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Abstract. We study the effect of a one dimensional optical superlattice on the superfluid properties (su-
perfluid fraction, number squeezing, dynamic structure factor) and the quasi-momentum distribution of
the Mott-insulator. We show that due to the secondary lattice, there is a decrease in the superfluid fraction
and the number fluctuation. The dynamic structure factor which can be measured by Bragg spectroscopy
is also suppressed due to the addition of the secondary lattice. The visibility of the interference pattern (the
quasi-momentum distribution) of the Mott-insulator is found to decrease due to the presence of the sec-
ondary lattice. Our results have important implications in atom interferometry and quantum computation
in optical lattices.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 03.75.-b Matter waves – 03.75.Kk Dynamic properties of conden-
sates; collective and hydrodynamic excitations, superfluid flow

1 Introduction

When a gas of ultracold atoms is loaded into an opti-
cal lattice, its properties are modified strongly [1]. Ul-
tracold bosons trapped in such periodic potentials have
been widely used recently as a model system for the study
of some fundamental concepts of quantum physics like
Josephson effects [2], squeezed states [3], Landau-Zener
tunneling and Bloch oscillations [4] and superfluid-Mott
insulator transition [5].

Using superposition of optical lattices with different
periods [6], it is now possible to generate more sophis-
ticated periodic potentials characterized by a richer spa-
tial modulation, the so-called optical superlattices. An im-
portant and exciting application of optical superlattice is
quantum computation [7]. The physics of one-dimensional
optical superlattices has been a subject of recent re-
search, including fractional filling Mott insulator (MI) do-
mains [8], dark [9] and gap [10] solitons, the Mott-Peierls
transition [11], non-mean field effects [12], phase-diagram
in two colour superlattices [13], Bloch-Zener and dipole
oscillations [14], collective oscillations [15] and Bloch and
Bogoliubov spectrum [16].

A key observable in these systems is the interference
pattern observed after releasing the gas from the lattice
and letting it expand for a certain time of flight. Mon-
itoring the evolution of this interference pattern reveals
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e.g., the superfluid fraction, number squeezed states [3,17],
quasi-momentum distribution, observation of collapse and
revivals of coherence due to atomic coherence [18] and su-
perfluid to Mott insulator transition [5,19]. Further co-
herence properties of Bose-Einstein condensates offer the
potential for improved interferometric phase contrast. The
MI state plays a central role for various quantum informa-
tion processing schemes [20]. Because of the experimental
importance of BEC in optical lattices, it is crucial to un-
derstand the influence of the secondary lattice which is
emerging as a new manipulating tool on the coherence
properties of a BEC. In the present paper, we study in
what way the superfluid properties (superfluid fraction,
number fluctuation, the dynamic structure factor) and the
quasi-momentum distribution (and hence the visibility of
the interference pattern) of the MI is influenced by the
addition of the secondary lattice.

2 The Bogoliubov approximation
to the Bose-Hubbard Hamiltonian

The light shifted potential of the superlattice is de-
scribed as

V (z) = V1 cos2
(
πz

d1

)
+ V2 cos2

(
πz

d2
+ φ

)
. (1)

Here d1 and d2 are respectively, the primary and sec-
ondary lattice constants. V1 and V2 are the respective
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amplitudes. The secondary lattice acts as a perturbation
and hence we will take V2 � V1. φ is the phase of the
secondary lattice. When φ = 0, each site of the lattice is
perfectly equivalent due to the symmetries of the system,
so that the population and on-site energies are same at
each site. An asymmetry is introduced when φ �= 0 and
hence the on-site energies are not the same at each site.
The harmonic trapping potential is given by Vho(r, z) =
m
2

(
ω2

rr
2 + ω2

zz
2
)

and the optical superlattice potential is
given as Vop = ER

(
s1 cos2(πz

d ) + s2 cos2
(

πz
2d

))
. In our

case we take d2 = 2d1 = 2d which gives rise to a periodic
double well potential. Also s1 and s2 are the dimension-
less amplitudes of the primary and secondary superlattice
potentials with s1 > s2. Here, ER = �

2π2

2md2 is the recoil
energy (ωR = ER

�
is the corresponding recoil frequency)

of the primary lattice. Also, U = 4πa�
2

m is the strength of
the two body interaction and a is the two body scatter-
ing length. We take ωr > ωz so that an elongated cigar
shaped BEC is formed. The harmonic oscillator frequency
corresponding to small motion about the minima of the
optical superlattice is ωs ≈

