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Abstract In this paper, we propose a new iterative scheme for finding a minimizer of a constrained convex
minimization problem and prove that the sequence generated by our new scheme converges strongly to a
solution of the constrained convex minimization problem in a real Hilbert space.
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1 Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and norm ||.|| and let C be a nonempty, closed and
convex subset of H .

Definition 1.1 A mapping T : C → C is said to be nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ C.

Construction of fixed points of nonexpansive mappings is an important subject in nonlinear mapping theory
and its applications; in particular, in image recovery and signal processing (see, for example, [5,15,20]). For
the past 40 years or so, the approximation of fixed points of nonexpansive mappings and fixed points of some
of their generalizations and approximation of zeros of accretive-type operators have been a flourishing area of
research for many mathematicians. For more details, the reader can consult [2,8,12].
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For any point u ∈ H , there exists a unique point PC u ∈ C such that

||u − PC u|| ≤ ||u − y||, ∀y ∈ C.

PC is called the metric projection of H onto C . We know that PC is a nonexpansive mapping of H onto C . It
is also known that PC satisfies

〈x − y, PC x − PC y〉 ≥ ||PC x − PC y||2, (1.1)

for all x, y ∈ H. Furthermore, PC x is characterized by the properties PC x ∈ C and

〈x − PC x, PC x − y〉 ≥ 0, (1.2)

for all y ∈ C .

Definition 1.2 A mapping T : H → H is said to be firmly nonexpansive if 2T − I is nonexpansive, or
equivalently

〈x − y, T x − T y〉 ≥ ||T x − T y||2, ∀x, y ∈ H.

Alternatively, T is firmly nonexpansive if T can be expressed as

T = 1

2
(I + S),

where S : H → H is nonexpansive. For example, projections are firmly nonexpansive.

Definition 1.3 A mapping T : H → H is said to be an averaged mapping if it can be written as the average
of the identity mapping I and a nonexpansive mapping; that is

T = (1 − α)I + αS, (1.3)

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when (1.3) holds, we say that T is
α-averaged. Thus, firmly nonexpansive mappings (in particular, projections) are 1

2 -averaged mappings.

Some properties of averaged mappings are in the following proposition below.

Proposition 1.4 ([5,9]) For given operators S, T, V : H → H:

(a) If T = (1−α)S +αV for some α ∈ (0, 1) and if S is averaged and V is nonexpansive, then T is averaged.
(b) T is firmly nonexpansive if and only if the complement I − T is firmly nonexpansive.
(c) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is firmly nonexpansive and V is nonexpansive, then

T is averaged.
(d) The composite of finitely many averaged mappings is averaged. That is, if each of the mappings {Ti }N

i=1
is averaged, then so is the composite T1 . . . TN . In particular, if T1 is α1-averaged and T2 is α2-averaged,
where α1, α2 ∈ (0, 1), then the composite T1T2 is α-averaged, where α = α1 + α2 − α1α2.

Definition 1.5 A nonlinear operator T whose domain D(T ) ⊂ H and range R(T ) ⊂ H is said to be:

(a) monotone if

〈x − y, T x − T y〉 ≥ 0, ∀x, y ∈ D(T ),

(b) β- strongly monotone if there exists β > 0 such that

〈x − y, T x − T y〉 ≥ β||x − y||2, ∀x, y ∈ D(T ),

(c) ν- inverse strongly monotone (for short, ν-ism) if there exists ν > 0 such that

〈x − y, T x − T y〉 ≥ ν||T x − T y||2, ∀x, y ∈ D(T ).

It can be easily seen that (i) if T is nonexpansive, then I − T is monotone; (ii) the projection mapping PC is
a 1-ism. The inverse strongly monotone (also referred to as co-coercive) operators have been widely used to
solve practical problems in various fields, for instance, in traffic assignment problems; see, for example, [3,11]
and the references therein.
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The following proposition gathers some results on the relationship between averaged mappings and inverse
strongly monotone operators.

Proposition 1.6 ([5]) Let T : H → H be an operator.

