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1 Introduction

One possible strategy for proving the AdS/CFT correspondence consists of understanding

the duality for the case when the dual conformal field theory is free (or nearly free), and

then perturbing both sides starting from this special point in moduli space. If the CFT

is free it is believed that the dual string theory can be consistently restricted to a higher

spin subsector, and thus one expects a simplified duality between a higher spin theory on

AdS and a vector-like free (or nearly free) conformal field theory [1–4]. Concrete proposals

for a duality of this type, relating Vasiliev higher spin theories on AdS4 [5] to O(N) vector

models in 3 dimensions were subsequently found in [6, 7], but it was not until the work of

Giombi & Yin [8, 9] (see [10] for a review) when convincing non-trivial evidence in favour

of these dualities was obtained. Since then various further aspects of the duality have been

understood in detail, see in particular [11–14]. More recently, an embedding of this duality

into string theory has also been suggested [15].

In a separate development, a lower dimensional version of the duality was suggested

in [16], relating a higher spin theory on AdS3 [17, 18] to the large N limit of a family of

2d minimal model CFTs. This proposal was motivated by the analysis of the asymptotic
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symmetries of higher spin theories on AdS3 [19, 20], see also [21, 22] for subsequent devel-

opments. This proposal has been tested and generalised in a variety of ways, for recent

reviews see [23, 24].

In an attempt to embed this correspondence into string theory, a large N = 4 version

of the duality was proposed in [25]; it holds the promise of relating the higher spin theory

to string theory on AdS3 × S3 × S3 × S1. This proposal was subsequently explored further.

In particular, the spectrum of the two descriptions was matched in [26], see also [27] for

an earlier analysis. In this paper we add one further consistency check to this list: we

establish that the asymptotic symmetry algebra of the relevant higher spin theory matches

the classical limit of the coset W-algebra. This generalises similar studies for situations

with less supersymmetry [19–22, 28–30].

While most of the analysis follows the well-established procedure going back to [31],

there is one important subtlety that arises in the present context. The large N = 4

superconformal algebra (and hence the coset theory) comes in two varieties: there is the

linear Aγ algebra and the non-linear Ãγ algebra that can be obtained from the former by

quotienting out 4 free fermions and the u(1) generator, see [32–37] for some early literature

on the subject. Naively one may expect that the dual of the higher spin theory should lead

to the non-linear version Ãγ of the large N = 4 superconformal algebra [25]; however, this

misses the u(1) generator that corresponds to the S1 of the putative string target space, and

it is also at odds with the observation that the supergravity spectrum organises itself into

representations of the linear Aγ algebra [38], thus suggesting that the dual CFT should

also have this symmetry. As we explain below (see section 3) there is some freedom in

the definition of the boundary charges, and one can use this ambiguity to obtain also an

asymptotic symmetry algebra from the higher spin description that contains the linear Aγ

algebra as a subalgebra.

For the non-linear version of the algebra we then compare the structure constants of

the asymptotic symmetry algebra with those obtained from the OPEs of the W-currents

of the (non-linear) coset algebra in the ’t Hooft limit, and find perfect agreement. As a

further consistency check we also study the truncation properties of both algebras. The

higher spin algebra of the AdS description can be truncated to a finite dimensional Lie

algebra for certain values of the parameters. This is inherited by the asymptotic symmetry

algebra which is, for these values, then generated by finitely many fields. We show that

the dual coset algebras mirror this truncation pattern very nicely.

The explicit description of the W-currents of the coset theory also allows us to address

another question that was raised in [25]: the coset theory possesses an exactly marginal

field whose perturbation preserves the large N = 4 superconformal algebra. However,

one may suspect that this perturbation will break the W∞ symmetry, i.e., that some (or

indeed all) of the higher spin currents will cease to be conserved after the perturbation. We

answer this question in section 5 where we show that at least the first non-trivial higher

spin current (and therefore probably all currents outside the large N = 4 algebra) get

broken by the perturbation.

The paper is organised as follows. In section 2 we perform the usual asymptotic sym-

metry analysis of the relevant higher spin theory that leads to the non-linear Ãγ subalgebra.
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We also calculate some higher spin OPEs explicitly, whose details are spelled out in the

appendix (as well as the ancillary file of the arXiv submission), and explain how the al-

gebra can be truncated for certain values of the parameters. In section 3 we show how

the asymptotic symmetry analysis may be adjusted so as to lead to the linear Aγ algebra.

Section 4 deals with the dual Wolf space cosets. In particular, we determine the higher

spin generators of the version of the coset that contains the non-linear Ãγ superconformal

symmetry, and compare the resulting OPE coefficients to what was obtained in section 2,

finding beautiful agreement. We also explain in section 4.3 how these coset algebras can

be truncated for certain values of the parameters, again matching nicely the truncation

patterns of the asymptotic symmetry algebra. Given the explicit form of the higher spin

generators of the coset theory, we finally analyse in section 5 their behaviour under the

perturbation by an exactly marginal N = 4 preserving perturbation. We close in sec-

tion 6 with some conclusions, and there are two appendices containing some of the detailed

expressions for the OPEs, as well as the truncation analysis for the linear Aγ algebra.

2 The (non-linear) asymptotic symmetry algebra

Recall that the N = 4 version of the higher spin/CFT duality [25] relates the Wolf space

coset models to the higher spin theory based on the Lie algebra shs2[λ]. In this section we

compute the asymptotic symmetry algebra of this higher spin theory, following the basic

ideas of [19, 20, 31]. As we shall see, this leads to a non-linear W-algebra that contains

the classical limit of the non-linear Ãγ algebra as a subalgebra.

Let us begin by reviewing how to determine the asymptotic symmetry algebra of a gen-

eral 3-dimensional supergravity or higher spin theory, following [19–21, 39], see also [23] for

a review. We shall work with the Chern-Simons formalism that was originally introduced

for the case of pure gravity in AdS3 in [40, 41]

I = ICS(A, kcs)− ICS(Ā, kcs) , ICS(A, kcs) =
kcs
4π

∫

M

Tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

. (2.1)

Here M is a solid cylinder, which we parametrise by (t, φ, ρ), with ρ the radial direction,

and (t, φ) the parameters on the 2-dimensional boundary cylinder. Furthermore, A and

Ā are gauge connections in some gauge algebra g, which for the case of pure gravity is

just g = sl(2,R), but in the present context will be taken to equal g = shs2[λ]. In order

to preform the asymptotic symmetry analysis it is important that the algebra contains a

preferred sl(2,R) subalgebra, sl(2,R) ⊂ g, whose generators we shall denote by Lm with

m = 0,±1. We shall furthermore decompose the remaining generators of g according to

their spin, i.e., we shall take a basis of g to be given by V
(s) i
n , where

[Lm, V
(s) i
n ] =

(

(s− 1)m− n
)

V
(s) i
m+n . (2.2)

(Here i is some additional index that labels the different generators of the same spin s.)