√
s1�π2

md2 . The BEC is initially
loaded into the primary lattice and the secondary lattice
is switched on slowly so that the BEC stays in the vi-
brational ground state. The frequency of each minima of
the primary lattice is not perturbed significantly by the
addition of the secondary lattice. ωs � ωz so that the op-
tical lattice dominates the harmonic potential along the
z-direction and hence the harmonic potential is neglected.
Moreover we also take a sufficiently large harmonic con-
finement in the xy plane which effectively reduces the
problem to one-dimension. The strong laser intensity will
give rise to an array of several quasi-two dimensional pan-
cake shaped condensates. Because of the quantum tunnel-
ing, the overlap between the wavefunctions between two
consecutive layers can be sufficient to ensure full coher-
ence. Following our earlier work [16] the effective one-
dimensional Bose-Hubbard Hamiltonian for I lattice sites
and φ �= 0 is written as

H = −
∑

j

Jj

[
â†j âj+1 + â†j+1âj

]

+
U ′

eff

2

∑
j

â†j â
†
jâj âj +

∑
j

εj â
†
j âj . (2)

Here Jj is the site dependent strength of the Josephson
coupling and is different when going from j − 1 to
j and j to j + 1. The two Josephson coupling pa-
rameters are conveniently written as J0 ± ∆0/2, where
J0 = ER

2

[
s1π2

2 −√
s1 − s1

]
exp
(
−

√
s1π2

4

)
and ∆0 =

s2ER exp
(
−

√
s1π2

4

)
. The strength of the effective on-site

interaction energy is Ueff = U
∫
dz|w(z)|4. Here U

′
eff =

Ueff/V2d, V2d is the two dimensional area of radial con-
finement (i.e. area of each pan cake shaped BEC). Here,
εj is the on-site energies and takes two distinct values
(ε1 and ε2) corresponding to odd and even sites. In the
mean field approximation, the operators âj and â†j are

classical c numbers, âj = φj . Stationary states with a fixed
total number of particles N are obtained by requiring that
the variation of H − µN with respect to φ∗j vanish. Here
µ is the chemical potential. This yields the eigenvalues
equation

εjφj + Ueff |φj |2 φj − Jjφj+1 − Jj−1φj−1 − µφj = 0. (3)

We write φj as
φj = gje

ij2kd. (4)
The eigenvalues are found as

µ =
2Ueff n0 −

√
[∆ε]2 + 4ε2k

2
(5)

where εk =
√

4J2
0 cos2 2kd+∆2

0 sin2 2kd and ∆ε = ε1−ε2.
The eigenvalue µ corresponds to the chemical potential
for k = 0. The Bogoliubov spectrum of elementary ex-
citation describes the energy of small perturbations with
quasimomentum q on top of a macroscopically populated
state with quasi-momentum k. In the Bogoliubov approx-
imation, we write the annihilation operator in terms of
c-number part and a fluctuation operator as

âj =
(
φ+ δ̂j

)
exp
(
− iµt

�

)
. (6)

The resulting Bogoliubov equations for the fluctuation op-
erator δ̂j in the optical superlattice take the following form

i�
˙̂
δj = (2Ueff n0+εj−µ) δ̂j−Jj δ̂j+1−Jj−1δ̂j−1+Ueff n0δ̂

†
j .

(7)
Here, n0 is the 2d average density of atoms per site of
the lattice. The above equation is solved by construct-
ing quasi-particles for the lattice, which diagonalize the
Hamiltonian i.e.

δ̂j =
1√
I

∑
q

[
uq

j b̂
†
qe

i(jq2d−ωqt) − vq
j b̂qe

−i(jq2d−ωqt)
]
. (8)

The quasi-particles obey the usual Bose-commutation re-
lations [

b̂q, b̂
†
q′

]
= δqq′ . (9)

The excitation amplitudes obey the periodic boundary
conditions

uq
j+1 = uq

j−1, vq
j+1 = vq

j−1. (10)

Finally the phonon excitation frequencies are found to be

�
2ω2

q ,± =
1
2
[
(β2

1 + β2
2) + 2ε2q − 2U2

eff n
2
0

]± εq(β1 + β2),

(11)
where

β1 = Ueff n0 − ∆ε

2
+

1
2

√
(∆ε)2 + 16J2

0 , (12)