(a) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(b) If T is ν-ism, then for γ > 0, γ T is ν
γ

-ism.
(c) T is averaged if and only if the complement I − T is ν-ism for some ν > 1/2. Indeed, for α ∈ (0, 1), T is

α-averaged if and only if I − T is 1
2α

-ism.

Consider the following constrained convex minimization problem:

minimize{ f (x) : x ∈ C}, (1.4)

where f : C → R is a real-valued convex function. We say that the minimization problem (1.4) is consistent
if the minimization problem (1.4) has a solution. In the sequel, we shall denote the solution set of problem
(1.4) by S. If f is (Fréchet) differentiable, then the gradient-projection method (for short, GPM) generates a
sequence {xn} using the following recursive formula:

xn+1 = PC (xn − λ∇ f (xn)), ∀n ≥ 1, (1.5)

or more generally,

xn+1 = PC (xn − λn∇ f (xn)), ∀n ≥ 1, (1.6)

where in both (1.5) and (1.6) the initial guess x0 is taken from C arbitrarily, and the parameters, λ or λn ,
are positive real numbers. The convergence of the algorithms (1.5) and (1.6) depends on the behaviour of
the gradient ∇ f . As a matter of fact, it is known that if ∇ f is α-strongly monotone and L-Lipschitzian with
constants α, L > 0, then the operator

T := PC (I − λ∇ f ) (1.7)

is a contraction; hence, the sequence {xn} defined by the algorithm (1.5) converges in norm to the unique
solution of the minimization problem (1.4). More generally, if the sequence {λn} is chosen to satisfy the
property

0 < lim inf λn ≤ lim sup λn <
2α

L2 , (1.8)

then the sequence {xn} defined by the algorithm (1.6) converges in norm to the unique minimizer of (1.4).
However, if the gradient ∇ f fails to be strongly monotone, the operator T defined by (1.7) would fail to be
contractive; consequently, the sequence {xn} generated by the algorithm (1.6) may fail to converge strongly
(see [18, Sect. 4]). If ∇ f is Lipschitzian, then the algorithms (1.5) and (1.6) can still converge in the weak
topology under certain conditions.

The GPM for finding the approximate solutions of the constrained convex minimization problem is well
known; see, for example, [16] and the references therein. The convergence of the sequence generated by the this
method depends on the behaviour of the gradient of the objective function. If the gradient fails to be strongly
monotone, then the strong convergence of the sequence generated by GPM may fail. Recently, Xu [18] gave
an alternative operator-oriented approach to algorithm (1.6); namely, an averaged mapping approach. He gave
his averaged mapping approach to the gradient-projection algorithm (1.6) and the relaxed gradient-projection
algorithm. Moreover, he constructed a counterexample which shows that algorithm (1.5) does not converge in
norm in an infinite-dimensional space, and also presented two modifications of gradient-projection algorithms
which are shown to have strong convergence. Further, he regularized the minimization problem (1.4) to devise
an iterative scheme that generates a sequence converging in norm to the minimum-norm solution of (1.4) in
the consistent case.

Very recently, motivated by the work of Xu [18], Ceng et al. [6] proposed the following implicit iterative
scheme

xλ = PC (sγ V xλ + (I − sμF)Tλxλ)

and the following explicit iterative scheme
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xn+1 = PC (snγ V xn + (I − sμF)Tnxn)

for finding the approximate minimizer of a constrained convex minimization problem and prove that the
sequences generated by their schemes converge strongly to a solution of the constrained convex minimization
problem (see [6] for more details). Such a solution is also a solution of a variational inequality defined over
the set of fixed points of a nonexpansive mapping. Also, based on Yamada hybrid steepest descent method,
Tian and Huang [17] proposed respectively the following implicit and explicit iterative scheme:

xs = PC (I − snμF)Tλs (xs)

and

xn+1 = PC (I − snμF)Tλn (xn).

They proved that the sequences generated by their implicit and explicit schemes converge strongly to a solution
of the constrained convex minimization problem, which also solves a certain variational inequality (see [17]
for more details).

