://arxiv.org/abs/1512.05542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05542
http://arxiv.org/abs/1512.05618
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05618
http://arxiv.org/abs/1512.05771
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05771
http://arxiv.org/abs/1512.05751
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05751
http://arxiv.org/abs/1512.05617
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05617
http://arxiv.org/abs/1512.05738
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05738
http://arxiv.org/abs/1512.06028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06028
http://arxiv.org/abs/1512.06562
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06562
http://arxiv.org/abs/1512.06696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06696
http://dx.doi.org/10.1103/PhysRevD.93.055003
http://arxiv.org/abs/1512.06508
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06508
http://arxiv.org/abs/1512.06878
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06878
http://arxiv.org/abs/1512.07789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07789
http://arxiv.org/abs/1512.08500
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08500
http://arxiv.org/abs/1512.05759
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05759
http://arxiv.org/abs/1512.06297
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06297


J
H
E
P
0
3
(
2
0
1
6
)
2
0
5

[69] H. Han, S. Wang and S. Zheng, Scalar explanation of diphoton excess at LHC,

arXiv:1512.06562 [INSPIRE].
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production at eē colliders, Phys. Rev. D 52 (1995) 3919 [hep-ph/9507463] [INSPIRE].

[117] A. Djouadi, V. Driesen, W. Hollik and J. Rosiek, Associated production of Higgs bosons and

a photon in high-energy e+e− collisions, Nucl. Phys. B 491 (1997) 68 [hep-ph/9609420]

[INSPIRE].

[118] A. Djouadi, V. Driesen, W. Hollik and A. Kraft, The Higgs photon-Z boson coupling

revisited, Eur. Phys. J. C 1 (1998) 163 [hep-ph/9701342] [INSPIRE].

[119] V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons:

intermediate mass range at e+e− colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270]

[INSPIRE].

[120] S.S. Biswal, R.M. Godbole, B. Mellado and S. Raychaudhuri, Azimuthal angle probe of

anomalous HWW couplings at a high energy ep collider,

Phys. Rev. Lett. 109 (2012) 261801 [arXiv:1203.6285] [INSPIRE].

[121] S.S. Biswal, R.M. Godbole, R.K. Singh and D. Choudhury, Signatures of anomalous VVH

interactions at a linear collider, Phys. Rev. D 73 (2006) 035001 [Erratum ibid. D 74

(2006) 039904] [hep-ph/0509070] [INSPIRE].

[122] S.S. Biswal, D. Choudhury, R.M. Godbole and Mamta, Role of polarization in probing

anomalous gauge interactions of the Higgs boson, Phys. Rev. D 79 (2009) 035012

[arXiv:0809.0202] [INSPIRE].

[123] A. Djouadi, R.M. Godbole, B. Mellado and K. Mohan, Probing the spin-parity of the Higgs

boson via jet kinematics in vector boson fusion, Phys. Lett. B 723 (2013) 307

[arXiv:1301.4965] [INSPIRE].

[124] R.M. Godbole, D.J. Miller, K.A. Mohan and C.D. White, Jet substructure and probes of

CP-violation in V h production, JHEP 04 (2015) 103 [arXiv:1409.5449] [INSPIRE].

[125] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and

phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034]

[INSPIRE].

– 54 –

http://dx.doi.org/10.1016/j.physletb.2016.03.008
http://arxiv.org/abs/1601.01144
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01144
http://dx.doi.org/10.1103/PhysRevD.67.095009
http://arxiv.org/abs/hep-ph/0211136
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D67,095009"
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D22,2157"
http://dx.doi.org/10.1103/PhysRevC.61.045202
http://arxiv.org/abs/nucl-th/9910033
http://inspirehep.net/search?p=find+J+"Phys.Rev.,C61,045202"
http://dx.doi.org/10.1016/j.physletb.2007.11.030
http://arxiv.org/abs/0708.1659
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B659,201"
http://dx.doi.org/10.1016/0550-3213(95)00602-8
http://arxiv.org/abs/hep-ph/9509316
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B459,51"
http://dx.doi.org/10.1016/0550-3213(86)90128-8
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B267,509"
http://dx.doi.org/10.1103/PhysRevD.52.3919
http://arxiv.org/abs/hep-ph/9507463
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D52,3919"
http://dx.doi.org/10.1016/S0550-3213(96)00711-0
http://arxiv.org/abs/hep-ph/9609420
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B491,68"
http://dx.doi.org/10.1007/BF01245806
http://arxiv.org/abs/hep-ph/9701342
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C1,163"
http://dx.doi.org/10.1103/PhysRevD.49.79
http://arxiv.org/abs/hep-ph/9306270
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D49,79"
http://dx.doi.org/10.1103/PhysRevLett.109.261801
http://arxiv.org/abs/1203.6285
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,109,261801"
http://dx.doi.org/10.1103/PhysRevD.73.035001
http://arxiv.org/abs/hep-ph/0509070
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D73,035001"
http://dx.doi.org/10.1103/PhysRevD.79.035012
http://arxiv.org/abs/0809.0202
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D79,035012"
http://dx.doi.org/10.1016/j.physletb.2013.04.060
http://arxiv.org/abs/1301.4965
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B723,307"
http://dx.doi.org/10.1007/JHEP04(2015)103
http://arxiv.org/abs/1409.5449
http://inspirehep.net/search?p=find+J+"JHEP,1504,103"
http://dx.doi.org/10.1016/j.physrep.2012.02.002
http://arxiv.org/abs/1106.0034
http://inspirehep.net/search?p=find+J+"Phys.Rept.,516,1"