β2 = Ueff n0 +
∆ε

2
+

1
2

√
(∆ε)2 + 16J2

0 , (13)

εq =
√

4J2
0 cos2 2qd+∆2

0 sin2 2qd, (14)
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Fig. 1. The acoustical branch of the Bogoliubov spectrum as
a function of qd. n0Ueff/ER = 1, J0/ER = 1, ∆0/ER = 0.1.
The bold curve is for (ε1 − ε2)/ER = 1, while the dashed curve
is for ε1 = ε2. The change in the Bogoliubov spectrum due to
asymmetry is appreciable only near the band edge.

where �ωq,− is the acoustical branch. There is another
branch called the gapped branch (analogue of the optical
branch) whose energy is given by [16] �ωq,+. In Figure 1,
we find that for ∆ε not large, the asymmetry due to φ �= 0
does not appreciably change the Bogoliubov spectrum. It
is only near the edge of the Brillouin zone that a small
change is visible.

Due to the above fact in the following we will only dis-
cuss the simple case when φ = 0 i.e. experimentally φ does
not deviate much from zero so that ε1 = ε2. This case also
allows us to tackle the problem analytically. The result-
ing equations for amplitudes and frequencies are solved to
yield the Bogoliubov amplitudes as

|uq
j |2 = |uq

j+1|2 =
1
2

(
ε̃q,− + n0Ueff + �ωq,−

�ωq,−

)
, (15)

|vq
j |2 = |vq

j+1|2 =
1
2

(
ε̃q,− + n0Ueff − �ωq,−

�ωq,−

)
, (16)

uq
ju

∗q
j+1 =

(
2J0 cos 2qd+ i∆0 sin 2qd√
4J2

0 cos 2qd+∆2
0 sin 2qd

)
|uq

j |2, (17)

vq
jv

∗q
j+1 =

(
2J0 cos 2qd+ i∆0 sin 2qd√
4J2

0 cos 2qd+∆2
0 sin 2qd

)
|vq

j |2, (18)

vq
ju

q
j+1 = uq

jv
q
j+1, (19)

where �ωq,− =
√
ε̃q,−(2n0Ueff + ε̃q,−) and ε̃q,− = 2J0 −√

4J2
0 cos2 2qd+∆2

0 sin2 2qd.

3 Superfluid fraction and number fluctuations

An interacting many body system is said to be superfluid,
if a condensate exists. This happens when the one-body
density matrix has exactly one macroscopic eigenvalue,
which defines the number of particles in the condensate.
The corresponding eigenvector describes the condensate
wavefunction, ψ0(	r) = eiφ(�r)|ψ0(	r)|2. The superfluid ve-
locity is given as

	vs(	r) =
�

m∗
	∇φ(	r). (20)

Here m∗ is the effective mass of a single atom in the op-
tical superlattice. We now write down the expression for
the superfluid fraction based on the rigidity of the system
under a twist of the condensate phase [21]. Suppose we
impose a linear phase twist φ(	r) = θz

L , with a total twist
angle θ over a length L of the system (with ground state
energy E0) in the z-direction. The resulting ground state
energy, Eθ will depend on the phase twist. Thus,

Eθ − E0 =
1
2
m∗Nfsv

2
s , (21)

where N is the total number of particles, fs is the super-
fluid fraction and m∗ = J0�

2

2d2(4J2
0−∆2

0)
. Substituting equa-

tion (21) into (20) gives,

fs =
4J0(Eθ − E0)

N(4J2
0 −∆2

0)(∆θ)2
. (22)

Here ∆θ is the phase variation over 2d. We now need to
calculate the energy change (Eθ −E0) using second order
perturbation theory, under the assumption that the phase
change, ∆θ is small. This yields

(Eθ − E0) = ∆E(1) +∆E(2). (23)

Where ∆E(1) is the first order contribution to the energy
change

∆E(1) = − (∆θ)2

2

〈
ψ0

∣∣∣T̂
∣∣∣ψ0

〉
. (24)

Here |ψ0〉 is the ground state of the Bose-Hubbard
Hamiltonian. The hopping operator T̂ is given by

T̂ = −
I∑

j=1

Jj

(
â†j+1âj + â†j âj+1

)
. (25)