Motivated by the work of Xu [18], Ceng et al. [6] and Tian and Huang [17], we introduce a new iterative
scheme for finding the approximate minimizer of a constrained convex minimization problem and prove that
the sequence generated by our scheme converge strongly to a solution of the constrained convex minimization
problem.

2 Preliminaries

In the sequel, we shall also make use of the following lemmas.

Lemma 2.1 Let H be a real Hilbert space. Then, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 ∀ x, y ∈ H.

Lemma 2.2 Let H be a real Hilbert space. The following inequality holds:

||λx + (1 − λ)y||2 = λ||x ||2 + (1 − λ)||y||2 − λ(1 − λ)||x − y||2, ∀x, y ∈ H, λ ∈ [0, 1].

Lemma 2.3 (Browder [4], Goebel and Kirk [10]) Let H be a real Hilbert space, C a closed convex subset of
H, and T : C → C a nonexpansive mapping with a fixed point. Assume that a sequence {xn} in C is such that
xn ⇀ x and xn − T xn → y. Then x − T x = y.

Lemma 2.4 (Xu [19]) Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0,

where, (i){αn} ⊂ [0, 1], ∑
αn = ∞;(ii) lim sup σn ≤ 0;(iii) γn ≥ 0; (n ≥ 0),∑

γn < ∞. Then, an → 0 as n → ∞.

We adopt the following notations:

• xn → x means that xn → x strongly;
• xn ⇀ x means that xn → x weakly;
• ww(xn) := {x : ∃xn j ⇀ x} is the weak w-limit set of the sequence {xn}∞n=1.
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3 Main results

In this section, we modify the gradient projection method so as to have strong convergence. Below we include
such modification. Our result in this section complements the results of Xu [18]. Furthermore, using the
technique in [18,14], we obtain the following theorem.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Suppose that the
minimization problem (1.4) is consistent and let S denote its solution set. Assume that the gradient ∇ f is
L-Lipschitzian with constant L > 0. For any given u ∈ C, let the sequences {xn} and {yn} be generated
iteratively by x1 ∈ C,

{
yn = αnu + (1 − αn)xn,
xn+1 = PC (yn − λn∇ f (yn)), n ≥ 1,

(3.1)

where {αn} in [0,1] and {λn} in
(

0, 2
L

)
satisfy the following conditions:

(C1) lim
n→∞αn = 0;

(C2)
∞∑

n=1
αn = ∞;

(C3) 0 < lim inf λn ≤ lim sup λn < 2
L .

Then the sequence {xn} converges strongly to a minimizer x̂ of (1.4) which is the closest to u from the solution
set S. In other words, x̂ = PSu.

Proof Inspired by the method of proof of [18], it is well known that

(a) x∗ ∈ C solves the minimization problem (1.4) if and only if x∗ solves the fixed-point equation

x∗ = PC (I − λ∇ f )x∗,

where λ > 0 is any fixed positive number. For the sake of simplicity, we may assume that (due to condition
(C3))

0 < a ≤ λn ≤ b <
2

L
, n ≥ 1

where a and b are constants;
(b) the gradient ∇ f is 1

L -ism [1];
(c) PC (I − λ∇ f ) is 2+λL

4 - averaged for 0 < λ < 2
L . Hence we have that, for each n, PC (I − λn∇ f ) is

2+λn L
4 -averaged. Therefore, we can write

PC (I − λn∇ f ) = 2 − λn L

4
I + 2 + λn L

4
Tn = (1 − βn)I + βnTn, (3.2)

where Tn is nonexpansive and βn = 2+λn L
4 ∈ [a1, b1] ⊂ (0, 1), where a1 = 2+aL

4 and b1 = 2+bL
4 < 1.

Then we can rewrite (3.1) as
{

yn = αnu + (1 − αn)xn,
xn+1 = (1 − βn)yn + βnTn yn, n ≥ 1,

(3.3)

For any x∗ ∈ S, noticing that Tnx∗ = x∗, we have

‖xn+1 − x∗‖ ≤ (1 − βn)‖yn − x∗‖ + βn‖Tn yn − x∗‖
≤ ‖yn − x∗‖
= ‖(1 − αn)(xn − x∗) + αn(u − x∗)‖
≤ (1 − αn)‖xn − x∗‖ + αn‖u − x∗‖
≤ max{‖xn − x∗‖, ‖u − x∗‖}.