J
H
E
P
0
3
(
2
0
1
6
)
2
0
5

[126] J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs hunter’s guide, Addison Wesley,

Reading U.S.A. (1990) [Front. Phys. 80 (2000) 1] [INSPIRE].

[127] A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the

minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

[128] A. Djouadi, L. Maiani, G. Moreau, A. Polosa, J. Quevillon and V. Riquer, The post-Higgs

MSSM scenario: habemus MSSM?, Eur. Phys. J. C 73 (2013) 2650 [arXiv:1307.5205]

[INSPIRE].

[129] L. Maiani, A.D. Polosa and V. Riquer, Probing minimal supersymmetry at the LHC with

the Higgs boson masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].

[130] A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high MSUSY: reopening the low

tanβ regime and heavy Higgs searches, JHEP 10 (2013) 028 [arXiv:1304.1787] [INSPIRE].

[131] A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM

Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].

[132] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay

rates and constraints on its couplings from a combined ATLAS and CMS analysis of the

LHC pp collision data at
√
s = 7 and 8TeV, ATLAS-CONF-2015-044, CERN, Geneva

Switzerland (2015).

[133] M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the standard model Higgs

boson: alignment without decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].

[134] H.E. Haber, Challenges for nonminimal Higgs searches at future colliders, hep-ph/9505240

[INSPIRE].

[135] Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in

the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

[136] J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric

Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

[137] H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal

supersymmetric model be larger than mZ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

[138] E. Bagnaschi et al., Benchmark scenarios for low tanβ in the MSSM,

LHCHXSWG-2015-002, CERN, Geneva Switzerland (2015).

[139] A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions,

Phys. Lett. B 715 (2012) 310 [arXiv:1204.1252] [INSPIRE].

[140] A. Denner et al., Higgs production and decay with a fourth standard-model-like fermion

generation, Eur. Phys. J. C 72 (2012) 1992 [arXiv:1111.6395] [INSPIRE].

[141] E. Kuflik, Y. Nir and T. Volansky, Implications of Higgs searches on the four generation

standard model, Phys. Rev. Lett. 110 (2013) 091801 [arXiv:1204.1975] [INSPIRE].

[142] A. Djouadi, P. Gambino and B.A. Kniehl, Two loop electroweak heavy fermion corrections

to Higgs boson production and decay, Nucl. Phys. B 523 (1998) 17 [hep-ph/9712330]

[INSPIRE].

[143] A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the

standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56

[hep-ph/9704448] [INSPIRE].