The second order contribution is written as

∆E(2) = − (∆θ)2
∑
ν �=0

∣∣∣〈ψν

∣∣∣Ĵ∣∣∣ψ0

〉∣∣∣2
Eν − E0

, (26)

where the current operator Ĵ is

Ĵ = −
I∑

j=1

Jj

(
â†j+1âj − â†j âj+1

)
. (27)

The total superfluid fraction has two contributions

fs = f (1)
s + f (2)

s , (28)

where

f (1)
s = − 2J0

N(4J2
0 −∆2

0)

〈
ψ0

∣∣∣T̂
∣∣∣ψ0

〉
, (29)

f (2)
s =

2J0

N(4J2
0 −∆2

0)

∑
ν �=0

∣∣∣〈ψν

∣∣∣Ĵ
∣∣∣ψ0

〉∣∣∣2
Eν − E0

. (30)
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Using the expressions for the various Bogoliubov ampli-
tudes and frequencies, we can now evaluate f (1)

s and f (2)
s

f (1)
s =

2J0

N(4J2
0 −∆2

0)

I∑
j=1

Jj

〈
ψ0

∣∣∣â†j+1âj + â†j âj+1

∣∣∣ψ0

〉
.

(31)
In the Bogoliubov approximation this takes the form

f (1)
s =

2J0

N(4J2
0−∆2

0)

I∑
j=1

Jj

〈
ψ0

∣∣∣2φ2
j +δ̂†j+1δ̂j +δ̂†j δ̂j+1

∣∣∣ψ0

〉
.

(32)
The fluctuation operators appearing in equation (32) are
now written in terms of the quasi-particle operators

f (1)
s =

2J0

N(4J2
0 −∆2

0)

[
I∑

j=1

Jj(2φ2
j )

+
1
2

I∑
j=1

∑
q,q′

Jj

〈[
u∗q

j+1b̂qe
iq(j+1)2d − vq

j+1b̂
+
q e

−iq(j+1)2d
]

×
[
uq′

j b̂
†
q′e

−iq′j2d − v∗q′
j b̂†q′e

iq′j2d
] 〉

+
〈[
u∗q

j b̂
†
qe

−iqj2d − vq
j b̂

†
qe

iqj2d
]

×
[
uq′

j+1b̂
†
q′e

iq′(j+1)2d − v∗q′
j+1b̂

†
q′e

−iq′(j+1)2d
] 〉]

. (33)

Finally, we find in the zero temperature limit

f (1)
s =

4J0

N(4J2
o −∆2

0)

{
I∑

j=1

Jj(φ2
j )

+
∑

q

J0

(
u∗2u1e

i2qd + u2u
∗
1e

−i2qd
)}

. (34)

Here, the summation runs over all quasi-momenta q = πj
Id

with j = 1, 2, . . . , (I − 1). The normalization condition is
obtained by putting f (1)

s = 1 when d→ 0

I∑
j=1

Jj(φ2
j ) + J0

∑
q

J02Re(u1u
∗
2) =

N(4J2
0 −∆2

0)
4J0

. (35)

Using the Bogoliubov amplitudes derived in the previous
section, one can show that f (2)

s = 0. Consequently, we find
that the total superfluid fraction has contribution from
just f (1)

s . A plot (Fig. 2) of the superfluid fraction as a
function of s2/s1 reveals a decrease in the superfluid frac-
tion as the strength of the secondary lattice increases. This
is to be expected since in the presence of the secondary lat-
tice, it has been shown that there exists a fractional filling
Mott insulating state in the phase diagram [8]. This itself
is an indication of a reduced superfluid fraction.This result
is in accordance with earlier work of Rousseau et al. [22]
where they have considered the effect of a secondary lat-
tice on an one dimensional hard core bosons (strongly

Fig. 2. The superfluid fraction as a function of s2/s1 with
n0Ueff/J0 = 1, I = 10 and n = 10. As the strength of the
secondary lattice increases with a fixed strength of the primary
lattice, there is a quantum depletion of the condensate which
is seen as a decrease in the superfluid fraction.