The choice of an sl(2,R) subalgebra allows us to define what we mean by the AdS3
vacuum solution,

AAdS = b−1

(

L1 +
1

4
L−1

)

b dx+ + b−1∂ρb dρ (2.3)
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with a similar expression for Ā, where

b(ρ) = eρL0 . (2.4)

We are interested in solutions that are asymptotically AdS, i.e., we shall consider gauge

connections A that satisfy for ρ→ ∞

A−AAdS ∼ O(1) . (2.5)

Then, following the analysis in [20], we can choose a gauge so that

A = b(ρ)−1a(x+)b(ρ) , b(ρ) = eρL0 , a(x+) = L1 +
∑

s,i

a(s) i V
(s) i
1−s . (2.6)

The asymptotic symmetry algebra is now the residual gauge symmetry that leaves the form

of the gauge fixed connection (2.6) unchanged. More concretely, under an arbitrary gauge

transformation labelled by γ ∈ g, the gauge connection changes as

δγa =
∑

s,i

c(s) im V (s) i
m = dγ + [a, γ] , (2.7)

where the c
(s) i
m depend in general on a (as well as γ). Then requiring the gauge connection

to preserve the AdS boundary condition and to stay in the gauge (2.6) implies that

c(s) im = 0 , m 6= 1− s , ∀s, i . (2.8)

This leads to a set of equations for the gauge parameters that one can solve recursively,

starting with any choice for the ‘highest’ component γ
(s) i
s−1 of γ. The resulting gauge sym-

metries then define the asymptotic symmetries of the AdS theory.

In order to endow this set of asymptotic symmetries with the structure of a Poisson

algebra, we now associate to each gauge transformation a conserved charge as

Q(γ) = −kcs
2π

∫

Tr(γa) , (2.9)

where the integral is taken along φ in the boundary cylinder of AdS3. Then we define the

Poisson bracket via

{Q(γ), X} = δγX , (2.10)

where the right-hand side is the gauge variation of X under the gauge transformation

described by γ (where γ satisfies (2.8)); this analysis is explained in more detail in [20],

see also [23] for a review. The resulting Poisson algebra should then be identified with the

classical limit of the W-algebra underlying the dual conformal field theory.

2.1 The asymptotic symmetry algebra of the higher spin theory

In this section we describe the results of this analysis for the case of g = shs2[λ] (with the

choice of the sl(2,R) subalgebra as described in [25]). We have found that the asymptotic

symmetry algebra one obtains in this manner is a non-linear W-algebra. It contains, in
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particular, the non-linear Ãγ N = 4 superconformal algebra as was already anticipated

in [25]. Indeed, this algebra is the natural asymptotic symmetry algebra associated to the

subalgebra D(2, 1|α) ⊂ shs2[λ].

More concretely, D(2, 1|α) consists of an sl(2,R) subalgebra generated by the wedge

modes of the stress energy tensor T , the wedge modes of the 4 supercharges that we denote

by G±±, as well as the wedge(=zero) modes of 6 currents transforming in the Lie algebra

su(2)⊕ su(2); we shall denote these currents as A+a and A−a, respectively, where a = ±, 3
denotes the components of su(2) in the Cartan-Weyl basis. The asymptotic symmetry

algebra is then generated by the associated fields, and their Poisson brackets turn out

to equal (in the following we have translated the Poisson brackets into ‘classical’ OPEs,

i.e., OPEs without any normal ordering of composite fields, and have only written the

singular terms)

G++(z)G++(w) ∼ −8(γ − 1)γA−+(w)A++(w)

kcs(w − z)
(2.11)

G++(z)G+−(w) ∼ 8(γ − 1)γA−3(w)A++(w)

kcs(w − z)
− 4γ∂A++(w)

w − z
+

8γA++(w)

(w − z)2
(2.12)

G++(z)G−+(w) ∼ 8(γ − 1)γA−+(w)A+3(w)

kcs(w − z)
+

4(γ − 1)∂A−+(w)

w − z

−8(γ − 1)A−+(w)

(w − z)2
(2.13)

G++(z)G−−(w) ∼ 2(γ − 1)γA−−(w)A−+(w)

kcs(w − z)
+

2(γ − 1)γA−+(w)A−−(w)

kcs(w − z)

+
4(γ − 1)γA−3(w)A−3(w)

kcs(w − z)
+

2(γ − 1)γA+−(w)A++(w)

kcs(w − z)

+
2(γ − 1)γA++(w)A+−(w)

kcs(w − z)
+

4(γ − 1)γA+3(w)A+3(w)

kcs(w − z)

−8(γ − 1)γA−3(w)A+3(w)

kcs(w − z)

+
4
(

− γ∂A−3(w) + γ∂A+3(w) + ∂A−3(w) + T (w)
)

w − z

+
8(γA−3(w)− γA+3(w)−A−3(w))

(w − z)2
+

8kcs
(w − z)3

, (2.14)

with similar expressions for the remaining generators. These OPEs agree precisely with

those of the non-linear Ãγ algebra, as given for example in appendix B.3 of [25], provided

we identify

kcs =
k+k−

k+ + k−
, and γ ≡ λ =

k−

k+ + k−
, (2.15)

and drop subleading (i.e., 1/k±) corrections. Note that (2.15) is the expected relation,

given the comparison of the central charges.

Actually, we can test the correspondence between the symmetry algebras further. As

is explained in [25], the algebra shs2[λ] contains in addition to D(2, 1|α) other generators

– 5 –



J
H
E
P
0
5
(
2
0
1
4
)
1
5
2

that organise themselves into supermultiplets of D(2, 1|α). The lowest non-trivial multiplet

(denoted by R(1) in that paper) is generated from a Virasoro primary operator of spin 1

that transforms in a singlet representation under su(2)⊕ su(2). We shall denote it by V (1)0

in the following, and introduce for the superdescendants the notation

fields h (l+, l−) multiplet

V (1)0 1 (0, 0) R(1)

G′±± 3
2 (12 ,

1
2) R(1)

V (2)++ , V (2)+− , V (2)+3 2 (1, 0) R(1)

V (2)−+ , V (2)−− , V (2)−3 2 (0, 1) R(1)

The other generator we shall consider in the following is the primary component of spin 2

in the second multiplet R(2), which we shall denote by V (2)0. We have evaluated some of

the Poisson brackets of these generators, and the explicit expressions are given (in OPE

language) in appendix A — additional OPEs are also listed in the ancillary file of the arXiv

submission. In section 4 below we shall calculate these OPEs also from the dual coset CFT

viewpoint, and show that the above structure constants match with the CFT answer in

the ’t Hooft limit. In addition, we shall also explain there that the truncation patterns

of the asymptotic symmetry algebra (to which we now turn) are nicely reproduced by the

dual CFT.