– 55 –

http://inspirehep.net/search?p=find+J+"Front.Phys.,80,1"
http://dx.doi.org/10.1016/j.physrep.2007.10.005
http://arxiv.org/abs/hep-ph/0503173
http://inspirehep.net/search?p=find+J+"Phys.Rept.,459,1"
http://dx.doi.org/10.1140/epjc/s10052-013-2650-0
http://arxiv.org/abs/1307.5205
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C73,2650"
http://dx.doi.org/10.1088/1367-2630/14/7/073029
http://arxiv.org/abs/1202.5998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5998
http://dx.doi.org/10.1007/JHEP10(2013)028
http://arxiv.org/abs/1304.1787
http://inspirehep.net/search?p=find+J+"JHEP,1310,028"
http://dx.doi.org/10.1007/JHEP06(2015)168
http://arxiv.org/abs/1502.05653
http://inspirehep.net/search?p=find+J+"JHEP,1506,168"
http://cds.cern.ch/record/2052552
http://dx.doi.org/10.1007/JHEP04(2014)015
http://arxiv.org/abs/1310.2248
http://inspirehep.net/search?p=find+J+"JHEP,1404,015"
http://arxiv.org/abs/hep-ph/9505240
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9505240
http://dx.doi.org/10.1143/PTP.85.1
http://inspirehep.net/search?p=find+J+"Prog.Theor.Phys.,85,1"
http://dx.doi.org/10.1016/0370-2693(91)90863-L
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B257,83"
http://dx.doi.org/10.1103/PhysRevLett.66.1815
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,66,1815"
https://cds.cern.ch/record/2039911
http://dx.doi.org/10.1016/j.physletb.2012.07.060
http://arxiv.org/abs/1204.1252
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B715,310"
http://dx.doi.org/10.1140/epjc/s10052-012-1992-3
http://arxiv.org/abs/1111.6395
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C72,1992"
http://dx.doi.org/10.1103/PhysRevLett.110.091801
http://arxiv.org/abs/1204.1975
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,110,091801"
http://dx.doi.org/10.1016/S0550-3213(98)00147-3
http://arxiv.org/abs/hep-ph/9712330
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B523,17"
http://dx.doi.org/10.1016/S0010-4655(97)00123-9
http://arxiv.org/abs/hep-ph/9704448
http://inspirehep.net/search?p=find+J+"Comput.Phys.Commun.,108,56"


J
H
E
P
0
3
(
2
0
1
6
)
2
0
5

[144] A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the

program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007)

635 [hep-ph/0609292] [INSPIRE].

[145] Y. Mambrini, G. Arcadi and A. Djouadi, The LHC diphoton resonance and dark matter,

Phys. Lett. B 755 (2016) 426 [arXiv:1512.04913] [INSPIRE].

[146] M. Backovic, A. Mariotti and D. Redigolo, Di-photon excess illuminates dark matter,

arXiv:1512.04917 [INSPIRE].

[147] D. Barducci, A. Goudelis, S. Kulkarni and D. Sengupta, One jet to rule them all: monojet

constraints and invisible decays of a 750GeV diphoton resonance, arXiv:1512.06842

[INSPIRE].

[148] P.S.B. Dev and D. Teresi, Asymmetric dark matter in the sun and the diphoton excess at

the LHC, arXiv:1512.07243 [INSPIRE].

[149] P. Ko and T. Nomura, Dark sector shining through 750GeV dark Higgs boson at the LHC,

arXiv:1601.02490 [INSPIRE].

[150] ATLAS collaboration, A search for tt̄ resonances using lepton-plus-jets events in

proton-proton collisions at
√
s = 8TeV with the ATLAS detector, JHEP 08 (2015) 148

[arXiv:1505.07018] [INSPIRE].

[151] CMS collaboration, Search for resonant tt̄ production in proton-proton collisions at√
s = 8TeV, Phys. Rev. D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].

[152] ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric

standard model in pp collisions at
√
s = 8TeV with the ATLAS detector,

JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].

[153] CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of τ leptons

in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].

[154] A. Angelescu, A. Djouadi and G. Moreau, Vector-like top/bottom quark partners and Higgs

physics at the LHC, Eur. Phys. J. C 76 (2016) 99 [arXiv:1510.07527] [INSPIRE].

[155] ATLAS collaboration, Search for vector-like B quarks in events with one isolated lepton,

missing transverse momentum and jets at
√
s = 8TeV with the ATLAS detector,

Phys. Rev. D 91 (2015) 112011 [arXiv:1503.05425] [INSPIRE].

[156] ATLAS collaboration, Search for production of vector-like quark pairs and of four top

quarks in the lepton-plus-jets final state in pp collisions at
√
s = 8TeV with the ATLAS

detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].

[157] ATLAS collaboration, Search for pair production of a new heavy quark that decays into a

W boson and a light quark in pp collisions at
√
s = 8TeV with the ATLAS detector,

Phys. Rev. D 92 (2015) 112007 [arXiv:1509.04261] [INSPIRE].

[158] CMS collaboration, Inclusive search for a vector-like T quark with charge 2/3 in pp

collisions at
√
s = 8TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].

[159] CMS collaboration, Search for a charged Higgs boson in pp collisions at
√
s = 8TeV,

JHEP 11 (2015) 018 [arXiv:1508.07774] [INSPIRE].