correlated regime). As the strength of the secondary lat-
tice increases, we approach the Mott-insulator transition.
Since the phase twist is equivalent to the imposition of an
acceleration on the lattice for a finite time, the condensate
now in the superlattice seems to resist this acceleration or
simply tries to resist the phase twist and thus there is a
reduction in the superfluid flow. A direct consequence of
the decrease of the superfluid fraction is a decrease in the
number fluctuation, which we show below. Increasing the
lattice depth reduces the tunneling rate between adjacent
wells. This can be viewed as a reduction of the number
fluctuations at each lattice site. As the probability of the
atoms to hop between wells decreases, the number vari-
ance σn goes down. Quantum mechanically, this implies
that the phase variance σφ describing the spread in rela-
tive phases between the lattice wells, has to increase. This
effect can be seen directly by looking at the interference
pattern of a BEC released from an optical trap. We can
find an expression for the fluctuations in the relative num-
ber in each well as [21]〈

n̂2
i − 〈n̂i〉2

〉
=
n

I

∑
q

(uq − vq)2, (36)

and
(uq − vq)2 =

εq
�ωq

. (37)

Here, I is the total number of sites and n is the mean num-
ber of atoms on each site of the lattice. A plot (Fig. 3) of
the number fluctuations versus s2/s1 reveals as expected a
decrease with increasing strength of the secondary lattice
indicating a loss of phase coherence. The number variance
may be measured experimentally by studying the collapse
tc and revival trev times of the relative phase between
sites [23]. The relation is given by σn = trev

2πtc
. This reduc-

tion in the number fluctuation is also called as the atom
number squeezing. This increased squeezing as a result of
the secondary lattice has an important application in im-
proved atom interferometry since with increased squeezing
the coherence time also increases [24]. These atom num-
ber squeezed states have reduced sensitivity to mean-field
decay mechanisms. The secondary lattice then serves to
coherently maintain a balance between coherence as well
as the decoherence effects due to mean-field interaction.
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Fig. 3. The number fluctuation as a function of s2/s1 with
n0Ueff/J0 = 1, I = 10 and n = 10. As the strength of
the secondary lattice increases, there is a loss of superflu-
idity. The interplay of the interaction and tunneling terms
renders number fluctuations energetically unfavorable. The
number fluctuations decrease with increasing potential of the
secondary lattice. There is a corresponding increase in the
phase fluctuations.

4 Dynamic structure factor

The capability of the system to respond to an excita-
tion probe transferring momentum p and energy �ω is
described by the dynamic structure factor. In the pres-
ence of a periodic potential the dynamic structure factor
takes the form

S(p, ω) =
∑

α

Zα(p)δ[ω − ωα(p)] (38)

where Zα(p) are the excitation strengths relative to the
αth mode. Here, α is the band label. For each value of
the quasi-momentum q, there are infinite set of excitation
energies �ωα(q). It is often convenient to consider values
of q outside the first Brillouin zone and to treat the en-
ergy spectrum and Bogoliubov excitation amplitudes uq

j,α

and vq
j,α as periodic with period 2qB. Here qB = �π

2d is
the Bragg momentum denoting the boundary of the first
Brillouin zone. p is assumed to be along the optical lattice
(z-axis), is not restricted to the first Brillouin zone since it
is the momentum transferred by the external probe. The
quantities q, p and qB are related as q = p + 2lqB, l is
an integer. In the first Brillouin zone l = 0. The excita-
tion energies �ωα(p) are periodic as a function of p but
this is not true for the excitation strengths Zα. The exci-
tation strengths Zα can be evaluated using the standard
prescription [25]

Zα(p) =
∣∣∣∣
∫ d

−d

[u∗q
α (z) − u∗q

α (z)] eipz/�φ(z)dz
∣∣∣∣
2

. (39)

Since |uq
j,α|2 = |uq

j+1,α|2 and |vq
j,α|2 = |vq

j+1,α|2, we will
drop all j dependence from the Bogoliubov amplitudes.
The excitation frequencies for different α has already been
derived in our earlier work [16]. We are interested in the
low energy region where Z1(p) is the dominating term
arising from the first band. The dispersion law for the

Fig. 4. The excitation strength Z1(p) for two values of s2
s1

=

0.1 (solid line) and s2
s1

= 0.4 (dashed line). Ueff/J0 = 0.2.

The figure shows both the oscillatory behaviour through ε̃(p)
�ω1(p)

and decaying behaviour at large p through exp
(
−π2σ2p2

8d2q2
B

)
. On

increasing the strength of the secondary lattice, Z1(p) is found
to be quenched. The first maxima is found near the edge of the
first Brillouin zone.

lowest band is

�ω1(p) =
√
ε̃p(2n0Ueff + ε̃p), (40)

ε̃p = 2J0 −
√

4J2
0 cos2

(
2pπ
qB

)
+∆2

0 sin2

(
2pπ
qB

)
.