2.2 Truncation of the asymptotic symmetry algebra

As pointed out in [25], the higher spin algebra shs2[µ] admits a truncation at µ = γ = s+1

with s ∈ N. For this value of µ, the higher spin algebra contains a large ideal, and the

quotient by it is the finite dimensional Lie algebra

shs2[s+ 1] = D(2, 1| − s+1
s )⊕

s−1
⊕

i=1

R(i) ⊕ R̂
(s)
− , (2.16)

where R̂
(s)
− is the short representation of D(2, 1|α) with α = − s+1

s whose spin content

is [25]

s : (1,1)

R̂
(s)
− : s+ 1

2 : (2,2)

s+ 1 : (1,3) .

(2.17)

There is a similar truncation that happens at µ = γ = −s with s ∈ N, where at level

s + 1 the representation (3,1) (instead of (1,3)) is retained. The fact that there are two

truncations is a consequence of the α↔ α−1 isomorphism of the D(2, 1|α) algebra (see [25]

for more details).

It is then natural to ask whether the associated asymptotic symmetry algebra is sim-

ilarly truncated, i.e., whether the fields associated to the modes that lie in the ideal of

shs2[µ] also form an ideal in the asymptotic symmetry algebra. With the explicit calcula-

tions we have done, we can test this for the simplest truncation that occurs for γ = µ = 2
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(or γ = µ = −1), for which the truncated higher spin algebra consists of D(2, 1|α) (with

α = −2 or α = −1
2 , respectively), together with one of the two possible shortened R(1)

representations, respectively.

Using the explicit results that are described in the ancillary file, we have checked

that the fields from the multiplet V (2) form indeed an ideal; for example, the GG bilinear

terms that appear in the OPE V (2)−+ V (2)0 disappear at γ = −1 (since their coefficient is

proportional to (γ+1)). For γ = 2 the analysis works similarly, the only subtlety being that

the OPE G++ V (2)0 becomes singular at γ = 2. This is an artificial singulartiy, reflecting

the fact that we have not normalised the field V (2)0 correctly. Once this is taken into

account (by rescaling V (2)0 7→ (γ − 2)V (2)0) the GG bilinear terms in this OPE drop out

at γ = 2.

3 Obtaining the linear large N = 4 algebra from the bulk

As was already mentioned in [25], D(2, 1|α) is not only the ‘wedge’ algebra of the non-linear

N = 4 superconformal algebra Ãγ , but also of the linear N = 4 superconformal algebra

Aγ . (For some early literature on the two N = 4 algebras and their relation, see [32–37].

We follow here the notation of [25], see in particular appendix B of that paper.) In the

previous section we determined the asymptotic symmetry algebra of the shs2[λ] higher spin

theory and saw that it is a W-algebra that contains the non-linear superconformal algebra

Ãγ as a subalgebra. However, one may ask whether this is necessarily so, or whether it is

also possible to obtain instead an asymptotic symmetry algebra that contains the linear

Aγ algebra as a subalgebra. In the following we want to explain that the second possibility

also arises provided one modifies the definition of the charges by a suitable boundary term.

Before going into the detailed constructions, let us first summarise our strategy. One

important difference between the linear Aγ algebra and the nonlinear Ãγ algebra is the

presence of spin-12 fields. However, these fields are not captured by the bulk theory since

the shs2[λ] algebra does not contain any spin-12 generators. Our main task is therefore to

introduce auxiliary fields (that are not in the shs2[λ] algebra) into the asymptotic symmetry

algebra. These fields will make their appearance in various correction terms which we shall

add to the conserved charges (2.9). In turn, these correction terms will then also modify

the Poisson brackets via (2.10), and for a judicious choice of these auxiliary fields, we can

recover the linear Aγ subalgebra.

3.1 Modification of the global charge

Recall that the Poisson bracket of the asymptotic symmetry algebra was determined from

the variation of the associated charges, see eqs. (2.9) – (2.10). We now want to modify the

conserved charges as1

Q′(γ) = −kcs
2π

∫

Tr(γ a′) , a′(x+) = L1 +
∑

s,i

a′(s) i V
(s) i
1−s , a′(s) i = a(s) i + b(s) i , (3.1)

1This is a generalisation of [42] where the global charge Q(γ) was introduced.
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where b(s) i are suitable auxiliary boundary fields that we will introduce in the following.

(As it will turn out, the b(s) i will actually be polynomials in some set of auxiliary fields that

we shall add.) These auxiliary boundary fields will be independent of the gauge connection

a, and hence the gauge variation, i.e., δγb = 0 for any gauge variation γ. Here γ refers to an

‘unmodified’ gauge variation, i.e., one that involves only the original a-fields. We obviously

need to postulate how the auxiliary fields transform under gauge transformations involving

the b-fields themselves. Since we do not want to add non-trivial degrees of freedom on the

boundary, we shall take these gauge variations to be those of free fields, i.e., we shall take

the auxiliary fields we add to have the OPEs of free fields.

Then the Poisson brackets of the modified charges take the form

{Q′(γ1), Q
′(γ2)} = Q′([γ1, γ2]) +

kcs
2π

∫

Tr(γ1 dγ2 + b [γ1, γ2]− γ2 δ
′
1b) , (3.2)

where the last term describes the variation due to the modified gauge variation correspond-

ing to γ1. Since the new ‘gauge’ variations only differ from the original ones by OPEs of

free fields that are gauge singlets with respect to the old gauge variations, the modified

Poisson brackets will still satisfy the Jacobi identities.

As we shall see in the following, by introducing suitable auxiliary boundary degrees we

can remove some of the non-linearities of the asymptotic symmetry algebra; in particular,

we can linearise the non-linear Ãγ algebra leading to the linear Aγ algebra. (In effect, this

is just reversing the process by means of which the free fermions and the u(1)-field are

removed in going from the linear to the non-linear algebra [37].) We have also attempted

to linearise the entire asymptotic symmetry algebra, but as far as we can make out, this

will not be possible by a mechanism of this sort.

3.2 Linearising Ãγ

The auxiliary fields we shall now add are 4 spin-12 fields f±± as well as a field u of conformal

dimension one. These fields themselves will not appear in the modified charges, but certain

polynomials of them will, i.e., we will set

b(s) i = b(s) i(f±±, u) , (3.3)

where b(s) i(f±±, u) are polynomials whose degree is determined by the spin s. Initially,

these fields will have trivial OPEs with the fields that are originally present in the asymp-

totic symmetry algebra, and we postulate their OPEs among themselves to take the form

u(z)u(w) ∼ cu
(z − w)2

, (3.4)

where cu is some normalisation constant, as well as

f++(z) f−−(w) ∼ 4

(z − w)
, f+−(z) f−+(w) ∼ − 4

(z − w)
. (3.5)

Then we can calculate the new Poisson brackets following (3.2). We still have the freedom

to choose the polynomials b(s) i of the auxiliary fields, and we want to use this freedom to
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linearise the OPEs of the low-lying fields. As it turns out, this can be achieved provided

we proceed as follows. First we add polynomial terms to the spin 1-fields as

A′++ = A++ − 1
4 f

++ f+− , A′+− = A+− − 1
4 f

−− f−+ ,

A′−+ = A−+ − 1
4 f

++ f−+ , A′−− = A−− − 1
4 f

−− f+− , (3.6)

as well as

A′+3 = A+3 + 1
8(f

−+ f+− + f++ f−−)