By induction, it is easy to see that

‖xn − x∗‖ ≤ max{‖x1 − x∗‖, ‖u − x∗‖}, ∀n ≥ 1.
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Hence {xn} is bounded and so are {yn} and {Tn yn}.
Using Lemma 2.2 and (3.3), we have

||xn+1 − x∗||2 = ||(1 − βn)(yn − x∗) + βn(Tn yn − x∗)||2
= (1 − βn)||yn − x∗||2 + βn||Tn yn − x∗||2 − βn(1 − βn)||Tn yn − yn||2
≤ (1 − βn)||yn − x∗||2 + βn||yn − x∗||2 − βn(1 − βn)||Tn yn − yn||2
= ||yn − x∗||2 − βn(1 − βn)||Tn yn − yn||2.

Therefore, by Lemma 2.1, we have

βn(1 − βn)||Tn yn − yn||2 ≤ ||yn − x∗||2 − ||xn+1 − x∗||2
≤ ||xn − x∗||2 − ||xn+1 − x∗||2 + 2αn〈u − x∗, yn − x∗〉. (3.4)

Since {yn} is bounded, then there exists a constant M ≥ 0 such that

〈u − x∗, yn − x∗〉 ≤ M for all n ≥ 1.

So, from (3.4) we have

βn(1 − βn)||Tn yn − yn||2 ≤ ||xn − x∗||2 − ||xn+1 − x∗||2 + 2αn M. (3.5)

Now, we divide the rest of the proof into two cases.
Case 1 Assume that the sequence {||xn − x∗||} is a monotonically decreasing sequence. Then {||xn − x∗||}

is convergent. Clearly, we have

||xn+1 − x∗||2 − ||xn − x∗||2 → 0.

It then implies from (3.5) that

lim
n→∞βn(1 − βn)||Tn yn − yn|| = 0.

Using the condition βn ∈ [a1, b1] ⊂ (0, 1), we have

lim
n→∞||Tn yn − yn|| = 0. (3.6)

Now from (3.3), we obtain

||yn − xn+1|| = βn||Tn yn − yn|| → 0 as n → ∞. (3.7)

From (3.3), we know that

||yn − xn|| = ||αnu + (1 − αn)xn − xn||
= αn||u − xn|| ≤ αn M1 → 0, (3.8)

where M1 ≥ ||u − xn||, ∀n ≥ 1. Therefore, from (3.8) and (3.7), we have

||xn+1 − xn|| → 0. (3.9)

Also, from (3.6) and (3.8), we have

||Tnxn − xn|| ≤ ||Tnxn − Tn yn|| + ||Tn yn − yn|| + ||yn − xn||
≤ 2||xn − yn|| + ||Tn yn − yn|| → 0 as n → ∞. (3.10)

Next, we prove that

ww(xn) ⊂ S.
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Suppose that p ∈ ww(xn) and {xn j } is a subsequence of {xn} such that xn j ⇀ p; thus xn j +1 ⇀ p by (3.9) and

yn j ⇀ p by (3.8). We may assume that λn j → λ; then we have 0 < λ < 2
L . Set T := PC (I − λ∇ f ); then T

is nonexpansive. Since xn j +1 = PC (yn j − λn j ∇ f (yn j )) and xn j +1 − xn j → 0, we get

||xn j − T yn j || ≤ ||xn j +1 − xn j || + ||PC (yn j − λn j ∇ f (yn j )) − PC (yn j − λ∇ f (yn j ))||
≤ ||xn j +1 − xn j || + |λn j − λ|||∇ f (yn j )||
≤ ||xn j +1 − xn j || + M2|λn j − λ| → 0.

Furthermore, by (3.8) we obtain

||xn j − T xn j || ≤ ||xn j − T yn j || + ||T yn j − T xn j ||
≤ ||xn j − T yn j || + ||yn j − xn j || → 0.