(41)
The behaviour of Z1(p) can be studied analytically in the
tight binding limit. In this limit one can approximate the
Bogoliubov amplitudes in the lowest mode as

uα(z) =
∑

j

eij2qd/�f(z − 2jd), (42)

and analogously for vα(z), where f(z) is a function lo-
calized near the bottom of the optical potential V at
z = 0, and j labels the potential wells. Within this ap-
proximation the function f also characterizes the ground
state order parameter which reads φ(z) =

∑
j f(z − 2jd).

We can approximate the function f(z) with the Gaussian
f(z) = exp

[−z2/2σ2
]
/
(
π1/4

√
σ
)
. The width σ is found

by minimizing the ground state energy

E0 =
2
2d

∫ d

−d

{
�

2

2m

∣∣∣∣∂φ∂z
∣∣∣∣
2

+
[
s1ER cos2

(πz
d

)
+s2ER cos2

(πz
2d

)]
|φ|2+

U

2
|φ|4
}
dz,

(43)
and behaves like σ ∼ d

(s1+s2/4)1/4 . After some trivial alge-
bra we find

Z1(p) =
ε̃p

�ω1(p)
exp
(
−π

2σ2p2

8d2q2B

)
. (44)

The expression for Z1(p) shows both the oscillatory be-
haviour through ε̃p

�ω1(p) and decaying behaviour at large

p through exp
(
−π2σ2p2

8d2q2
B

)
. Figure 4 shows the excitation

strength Z1(p) for two values of s2
s1

= 0.1 (solid line) and
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s2
s1

= 0.4 (dashed line). On increasing the strength of the
secondary lattice, Z1(p) is quenched. This behaviour can
be understood by looking at the low p limit of S(p) =∫
S(p, ω)dω = |p|

2
√

m∗n0Ueff

. On increasing s2, m∗ increases

and hence S(p) decreases. The presence of the secondary
lattice results in the suppression of Z1(p). The system now
becomes more heavy and is not able to respond to an
external excitation probe. The momentum transferred is
now comparatively less. Note that in the absence of in-
teractions, the oscillatory behaviour disappears and the
strength reduces to Z1(p) = exp

(
−π2σ2p2

8d2q2
B

)
. This shows

that the effect of the secondary lattice on the quenching
is present only in the presence of interactions. The zeroes
of Z1(p) at p = 2lqB reflects the phonon behaviour of the
excitation spectrum which also vanishes at the same val-
ues. The quantity Z1(p) can be measured in Bragg spec-
troscopy experiments by applying an additional moving
optical potential in the form of VB(t) = V0 cos (pz

�
− ωt).

The momentum and the energy transferred by the Bragg
pulse must be tuned to the values of p and �ω correspond-
ing to the first Bogoliubov band.

5 Quasimomentum distribution of the Mott
insulator in an optical superlattice: visibility
of fringes

For a Bose-Einstein condensate released from an optical
lattice, the density distribution after expansion shows a
sharp interference pattern. In a perfect Mott-insulator,
where atomic interactions pin the density to precisely an
integer number of atoms per site, phase coherence is com-
pletely lost and no interference pattern is expected. The
transition between these two limiting cases happens con-
tinuously as the lattice depth is increased. In this section,
we will look into the influence of increasing the strength of
the secondary lattice on the phase coherence of the insulat-
ing phase. We consider an integer number n of atoms per
site and J0 ± ∆0

2 � Ueff. In this situation the gas is in the
Mott-insulator phase. The Mott insulating phase has the
property that the fluctuations in the average number of
particles per site goes to zero at zero temperature. These
fluctuations can be described as quasihole and quasiparti-
cle excitations. To calculate the quasimomentum distribu-
tion S(k) for a finite tunneling, path integral techniques
can be applied to obtain the single-particle Green func-
tion, G(	k, ω). The quasi-momentum distribution is an use-
ful quantity to describe the interference pattern observed
after release of the cold cloud from the optical lattice.
From the absorption image of such an interference pat-
tern, the phase coherence of the atomic sample can be
directly probed. To extract quantitative information from
time-of-flight absorption images, one can use the usual
definition of the visibility of interference fringes [26]