A′−3 = A−3 + 1
8(f

+− f−+ + f++ f−−) . (3.7)

This redefinition guarantees, in particular, that the free fermion fields f±± transform then

in the (2,2) with respect to the gauge fields A′. Similarly, we modify the stress-energy

tensor so that the auxiliary fields obtain the correct conformal dimension

T ′ = T +
1− γ

kcs

(

A′−3A′−3 + 1
2(A

′−−A′−+ +A′−+A′−−)
)

(3.8)

+
γ

kcs

(

A′+3A′+3 + 1
2(A

′+−A′++ +A′++A′+−)
)

+
1

2cu
u2

+
1

8

(

(∂f−−)f++ + (∂f++)f−− − (∂f+−)f−+ − (∂f−+)f+−
)

−1− γ

4kcs

(

− f−−f+−A′−+ + f+−f−+A′−3 + f++f−−A′−3 − f++f+−A′−+
)

− γ

4kcs

(

− f−−f−+A′++ + f−+f+−A′+3 + f++f−−A′+3 + f++f+−A′+−
)

−3(2γ − 1)

32kcs
f−−f++f−+f+− . (3.9)

The modified stress-energy tensor leads to a (classical) Virasoro algebra with central charge

c = 6kcs. Finally the spin-32 fields are modified as

G′++ = G++ +
i u f++

√
2cu

−
√

−(γ − 1)γ
(

A−+ f+− +A−3 f++
)

√
kcs

+

√

−(γ − 1)γ
(

A++ f−+ +A+3 f++
)

√
kcs

+

√

−(γ − 1)γ f++ f+− f−+

2
√
kcs

G′−+ = G−+ +
i u f−+

√
2cu

−
√

−(γ − 1)γ
(

A−+ f−− +A−3 f−+
)

√
kcs

+

√

−(γ − 1)γ
(

A+− f++ −A+3 f−+
)

√
kcs

+

√

−(γ − 1)γ f++ f−− f−+

2
√
kcs

G′+− = G+− +
i u f+−

√
2cu

−
√

−(γ − 1)γ
(

A−− f++ −A−3 f+−
)

√
kcs

+

√

−(γ − 1)γ
(

A++ f−− +A+3 f+−
)

√
kcs

+

√

−(γ − 1)γ f++ f+− f−−

2
√
kcs
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G′−− = G−− +
i u f−−

√
2cu

−
√

−(γ − 1)γ
(

A−− f−+ −A−3 f−−
)

√
kcs

+

√

−(γ − 1)γ
(

A+− f+− −A+3 f−−
)

√
kcs

−
√

−(γ − 1)γ f−+ f−− f+−

2
√
kcs

.

We have checked that these fields (together with the f±± and the u-fields) then generate

the OPEs of the linear Aγ algebra as given in mode form for example in [25, appendix B.1]

in the ’t Hooft limit; in order to obtain an exact match we need to rescale the fields as

f∗∗ = f ′∗∗

√

4γ(1− γ)

kcs
, and u = u′

√

2cuγ(1− γ)

kcs
. (3.10)

Furthermore, the parameters are identified as

kcs =
k+k−

k+ + k−
, and γ =

k−

k+ + k−
. (3.11)

Given that the algebra is linear, one may have expected that this match also works at finite

k±, i.e., without taking the ’t Hooft limit. However, since the redefinition of the generators

involves non-linear terms, there are normal-ordering contributions that are missed in the

classical analysis, and thus we need to take the ’t Hooft limit of the quantum algebra in

order to see agreement.

Finally, the boundary auxiliary fields also have natural bulk interpretations: the u

field corresponds to a non-dynamical bulk gauge field, while the f±± fields are its (non-

dynamical) superpartners.

4 The dual coset CFT

After this interlude we now come back to the main subject of the paper: we want to

relate the asymptotic symmetry algebra of the higher spin theory (that was determined in

section 2) to the chiral algebra of the dual coset CFT

[

su(N + 2)
(1)
k+N+2

su(N)
(1)
k+N+2 ⊕ u(1)(1)κ

]

/
(

3 free fermions
)

, (4.1)

where g(1) denotes the N = 1 superconformal affine algebra associated to g, and we have

divided out the 3 + 1 free fermions and the u(1) current of the linear Aγ subalgebra in

order to obtain the non-linear Ãγ algebra.2 In bosonic language we can therefore describe

the coset as
su(N + 2)k ⊕ so(4N)1
su(N)k+2 ⊕ u(1)κ

, (4.2)

where so(4N)1 describes the 4N free fermions that survive. The basic structure of this

coset algebra was already explained in [25], see in particular section 3 of that paper; we shall

2The fourth fermion is part of the u(1)(1) algebra. We should also mention that, for the case N = 3, the

version of the coset algebra that contains the linear Aγ algebra was studied in some detail in [43].

– 10 –



J
H
E
P
0
5
(
2
0
1
4
)
1
5
2

essentially follow the same conventions as there, but want to be somewhat more explicit

so as to be able to calculate some of the structure constants of the algebra. (For some of

these computations we have used the Mathematica package OPEdefs.m of Thielemans [44].)

These results can then be compared with what we found in section 2 in the ’t Hooft limit,

i.e., in the limit N, k → ∞ with

N

N + k
= λ fixed. (4.3)

Let us denote by J A the currents of the numerator su(N+2)
(1)
k+N+2 algebra, and byJA

the currents of the associated bosonic subalgebra su(N + 2)k that commute with the free

fermions in the adjoint representation. Under the decomposition su(N+2) ⊃ su(N)⊕su(2),

the adjoint representation of su(N + 2) decomposes as

su(N + 2) = su(N)⊕ su(2)⊕ u(1)⊕ (N,2)⊕ (N̄,2) . (4.4)

We denote the subset of the bosonic su(N + 2)k currents that transform in the (N,2) and

(N̄,2) as

J i,α = (tA�)α+N,i J
A , J̄ i,α = (tA

�̄
)α+N,i J

A = −(tA�)i,α+N JA , α = 1, 2 . (4.5)

Here the adjoint index A is implicitly summed over, and tA
�
are the (traceless) (N + 2) ×

(N + 2) matrices in the fundamental representation of su(N + 2). The index i takes the

values i ∈ {1, . . . , N}, while α = 1, 2 labels the two states in the 2 of su(2). So the

generators J i,α are simply the generators of the adjoint representation that correspond to

the first N entries of the last two rows in the fundamental representation, while J̄ i,α are

those that correspond to minus the first N entries in the last two columns. We shall order

the generators JA so that the first N2−1 generators are those that describe the generators

of the su(N)k subalgebra (that correspond to the upper N ×N block in the fundamental

representation)

Ja = JA , a ≡ A ≤ N2 − 1 . (4.6)