[160] ATLAS collaboration, Search for charged Higgs bosons decaying via H± → τ±ν in fully

hadronic final states using pp collision data at
√
s = 8TeV with the ATLAS detector,

JHEP 03 (2015) 088 [arXiv:1412.6663] [INSPIRE].

[161] ATLAS collaboration, Search for charged Higgs bosons in the H± → tb decay channel in pp

collisions at
√
s = 8TeV using the ATLAS detector, arXiv:1512.03704 [INSPIRE].

– 56 –

http://arxiv.org/abs/hep-ph/0609292
http://inspirehep.net/search?p=find+J+"Acta.Phys.Polon.,B38,635"
http://dx.doi.org/10.1016/j.physletb.2016.02.049
http://arxiv.org/abs/1512.04913
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04913
http://arxiv.org/abs/1512.04917
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04917
http://arxiv.org/abs/1512.06842
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06842
http://arxiv.org/abs/1512.07243
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07243
http://arxiv.org/abs/1601.02490
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.02490
http://dx.doi.org/10.1007/JHEP08(2015)148
http://arxiv.org/abs/1505.07018
http://inspirehep.net/search?p=find+J+"JHEP,1508,148"
http://dx.doi.org/10.1103/PhysRevD.93.012001
http://arxiv.org/abs/1506.03062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03062
http://dx.doi.org/10.1007/JHEP11(2014)056
http://arxiv.org/abs/1409.6064
http://inspirehep.net/search?p=find+J+"JHEP,1411,056"
http://dx.doi.org/10.1007/JHEP10(2014)160
http://arxiv.org/abs/1408.3316
http://inspirehep.net/search?p=find+J+"JHEP,1410,160"
http://dx.doi.org/10.1140/epjc/s10052-016-3950-y
http://arxiv.org/abs/1510.07527
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.07527
http://dx.doi.org/10.1103/PhysRevD.91.112011
http://arxiv.org/abs/1503.05425
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.05425
http://dx.doi.org/10.1007/JHEP08(2015)105
http://arxiv.org/abs/1505.04306
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04306
http://dx.doi.org/10.1103/PhysRevD.92.112007
http://arxiv.org/abs/1509.04261
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.04261
http://dx.doi.org/10.1016/j.physletb.2014.01.006
http://arxiv.org/abs/1311.7667
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B729,149"
http://dx.doi.org/10.1007/JHEP11(2015)018
http://arxiv.org/abs/1508.07774
http://inspirehep.net/search?p=find+J+"JHEP,1511,018"
http://dx.doi.org/10.1007/JHEP03(2015)088
http://arxiv.org/abs/1412.6663
http://inspirehep.net/search?p=find+J+"JHEP,1503,088"
http://arxiv.org/abs/1512.03704
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03704


J
H
E
P
0
3
(
2
0
1
6
)
2
0
5

[162] R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs

production in gluon fusion and bottom-quark annihilation in the standard model and the

MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].

[163] M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC,

Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

[164] A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders:

QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

[165] A. Djouadi, M. Spira and P.M. Zerwas, Two photon decay widths of Higgs particles,

Phys. Lett. B 311 (1993) 255 [hep-ph/9305335] [INSPIRE].

[166] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283

[INSPIRE].

[167] R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron

colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

[168] C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD,

Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

[169] V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section

for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325

[hep-ph/0302135] [INSPIRE].

[170] R.V. Harlander and W.B. Kilgore, Production of a pseudoscalar Higgs boson at hadron

colliders at next-to-next-to leading order, JHEP 10 (2002) 017 [hep-ph/0208096] [INSPIRE].

[171] S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs

boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].

[172] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion

production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056]

[INSPIRE].

[173] LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al.,

Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593

[INSPIRE].

[174] J. Ellis, D.S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-top couplings in

associated production, JHEP 04 (2014) 004 [arXiv:1312.5736] [INSPIRE].

[175] F. Boudjema, R.M. Godbole, D. Guadagnoli and K.A. Mohan, Lab-frame observables for

probing the top-Higgs interaction, Phys. Rev. D 92 (2015) 015019 [arXiv:1501.03157]

[INSPIRE].

[176] M.R. Buckley and D. Goncalves, Boosting the direct CP measurement of the Higgs-top

coupling, Phys. Rev. Lett. 116 (2016) 091801 [arXiv:1507.07926] [INSPIRE].

[177] N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The hunt for the rest of the

Higgs bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].