V =
Smax − Smin

Smax + Smin
. (45)

The quasimomentum distribution S(k) contains informa-
tion about the many-body system which is periodic with
the periodicity of the reciprocal lattice corresponding to
the secondary lattice. Thus to predict the interference pat-
tern in the superlattice, our goal is to calculate S(k) as
function of J0 and ∆0. We calculate the quasiparticle and
quasihole dispersions using the functional integral formal-
ism of Van Oosten et al. [27]. The grand-canonical parti-
tion function in terms of the complex functions a∗j (τ) and
aj(τ) is written as

Z = Tre−βH =
∫
Da∗Da exp {−S [a∗, a] /�} , (46)

where the action S[a∗, a] is given by

S[a∗, a] =
∫

�β

0

dτ

[∑
j

a∗j

(
�
∂

∂τ
− µ

)
aj

−
∑
j,j′

Jjj′a
∗
jaj′ +

Ueff

2

∑
j

a∗ja
∗
jajaj

]
. (47)

Here, Jj,j′ is the hopping element, β = 1/kBT , kB is
the Boltzmann constant and T is the temperature. A
Hubbard-Stratonovich transformation decouples the hop-
ping term

S [a∗, a, ψ∗, ψ] = S [a∗, a]

+
∫ �β

0

dτ
∑
j,j′

(
ψ∗

j − a∗j
)
Jjj′ (ψj − aj) . (48)

Here ψ∗ and ψ are the order parameter fields. Integrating
over the original fields a∗j and aj , we find

exp
(−Seff [ψ∗, ψ] /�

)
= exp

(
− 1

�

∫ �β

0

dτ
∑
j,j′

Jjj′ψ
∗
jψj′

)

×
∫
Da∗Da exp

(
−S(0)[a∗, a]/�

)

= exp

[
− 1

�

∫ �β

0

dτ

×
(
−
∑
j,j′

Jjj′
(
a∗jψj′ + ψ∗

j aj′
))]

.

(49)

Here S(0)[a∗, a] is the action for Jj,j′ = 0. We can
now calculate Seff perturbatively by Taylor expanding
the exponent in the integrand of equation (49) and
find the quadratic part of the effective action using〈
a∗ja

∗
j′
〉

S(0) = 〈ajaj′ 〉S(0) = 0,
〈
a∗jaj′

〉
S(0) =

〈
aja

∗
j′
〉

S(0) =〈
aja

∗
j

〉
S(0) δjj′ ,

S(2)[ψ∗, ψ] =
∫ �β

0

dτ

(∑
j,j′

ψ∗
j (τ)ψj′ (τ)

− 1
�

∫
�ω

0

dτ ′
∑
jj′ii′

Jjj′Jii′ψ
∗
j′(τ) 〈aj(τ)a∗i (τ ′)〉S(0) ψi′(τ ′)

)
.

(50)
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We first evaluate the part linear in Jjj′ for nearest neigh-
bours. We have

∑
j,j′

ψj∗(τ)ψj′ (τ)=
(
J0+

∆0

2

)
ψ∗

jψj+1+
(
J0−∆0

2

)
ψ∗

jψj−1.

(51)
We now introduce ψj = [uk +i(−1)jvk] exp(ij2kd). As the
condensate moves from one well to the next, it acquires
an additional phase, which depends on the height of the
barrier. As the height alternates and hence the tunneling
parameter, the phase also alternates. This picture is con-
veniently represented by the j dependent amplitude. This
implies
∑
j,j′

ψ∗
j (τ)ψj′ (τ) = 2J0

[|uk|2 − |vk|2
]
cos(2kd)

− i2J0 [ukv
∗
k + u∗kvk] cos(2kd)

+ i∆0

[|uk|2 − |vk|2
]
sin(2kd)

+∆0 [ukv
∗
k + u∗kvk] sin(2kd). (52)

For the imaginary part to vanish we have for the one-
dimensional optical lattice

u∗kvk = ukv
∗
k = ψ∗

kψk
∆0 sin(2kd)

2εk
, (53)

|uk|2 − |vk|2 = ψ∗
kψk

2J0 cos(2kd)
εk

, (54)

εk =
√

4J2
0 cos2(2kd) +∆2

0 sin2(2kd). (55)

Finally we have,
∑
j,j′

ψ∗
j (τ)ψj′ (τ) =

∑
k

εkψk(τ)ψ∗
k(τ). (56)

Next we calculate the part that is quadratic in Jj,j′ . We
can treat this part by looking at double jumps.