(We shall also adopt the same ordering convention for the fermions.) Then the singular

parts of the OPEs with J i,α and J̄ i,α take the form

Ja(z) J i,α(w) ∼ J j,α (ta
�
)j,i

(z − w)
, and Ja(z) J̄ i,α(w) ∼

J̄ j,α (ta
�̄
)j,i

(z − w)
, (4.7)

while the singular part of the OPE of J i,α with J̄ j,β equals

J i,α(z) J̄ j,β(w) ∼ −kδijδαβ
(z − w)2

−
(

δαβ(t
C
�
)j,i − (tC

�
)α+N,β+Nδij

)

JC(w)

(z − w)
, (4.8)

and

J̄ i,α(z) J j,β(w) =
−kδijδαβ
(z − w)2

+

(

δαβ(t
C
�
)i,j − (tC

�
)β+N,α+Nδij

)

JC(w)

(z − w)
. (4.9)

Here we are working with hermitian representation matrices for which tA
�
only has one pair

of non-zero entries, and we have chosen the normalisation convention

Tr(tA� t
B
�) = δAB , (4.10)
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so that for all α, β ∈ {1, 2} and i, j ∈ {1, . . . , N}
∑

A

(tA�)α+N,i (t
A
�)j,β+N = δij δαβ ,

∑

A

(tA�)i,α+N (tA�)j,β+N = 0 , (4.11)

as well as
∑

A

(tA�)rs (t
A
�)uv =

(

δrvδsu − δrsδuv

(N + 2)

)

, (4.12)

where r, s, u, v ∈ {1, . . . , N + 2}.

4.1 The description of the fermions

The surviving fermionic fields ψi,α and ψ̄i,α correspond to the representations (N,2) and

(N̄,2) in (4.4) above; we denote them analogously to the bosons as

ψi,α = (tA�)α+N,i ψ
A , ψ̄i,α = (tA

�̄
)α+N,i ψ

A = −(tA�)i,α+N ψA . (4.13)

They satisfy the standard free field OPEs

ψi,α(z) ψ̄j,β(w) ∼ − δijδαβ
(z − w)

, ψ̄i,α(z)ψj,β(w) ∼ − δijδαβ
(z − w)

, (4.14)

as well as

ψi,α(z)ψj,β(w) ∼ O(1) , ψ̄i,α(z) ψ̄j,β(w) ∼ O(1) . (4.15)

They also transform in the (anti-)fundamental representation of the su(N)k+2 algebra in the

denominator of (4.2); note that this algebra is obtained from the su(N)k algebra generated

by the Ja (see eq. (4.6) above) by adding bilinear fermionic terms that are schematically

of the form

Ja − (ta�)ijψ
iβψ̄jβ . (4.16)

The above free fermions also give rise to an su(2)N affine algebra (that commutes with

su(N)k+2)

Kαβ =: ψi,αψ̄i,β : , (4.17)

with respect to which the fermions transform as

Kαβ(z)ψi,γ(w) ∼ −ψ
i,αδβγ

z − w
, Kαβ(z) ψ̄i,γ(w) ∼ ψ̄i,βδαγ

z − w
. (4.18)

The other su(2)k algebra that appears in Ãγ can simply be identified with the currents

Jαβ = (tA�)α+N,β+N JA , (4.19)

i.e., with the components of JA corresponding to the bottom 2×2 block. These generators

also commute with the su(N)k+2 algebra from (4.16), and they define an su(2) algebra at

level k. In fact, in both cases we only get an affine su(2) algebra (rather than an affine

u(2) algebra), since we also divide out the u(1) current given by

U = − (N + 2)
(

K11 +K22 + J11 + J22
)

. (4.20)
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Here we have normalised the u(1) current so that its spectrum consists of the integers; then

we have

U(z)U(w) ∼ κ

(z − w)2
, with κ = 2N(N + 2)(N + k + 2) . (4.21)

The complete spectrum of coset fields is now generated by the bosonic currents JA and the

fermions ψi,α and ψ̄i,α, subject to the condition that they must transform in the vacuum

representation with respect to the currents (4.16) as well as U .

4.2 The higher spin currents

Next we want to construct some of the higher spin generators of the W-algebra explicitly.

We begin with the spin 3
2 -fields that are given as

G′αβ = J i,α ψ̄i,β , Ḡ′αβ = J̄ i,α ψi,β , (4.22)

where no normal ordering is required since the bosonic and fermionic fields do not have

any non-trivial OPE. Note that these fields are indeed primary with respect to su(N)k+2,

as follows from (4.7), as well as the fact that the fermions also transform in the (anti-

)fundamental representation with respect to this algebra.

The actual supercharges Gαβ of the non-linear Ãγ algebra as well as the G̃±± spin
3
2 -fields that appear in the full W-algebra are then given by the linear combinations

G++ = −2
G′21 + Ḡ′12

√
k +N + 2

, G̃++ = 2
−G′21 + Ḡ′12

√
k +N + 2

(4.23)

G+− = 2
−G′22 + Ḡ′11

√
k +N + 2

, G̃+− = 2
−G′22 − Ḡ′11

√
k +N + 2

(4.24)

G−+ = 2
G′11 − Ḡ′22

√
k +N + 2

, G̃−+ = 2
G′11 + Ḡ′22

√
k +N + 2

(4.25)

G−− = 2
G′12 + Ḡ′21

√
k +N + 2

, G̃−− = 2
G′12 − Ḡ′21

√
k +N + 2

. (4.26)

Both Gαβ and G̃αβ transform as primary fields in the (2,2) of the su(2)k ⊕ su(2)N current

algebra. We can now calculate their OPEs, and we find for example

G++(z)G++(w) ∼ − 4

(k +N + 2)(z − w)

(

((J+ψ̄i1)ψi2) + ((J+ψi2)ψ̄i1)
)

∼ − 8(J+K+)

(k +N + 2)(z − w)
, (4.27)

where J±, J3 are the J currents in the Cartan-Weyl basis. (We shall also use a similar

notation for the K currents.) In the ’t Hooft limit (4.3), eq. (4.27) agrees with the result

from the asymptotic symmetry analysis, eq. (2.11).
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Similarly, we find

G++(z)G+−(w) ∼ 8NJ+

(k +N + 2)(z − w)2

+
4
[

(J̄ i1J i2)− (J i2J̄ i1)−
(

((J+ψ̄i1)ψi1) + ((J+ψi2)ψ̄i2)
))

]

(k +N + 2)(z − w)

∼ 8NJ+

(k +N + 2)(z − w)2
+

4
[

−N∂J+ − 2(−N∂J+) + 2(J+K3)
]

(k +N + 2)(z − w)

∼ 8NJ+

(k +N + 2)(z − w)2
+

4
(

N∂J+ + 2(J+K3)
)

(k +N + 2)(z − w)
, (4.28)

where the second term −2(−N∂J+) in the second equality comes from the normal ordering

of each of the two terms
(

(J+ψ̄i1)ψi1) + (J+ψi2)ψ̄i2
)

, using the rearrangement identity of

normal-ordered-products,

(

(AB)C
)

−
(

A(BC)
)

= (−1)F (B)F (C)
(

A([C,B])
)