[178] A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct detection of Higgs-portal

dark matter at the LHC, Eur. Phys. J. C 73 (2013) 2455 [arXiv:1205.3169] [INSPIRE].

[179] D. Choudhury and D.P. Roy, Signatures of an invisibly decaying Higgs particle at LHC,

Phys. Lett. B 322 (1994) 368 [hep-ph/9312347] [INSPIRE].

– 57 –

http://dx.doi.org/10.1016/j.cpc.2013.02.006
http://arxiv.org/abs/1212.3249
http://inspirehep.net/search?p=find+J+"Comp.Phys.Comm.,184,1605"
http://dx.doi.org/10.1016/0550-3213(95)00379-7
http://arxiv.org/abs/hep-ph/9504378
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B453,17"
http://dx.doi.org/10.1016/0370-2693(91)90375-Z
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B264,440"
http://dx.doi.org/10.1016/0370-2693(93)90564-X
http://arxiv.org/abs/hep-ph/9305335
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B311,255"
http://dx.doi.org/10.1016/0550-3213(91)90061-2
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B359,283"
http://dx.doi.org/10.1103/PhysRevLett.88.201801
http://arxiv.org/abs/hep-ph/0201206
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,88,201801"
http://dx.doi.org/10.1016/S0550-3213(02)00837-4
http://arxiv.org/abs/hep-ph/0207004
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B646,220"
http://dx.doi.org/10.1016/S0550-3213(03)00457-7
http://arxiv.org/abs/hep-ph/0302135
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B665,325"
http://dx.doi.org/10.1088/1126-6708/2002/10/017
http://arxiv.org/abs/hep-ph/0208096
http://inspirehep.net/search?p=find+J+"JHEP,0210,017"
http://dx.doi.org/10.1088/1126-6708/2003/07/028
http://arxiv.org/abs/hep-ph/0306211
http://inspirehep.net/search?p=find+J+"JHEP,0307,028"
http://dx.doi.org/10.1103/PhysRevLett.114.212001
http://arxiv.org/abs/1503.06056
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,114,212001"
http://arxiv.org/abs/1101.0593
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0593
http://dx.doi.org/10.1007/JHEP04(2014)004
http://arxiv.org/abs/1312.5736
http://inspirehep.net/search?p=find+J+"JHEP,1404,004"
http://dx.doi.org/10.1103/PhysRevD.92.015019
http://arxiv.org/abs/1501.03157
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D92,015019"
http://dx.doi.org/10.1103/PhysRevLett.116.091801
http://arxiv.org/abs/1507.07926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07926
http://dx.doi.org/10.1007/JHEP06(2015)137
http://arxiv.org/abs/1504.04630
http://inspirehep.net/search?p=find+J+"JHEP,1506,137"
http://dx.doi.org/10.1140/epjc/s10052-013-2455-1
http://arxiv.org/abs/1205.3169
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C73,2455"
http://dx.doi.org/10.1016/0370-2693(94)91167-3
http://arxiv.org/abs/hep-ph/9312347
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B322,368"


J
H
E
P
0
3
(
2
0
1
6
)
2
0
5

[180] O.J.P. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson,

Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [INSPIRE].

[181] R.M. Godbole, M. Guchait, K. Mazumdar, S. Moretti and D.P. Roy, Search for ‘invisible’

Higgs signals at LHC via associated production with gauge bosons,

Phys. Lett. B 571 (2003) 184 [hep-ph/0304137] [INSPIRE].

[182] D. Ghosh, R. Godbole, M. Guchait, K. Mohan and D. Sengupta, Looking for an invisible

Higgs signal at the LHC, Phys. Lett. B 725 (2013) 344 [arXiv:1211.7015] [INSPIRE].

[183] Michael Spira’s website, http://tiger.web.psi.ch/proglist.html.

[184] M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337]

[INSPIRE].
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[186] W. Beenakker, S. Dittmaier, M. Krämer, B. Plumper, M. Spira and P.M. Zerwas, NLO

QCD corrections to tt̄H production in hadron collisions, Nucl. Phys. B 653 (2003) 151

[hep-ph/0211352] [INSPIRE].

[187] L. Reina and S. Dawson, Next-to-leading order results for tt̄h production at the Tevatron,

Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [INSPIRE].

[188] S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson

production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [INSPIRE].

[189] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Scalar and

pseudoscalar Higgs production in association with a top-antitop pair,

Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [INSPIRE].

[190] T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in

gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655]

[hep-ph/9603205] [INSPIRE].

[191] S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron

colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

[192] A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs boson

pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].
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