∑
j′ii′

Jjj′Jii′ψ
∗
j′ (τ) 〈aj(τ)a∗i (τ

′)〉S(0) ψi′ (τ ′) =

〈
aj(τ)a∗j (τ ′)

〉
S(0)

∑
j′i′

Jjj′Jji′ψ
∗
j′(τ)ψi′ (τ ′)

=
〈
aj(τ)a∗j (τ

′)
〉

S(0)

{∑
j′j′

Jjj′Jjj′ψ
∗
j′ (τ)ψj′ (τ ′)

+ Jjj′Jjj′±2ψ
∗
j′ (τ)ψj′±2(τ ′)

}
. (57)

The first term in the summation is a jump forward, fol-
lowed by a jump backward. The second is two jumps in the
same direction. The above quadratic term then reduces to

∑
j′ii′

Jjj′Jii′ψ
∗
j′ (τ) 〈aj(τ)a∗i (τ

′)〉S(0) ψi′ (τ ′) =

〈
aj(τ)a∗j (τ

′)
〉

S(0)

∑
k

ε2kψ
∗
k(τ)ψk(τ ′). (58)

Fig. 5. The visibility of the interference pattern produced
by an ultracold cloud released from an optical superlattice
as a function of s2/s1 with Ueff/J0 = 40 and n0 = 3. As
the strength of the secondary lattices increases, the visibil-
ity worsens since the system gradually goes deeper into the
Mott insulator regime and a corresponding gradual loss of long
range coherence. A finite visibility even for a Mott-insulator
is due to short range coherence since the system consists of
a small admixture of particle-hole pairs on top of a perfect
Mott-insulator. A loss of visibility in the superlattice naturally
means that there is loss of particle-hole pairs.

The Green’s function is then easily calculated by following
the steps indicated in reference [27] as,

G(	k, ω)
�

=
Zk

�ω + µ− E
(+)
k

+
1 − Zk

�ω + µ− E
(−)
k

. (59)

The quasiparticle energies E±
k are derived as

E±
k = − εk

2
+ Ueff

(
n− 1

2

)

± 1
2

√
ε2k − 4εkUeff

(
n+

1
2

)
+ U2

eff . (60)

The particle weight Zk is

Zk =

(
E

(+)
k + Ueff

)
√
ε2k − 4εkUeff

(
n+ 1

2

)
+ U2

eff

. (61)

The quasimomentum distribution can be directly calcu-
lated from the Green function G(	k, ω) using the relation

S(	k) = −i lim
δt→0

∫
dω

2π
G(	k, ω) exp (−iωδt) . (62)

This yields

S(	k) = n

⎛
⎝ − εk

2 + Ueff

(
n+ 1

2

)
√
ε2k − 4εkUeff

(
n+ 1

2

)
+ U2

eff

− 1
2

⎞
⎠ . (63)

S(	k) is simply the quasi-momentum distribution which
tells us about the many-body system. The visibility of the
interference pattern of a cloud of BEC released from an
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optical superlattice as a function of the strength of the sec-
ondary lattice is shown in Figure 4. As the strength of the
secondary lattices increases, the visibility worsens since
the system gradually goes deeper into the Mott insula-
tor regime and a corresponding gradual loss of long range
coherence. A finite visibility even for a Mott-insulator is
due to short range coherence since the system consists of
a small admixture of particle-hole pairs on top of a per-
fect Mott-insulator. A loss of visibility in the superlattice
naturally means that there is loss of particle-hole pairs.

6 Conclusions

We have studied the effect of a one dimensional optical
superlattice on the superfluid properties (superfluid frac-
tion, number squeezing, dynamic structure factor) and the
quasi-momentum distribution of the Mott-insulator. We
have shown that the secondary lattice suppresses the su-
perfluidity due to quantum depletion of the condensate
and hence generates atom-number squeezed state which
offers a possibility to create states with reduced sensitiv-
ity to mean field decay mechanism useful for improved
atom-interferometry. A coherent control over the phase
coherence in the superfluid as well as the Mott-insulating
state can be achieved which has important applications in
quantum computing.

The author is grateful to the Max Planck Institute for Physics
of Complex Systems, Dresden, Germany for the hospitality and
for providing the facilities for carrying out the present work.
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