+ (−1)(F (A)+F (B))F (C)
(

([C,A])B
)

+[(AB), C] , (4.29)

where F (A) = 1 for fermions and F (A) = 0 for bosons. In particular, since [J+, ψB] = 0

and [ψA, ψB] = 0, we have

(

(J+ψB)ψC
)

−
(

J+(ψBψC)
)

= [(J+ψB), ψC ] = δBC∂J+ . (4.30)

Again, in the ’t Hooft limit, eq. (4.28) matches with the result in eq. (2.12). The other

cases work similarly, the only complication being the form of the stress-energy tensor in

these variables, which takes the somewhat cumbersome form

T = − 1

k +N + 2

(

(J i1J̄ i1) + (J̄ i2J i2)
)

+ k(∂ψ̄i,1ψi1 + ψ̄i,2∂ψi2)

−(ta�)ij
(

(Ja(ψi1ψ̄j1)) + (Ja(ψi2ψ̄j2))
)

+(ta�)1+N,1+N

(

(Ja(ψi2ψ̄i2)
)

+ (ta�)2+N,2+N

(

Ja(ψi1ψ̄i1)
)

+
C+ + C− − 2(A+3A−3)− k∂A−3 +N∂A+3

k +N + 2
, (4.31)

where

C+ =
1

2

(

(A++A+−) + (A+−A++)
)

+ (A+3A+3) (4.32)

C− =
1

2

(

(A−+A−−) + (A−−A−+)
)

+ (A−3A−3) . (4.33)

We can similarly study the OPEs of the G̃αβ spin-32 fields by themselves, and they have

exactly the same structure since we have

Gab(z)Gcd(w) = −G̃ab(z) G̃cd(w) . (4.34)
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This mirrors precisely what happens in the asymptotic symmetry algebra. It is there-

fore more interesting to analyse the mixed OPEs, involving both Gαβ and G̃αβ fields,

in particular

G++(z) G̃+−(w) , and G++(z) G̃−−(w) . (4.35)

Based on su(2) ⊕ su(2) symmetry considerations, we expect the OPE of the first product

to contain composite operators of the form (V (1)0A++), ∂A++ as well as the field V (2)++

of conformal weight h = 2 in the R(1) multiplet. An explicit computation shows that

V (2)++ does indeed appear in the OPE, as there are terms that cannot be written in terms

of (V (1)0A++) and ∂A++ alone. We can fix the relative coefficients among (V (1)0A++),

∂A++ and V (2)++ by requiring that V (2)++ is a Virasoro primary that transforms as the

highest weight state of the (3,1) representation of su(2) ⊕ su(2). However, this does not

fix the normalisation of V (2)++ uniquely.

Since we are mainly interested in the comparison with the bulk asymptotic symmetry

algebra, we therefore proceed as follows: we fix the normalisation of V (2)+± by the require-

ment that the OPE of G+±(z)G̃+±(w) agrees with what was obtained in the asymptotic

symmetry algebra analysis of the higher spin theory, and similarly for V (2)−±, i.e., we take.

V
(2)+∗

CFT ∼ iV
(2)+∗

bulk

2a(2)++
, e.g. V

(2)++
CFT ≡ iV

(2)++
bulk

2a(2)++
in (A.1), etc. (4.36)

This then leads to

V (2)++ =
4

k +N + 2

(

(J̄ i1J i2) + (J i2J̄ i1) +
N + 2

k
(J+(J11 + J22))

)

V (2)+− =
4

k +N + 2

(

(J̄ i2J i1) + (J i1J̄ i2) +
N + 2

k
(J−(J11 + J22))

)

(4.37)

V (2)+3 =
8

k +N + 2

(

(J i2J̄ i2)− (J i1J̄ i1)− N + 2

k
(J3(J11 + J22)) +N∂J3

)

.

(Obviously, we should mention that the normalisation of these expressions is only deter-

mined by this procedure up to subleading terms in the ’t Hooft limit.) Similarly, by the

same method we also fix the normalisation of the spin-1 current V (1)0 that appears as the

leading singularity in the OPE of G++G′−−

V (1)0 =
1

(k +N + 2)

(

k (K11 +K22)− (N + 2) (J11 + J22)
)

. (4.38)

Now that we have fixed these various definitions, we can unambiguously calculate the OPEs

G++(z)V (2)++(w) ∼
4 N+2k+2
k(k+N+2)(A

++G′++)

z − w
, (4.39)

as well as

V (2)++(z)V (2)++(w) =

−32N(2k+N+2)
k(k+N+2)2

(A++A++)(w)

(z − w)2
−

32N(2k+N+2)
k(k+N+2)2

(A++∂A++)(w)

(z − w)
.

(4.40)
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It is now a real consistency check that they agree with eqs. (A.4) and (A.5), respectively,

of the asymptotic symmetry algebra in the ’t Hooft limit.

Similarly, we can compare the leading terms of the OPE

V (2)++(z)V (2)+−(w) ∼ −32(k−1)N(2k+N+2)
(k+N+2)2

1

(z − w)4
− (64(−1+k)N(2+2k+N)

k(2+k+N)2
A+3

(z − w)3

+ 16(−1+k)(1+k)(2+N)(2+2k+N)
k(−(2+N)2+k2(−1+4N+3N2)+k(−4+3N+4N2))

(V (1)0 V (1)0 )

(z − w)2

−32(−1+k)N(2+2k+N)
k(2+k+N)2

∂A+3

(z − w)2
− 32N(2+2k+N)

k(2+k+N)2
(A+3A+3)

(z − w)2

+ 64(−1+k)(1+k)N(2+2k+N)
(2+k+N)(−(2+N)2+k2(−1+4N+3N2)+k(−4+3N+4N2))

C−

(z − w)2

−32N(2+2k+N)(−2k3(2+N)+(2+N)2+k(4−3N−4N2)+k2(−1+N2)
k(2+k+N)2(−(2+N)2+k2(−1+4N+3N2)+k(−4+3N+4N2))

C+

(z − w)2

− 64(−1+k)(1+k)N(2+N)(2+2k+N)
(2+k+N)(−(2+N)2+k2(−1+4N+3N2)+k(−4+3N+4N2))

T − V (2)0

(z − w)2

+O
(

(z − w)−1
)

, (4.41)

where C+ and C− are defined in eqs. (4.32) and (4.33), respectively, and we have fixed the

normalisation of V (2)0 (up to a sign) by the requirement that

V (2)0(z)V (2)0(w) ∼
k(N−1)(N+1)(k+2N+2)(3k2N2+4k2N−k2+4kN2+3kN−4k−N2−4N−4)

(k−1)(k+1)N(N+2)2(k+N+2)(2k+N+2)

(z − w)4
+ · · · ,
(4.42)

where the ellipses stand for subleading terms, see (A.7). Again, it is now a non-trivial

consistency check that all the OPE coefficients in (4.41) agree, in the ’t Hooft limit (4.3),

with the corresponding terms in (A.6) from the asymptotic symmetry algebra.