Also, we have

||yn j − T yn j || ≤ ||yn j − xn j || + ||xn j − T xn j || + ||T yn j − T xn j ||
≤ 2||yn j − xn j || + ||xn j − T xn j || → 0.

Lemma 2.3 guarantees that ww(xn) ⊂ F(T ) = S and ww(yn) ⊂ F(T ) = S.
Next, we prove that {xn} converges strongly to x̂ ∈ S, where x̂ is the solution of (1.4) which is closest to u

from the solution set S. First, we show that lim sup
n→∞

〈yn − x̂, u − x̂〉 ≤ 0. Observe that there exists a subsequence

{yn j } of {yn} satisfying

lim sup
n→∞

〈yn − x̂, u − x̂〉 = lim
j→∞〈yn j − x̂, u − x̂〉.

Since {yn j } is bounded, there exists a subsequence {yn j i
} of {yn j } such that yn j i

⇀ p ∈ F(T ) = S. Without
loss of generality, we assume that yn j ⇀ p ∈ F(T ) = S. Then, we obtain

lim sup
n→∞

〈yn − x̂, u − x̂〉 = lim
j→∞〈yn j − x̂, u − x̂〉 = 〈p − x̂, u − x̂〉 ≤ 0.

Using Lemma 2.1, we get from (3.3) that

||xn+1 − x̂ ||2 ≤ ||yn − x̂ ||2
= ||(1 − αn)(xn − x̂) + αn(u − x̂)||2
≤ (1 − αn)||xn − x̂ ||2 + 2αn〈yn − x̂, u − x̂〉. (3.11)

By Lemma 2.4, we obtain limn→∞ ||xn − x̂ || = 0.
Case 2 Assume that {||xn − x∗||} is not a monotonically decreasing sequence. Set 	n = ||xn − x∗||2 and

let τ : N → N be a mapping for all n ≥ n0 (for some n0 large enough) by

τ(n) = max{k ∈ N : k ≤ n, 	k ≤ 	k+1}.
Clearly, τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and 	τ(n) ≤ 	τ(n)+1 for n ≥ n0.
From (3.5), we see that

βτ(n)(1 − βτ(n))||Tτ(n)yτ(n) − yτ(n)||2 ≤ 2ατ(n)M → 0 as n → ∞.

Furthermore, we have

||Tτ(n)yτ(n) − yτ(n)|| → 0 as n → ∞.

By the same argument as in Case 1, we can show that xτ(n) converges weakly to p ∈ ww(xτ(n)) as τ(n) → ∞
and lim sup

τ(n)→∞
〈u − x̂, yτ(n) − x̂〉 ≤ 0. We know that for all n ≥ n0,

0 ≤ ||xτ(n)+1 − x̂ ||2 − ||xτ(n) − x̂ ||2 ≤ αn[2〈u − x̂, yτ(n) − x̂〉 − ||xτ(n) − x̂ ||2],
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which implies that

||xτ(n) − x̂ ||2 ≤ 2〈u − x̂, yτ(n) − x̂〉.
Then we conclude that

lim
n→∞||xτ(n) − x̂ || = 0.

Therefore

lim
n→∞	τ(n) = lim

n→∞	τ(n)+1 = 0.

Furthermore, for n ≥ n0, it is easily observed that 	n ≤ 	τ(n)+1 if n �= τ(n) (that is, τ(n) < n), because
	 j > 	 j+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0,

0 ≤ 	n ≤ max{	τ(n), 	τ(n)+1} = 	τ(n)+1.

Hence lim
n→∞	n = 0, that is, {xn} converges strongly to x̂ . This completes the proof. ��

Corollary 3.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Suppose that the
minimization problem (1.4) is consistent and let S denote its solution set. Assume that the gradient ∇ f is
L-Lipschitzian with constant L > 0. For any given u ∈ C, let the sequences {xn} and {yn} be generated
iteratively by x1 ∈ C,

{
yn = αnu + (1 − αn)xn,
xn+1 = PC (yn − λ∇ f (yn)), n ≥ 1,

(3.12)

where 0 < λ < 2
L and {αn} in [0,1] satisfies the following conditions:

(C1) lim
n→∞αn = 0;

(C2)
∞∑

n=1
αn = ∞.