We can also construct the fields in the (1,3) representation, following the same idea

as in (4.38)

V (2)−+ = k(ψi,2∂ψ̄i,1 − ∂ψi,2ψ̄i,1)− (J11(ψi,2ψ̄i,1))− (J22(ψi,2ψ̄i,1))

+2
(

JA(ψi,2 ¯ψj,1)
)

(tA�)ij − 2+k+N
N (V (1)0K+) ,

V (2)−− = k(ψi,1∂ψ̄i,2 − ∂ψi,1ψ̄i,2)− (J11(ψi,1ψ̄i,2))− (J22(ψi,1ψ̄i,2))

+2
(

JA(ψi,1 ¯ψj,2)
)

(tA�)ij − 2+k+N
N (V (1)0K−) ,

V (2)−3 = k(N−1)
N

(

ψi,1∂ψ̄i,1 − ∂ψi,1ψ̄i,1 − ψi,2∂ψ̄i,2 + ∂ψi,2ψ̄i,2
)

+2(J11(ψi,1ψ̄i,1)) + 2(J22(ψi,1ψ̄i,1))− 2(J11(ψi,2ψ̄i,2))− 2(J22(ψi,2ψ̄i,2))

+2
(

JA(ψi,1 ¯ψj,1)
)

(tA�)ij − 2
(

JA(ψi,2 ¯ψj,2)
)

(tA�)ij

+ k
N

(

(ψi2ψi2)(ψ2ψj2)− (ψi1ψi1)(ψj1ψj1)
)

.

Some of the OPEs involving these operators are then

G++(z)V (2)−+(w) ∼
−4 2N+k+2

N(k+N+2)(A
−+G′++)

z − w
, (4.43)
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as well as

V (2)−+(z)V (2)−+(w) =
−32k(k+2N+2)

N(k+N+2)2
(A−+A−+)(w)

(z − w)2
−

32k(k+2N+2)
N(k+N+2)2

(A−+∂A−+)(w)

(z − w)
.

(4.44)

It is again straightforward to check that they match the coefficients of the asymptotic

symmetry algebra (see the ancillary file) in the ’t Hooft limit.

4.3 Truncation of the W∞ algebra

As we have seen in section 2.2, the (classical) asymptotic symmetry algebra associated to

shs2[µ] truncates for µ = s + 1 or µ = −s. It is then natural to suspect that the same

truncation will also happen in the actual quantum W∞ algebra. (Since the asymptotic

symmetry algebra is non-linear, the transition from the classical Poisson algebra to the

quantum Lie algebra is non-trivial, see [45].) While we have not yet studied the most

general W∞ algebra with this spin content — this will be done in [46] — we can at least

analyse this question for the above cosets.

First of all, we can check whether the relevant multiplet shortens at the appropriate

value of (k+, k−), i.e., whether a certain descendant of the Ãγ primary spin s field Φs

becomes null. One finds that3

N+ =
(

G+−

−
1
2

G++
−

1
2

+
4s

k+
A++

−1

)

Φs
∼= 0 for sk− + (1 + s)k+ + 2s = 0 or k+ = 1 , (4.45)

N− =
(

G++
−

1
2

G−+
−

1
2

− 4s

k−
A−+

−1

)

Φs
∼= 0 for sk+ + (1 + s)k− + 2s = 0 or k− = 1 , (4.46)

i.e., that these states are annihilated by the positive Ãγ generators. The first solution in

each of these cases corresponds to

sk− + (1 + s)k+ + 2s = 0 =⇒ γ ≡ k−

k+ + k−
=

(s+ 1)k−

k− − 2s
, (4.47)

sk+ + (1 + s)k− + 2s = 0 =⇒ γ ≡ k−

k+ + k−
= − sk−

k− + 2s
, (4.48)

i.e., in the first case we get γ = s + 1 in the ’t Hooft limit, while in the second case the

asymptotic value is γ = −s, in nice agreement with what we saw in section 2.2. (Note that

N+ and N− transform in the (3,1) and (1,3) representations, respectively.) Incidentally,

we should note that the two cases correspond precisely to

sk− + (1 + s)k+ + 2s = 0 : γ2 =
k+

k+ + k− + 2
= −s (4.49)

sk+ + (1 + s)k− + 2s = 0 : γ1 =
k−

k+ + k− + 2
= −s , (4.50)

where γ1 and γ2 were introduced in eq. (B.38) of [25].

3This point was missed in [25], where it was only observed that the first term does not become null, see

eq. (2.43) of that paper. Note that the coset algebra also makes sense for non-positive level k+, so these

conditions can be satisfied.
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We can also check whether some of the other higher spin fields decouple appropriately

for these values of (k+, k−). As in section 2.2, let us consider explicitly the example s = 1

where we expect that for γ2 = −1, i.e., for k−+2k++2 = 0, the generators V (2)+∗ decouple.

In the above coset description we have k+ = k and k− = N , and thus for example the

right-hand-side of (4.39) and (4.40) should vanish for N + 2k + 2 = 0 — which it indeed

does. Similarly, for γ1 = −1 or k++2k−+2 = 0, the generators V (2)−∗ should belong to the

ideal (while the generators V (2)+∗ survive). Looking at the structure of the OPEs (4.43)

and (4.44), this is indeed the case. These two examples provide non-trivial evidence for the

assertion that the quantum W∞ algebra indeed truncates in the same way as the (classical)

asymptotic symmetry algebra.

For the second solution in (4.45) and (4.46), we find

k+ = 1 =⇒ γ ≡ k−

k+ + k−
=

k−

k− + 1
, (4.51)

k− = 1 =⇒ γ ≡ k−

k+ + k−
=

1

k+ + 1
, (4.52)

which corresponds, in the ’t Hooft limit, to γ = 1 and γ = 0, respectively. In this limit, one

of the two su(2) current algebras decouples, and the large N = 4 superconformal algebra

becomes the small N = 4 superconformal algebra. Finally, we note that for

k+ = k− = − 2s

1 + 2s
or k+ = k− = 1 (4.53)

both vectors N+ and N− become simultaneously null. The solution k+ = k− corresponds

to γ = 1
2 , where D(2, 1|α) is isomorphic to OSp(4|2); this truncation may therefore play

a role in connecting the large N = 4 W∞ algebra to the shsE(N |2) algebra based on

OSp(N |2) that was studied in [28].

A similar analysis can also be done for the linear Aγ algebra, see appendix B for details.

The non-linear Ãγ algebra can be obtained from Aγ upon factoring out the free fermions

and the u(1) generator, and this process reduces the levels of the su(2) algebras by one,

k± 7→ k± − 1. One may therefore expect that the conditions for the appearance of the

null-vectors are related to the above by this shift, and this is indeed borne out by the

analysis of appendix B.