Then the sequence {xn} converges strongly to a minimizer x̂ of (1.4).

4 An application

In this section, we give an application of Theorem 3.1 to the split feasibility problem (say SFP, for short),
which was introduced by Censor and Elfving [7]. SFP problem has gained much attention of several authors
due to its applications to image reconstruction, signal processing and intensity-modulated radiation therapy
(see [5,13,17]).

This SFP can be mathematically formulated as the problem of finding a point x with the property

x ∈ C and Bx ∈ Q, (4.1)

where C and Q are nonempty, closed and convex subset of Hilbert space H1 and H2 respectively and B :
H1 → H2 is a bounded linear operator.

Clearly, x∗ is a solution to the split feasibility problem (4.1) if and only if x∗ ∈ C and Bx∗ − PQ Bx∗ = 0.
The proximity function f is defined by

f (x) = 1

2

∣
∣
∣
∣Bx − PQ Bx

∣
∣
∣
∣2 (4.2)

and consider the constrained convex minimization problem

min
x∈C

f (x) = min
x∈C

1

2

∣
∣
∣
∣Bx − PQ Bx

∣
∣
∣
∣2

. (4.3)
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Then x∗ solves the split feasibility problem (4.1) if and only if x∗ solves the minimization problem (4.3). In
[5], C Q algorithm was introduced to solve the SFP.

xn+1 = PC (I − λB∗(I − PQ)B)xn, n ≥ 0, (4.4)

where 0 < λ < 2
||B||2 . It was proved that the sequence generated by (4.4) converges weakly to a solution of

the SFP.
We propose the following algorithm to obtain a strong convergence iterative sequence to solve SFP. For

any given u ∈ C , let the sequences {xn} and {yn} be generated iteratively by x1 ∈ C ,
{

yn = αnu + (1 − αn)xn,
xn+1 = PC (I − λn(B∗(I − PQ)B + γ I ))yn, n ≥ 1,

(4.5)

where {αn} ⊂ [0, 1], γ > 0 and {λn} in
(

0, 2
L

)
satisfy the following conditions:

(C1) lim
n→∞αn = 0;

(C2)
∞∑

n=1
αn = ∞;

(C∗3) 0 < lim inf λn ≤ lim sup λn < 2
||B||2+γ

.

We obtain the following convergence result for solving split feasibility problem (4.1) by applying theorem
(3.1).

Theorem 4.1 Assume that the split feasibility problem (4.1) is consistent. Let the sequence {xn} be generated

by (4.5), where the sequence {αn} in [0, 1] and {λn} in
(

0, 2
L

)
satisfy the conditions (C1)–(C∗3). Then the

sequence {xn} converges strongly to a solution of the split feasibility problem (4.1).

Proof Using the definition of the proximity function f , we have

∇ f (x) = B∗(I − PQ)Bx, (4.6)

and ∇ f is Lipschitz continuous, that is

||∇ f (x) − ∇ f (y)|| ≤ L||x − y||, (4.7)

where L = ||B||2.
Set

fγ (x) = f (x) + γ

2

∣
∣
∣
∣x

∣
∣
∣
∣2

.

Consequently,

∇ fγ (x) = ∇ f (x) + γ x

= B∗(I − PQ)Bx + γ x

and ∇ fγ is Lipschitzian with Lipschitz constant ||B||2 + γ . Then the iterative scheme (4.5) is equivalent to
{

yn = αnu + (1 − αn)xn,
xn+1 = PC (yn − λn∇ fγ (yn)), n ≥ 1,

(4.8)

where {αn} ⊂ [0, 1], γ > 0 and {λn} in
(

0, 2
L∗

)
satisfy the following conditions:

(C1) lim
n→∞αn = 0;

(C2)
∞∑

n=1
αn = ∞;

(C∗3) 0 < lim inf λn ≤ lim sup λn < 2
L∗ ,

where L∗ = ||B||2 + γ . The conclusion follows from Theorem (3.1). ��
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