5 The perturbation analysis

In this section we use the results from the previous section to study the effect of the per-

turbation by the (f; f̄) field on the higher spin currents. Recall from [25] (see the discussion

around eq. (4.12) of that paper) that the ground state of the coset representation (f; f̄) is

to be identified in the above notation with the state

ψ̄ i,α
−1/2 |(N+ 2) → 2〉 , (5.1)

where |(N+ 2) → 2〉 denotes the states in the fundamental representation of su(N + 2)

that transform with respect to the branching of su(N + 2) into su(N)⊕ su(2)⊕ u(1)

(N+ 2) = N2 ⊕ 2−N (5.2)
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as a singlet of su(N) and a 2 of su(2). (Here the indices in (5.2) denote the u(1) charge;

note that our u(1) generator has been rescaled by a factor of 2 relative to [25] so that all its

eigenvalues are integers.) The state (5.1) has conformal dimenion h = 1
2 , and it transforms

in the doublet representation of both su(2) algebras of Ãγ . It therefore defines a chiral

primary operator, and its G∗∗

−1/2 descendant gives rise to an exactly marginal pertubation

that preserves the large N = 4 superconformal algebra. The actual perturbing state then

has the form

Φ = J̄ i,α
−1 |(N+ 2) → 2〉 , (5.3)

as follows from the structure of the supercharges (4.22).

The question of whether the higher spin currents are preserved by the perturbation

now boils down to an analysis of the poles in the OPE of Φ with the higher spin currents,

see section 4 of [47] for a discussion in a related context. The simplest case to study is the

spin 1 current V (1)0 that sits at the bottom of the R(1) multiplet. In this case, the analysis

of [47] implies that V (1)0 is preserved by the perturbation provided that the eigenvalue of

V
(1)0
0 on Φ vanishes. Given that Φ does not involve any fermions, the eigenvalue under

K11 +K22 is obviously trivial; on the other hand, from the fact that the eigenvalue of Φ

under U0 equals −2(N + 1), we conclude that4

V
(1)0
0 Φ = − 2(N + 1)

(k +N + 2)
Φ 6= 0 . (5.4)

Thus it follows that the spin 1 current V (1)0 is not preserved by the perturbation. We

should mention that while we have performed this analysis for the version of the coset

theory that contains the non-linear Ãγ algebra, the result is identical also in the other case

(that contains the linear Aγ algebra) since the spin 1 generator V (1)0 is unmodified in going

from one description to the other.

Since the OPEs of R(1) generate recursively the full W∞ algebra, this result then

suggests that in fact all higher spin currents (outside the large N = 4 superconformal

algebra) will acquire anomalous dimensions under this perturbation, and hence that only

the superconformal symmetry survives.

6 Conclusion

In this paper we have checked that the asymptotic symmetries of the AdS3 higher spin

theory based on shs2[λ] match those of the 2d CFT Wolf space cosets in the ’t Hooft limit.

This provides an important and non-trivial confirmation for the N = 4 duality that was

proposed in [25]. We have performed our analysis for the ‘non-linear’ version of the duality

where the large N = 4 superconformal algebra is a non-linear W-algebra on both sides.

As we have also explained, by introducing auxiliary boundary degrees of freedom, we can

partially linearise the asymptotic symmetry algebra, so that it contains the linear large

N = 4 superconformal algebra as a subalgebra (thereby matching a similar construction

4This can also be confirmed independently.
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on the coset side). The two versions of the duality (linear vs. non-linear) differ only by the

inclusion of finitely many free boundary fields; their difference is therefore invisible in the

classical large central charge limit, and hence corresponds to an ambiguity in characterising

the (semiclassical) asymptotic symmetry algebra of the higher spin theory.

In the process of checking the agreement of the symmetries, we have also worked

out explicit expressions for the first few W-algebra generators for the (non-linear) Wolf

coset CFTs. In turn, these expressions allowed us to determine the behaviour of the W∞

symmetry under exactly marginal perturbations. In particular, we have shown that the

spin 1 generator of the first non-trivial N = 4 multiplet becomes anomalous under the

exactly marginal N = 4 preserving deformation of [25]. This suggests that the entire

higher symmetry will get broken by this perturbation. This should help to shed light on

the interpretation of this perturbation from the dual higher spin theory viewpoint.
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A Details of the asymptotic symmetry algebra

In the following we provide some OPEs of the asymptotic symmetry algebra; additional
OPEs can be found in the ancillary file on the arXiv. In various places, we have introduced
some normalisation parameters (that are usually denoted by a(s)∗∗). We can simply set
them to arbitrary values representing different normalisation conventions for the generators.

G++(z)G′++(w) ∼ 0

G++(z)G′+−(w) ∼ 4γA++(w)V (1)0(w)

kcs(w − z)
+

iV (2)++(w)

2a(2)++(w − z)

G++(z)G′−+(w) ∼ −4(γ − 1)A−+(w)V (1)0(w)

kcs(w − z)
− iV (2)−+(w)

2a(2)−+(w − z)

G++(z)G′−−(w) ∼ i
(

8ia(2)−+a(2)++∂V
(1)0(w)−

√
2a(2)++V

(2)−3(w) +
√
2a(2)−+V

(2)+3(w)
)

4(w − z)a(2)−+a(2)++

+
2(2γ − 2)A−3(w)V (1)0(w)

kcs(w − z)
− 4γA+3(w)V (1)0(w)

kcs(w − z)
+

4V (1)0(w)

(w − z)2

G+−(z)G′++(w) ∼ −4γA++(w)V (1)0(w)

kcs(w − z)
− iV (2)++(w)

2a(2)++(w − z)

G+−(z)G′+−(w) ∼ 0

G+−(z)G′−+(w) ∼ 8a(2)−+a(2)++∂V
(1)0(w) +

√
2(−i)a(2)++V

(2)−3(w)− i
√
2a(2)−+V

(2)+3(w)

4(w − z)a(2)−+a(2)++

+
4(γ − 1)A−3(w)V (1)0(w)

kcs(w − z)
+

4γA+3(w)V (1)0(w)

kcs(w − z)
− 4V (1)0(w)

(w − z)2
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G+−(z)G′−−(w) ∼ 2(2γ − 2)A−−(w)V (1)0(w)

kcs(w − z)
− iV (2)−−(w)

2a(2)−+(w − z)

G−+(z)G′++(w) ∼ 4(γ − 1)A−+(w)V (1)0(w)

kcs(w − z)
+

iV (2)−+(w)

2a(2)−+(w − z)

G−+(z)G′+−(w) ∼ 8a(2)−+a(2)++∂V
(1)0(w) +

√
2ia(2)++V

(2)−3(w) +
√
2ia(2)−+V

(2)+3(w)

4(w − z)a(2)−+a(2)++

−4(γ − 1)A−3(w)V (1)0(w)

kcs(w − z)
− 4γA+3(w)V (1)0(w)

kcs(w − z)
− 4V (1)0(w)

(w − z)2
(A.1)

G−+(z)G′−+(w) ∼ 0

G−+(z)G′−−(w) ∼ −4γA+−(w)V (1)0(w)

kcs(w − z)
+

iV (2)+−(w)

2a(2)++(w − z)
(A.2)

G−−(z)G′++(w) ∼ − i
(

− 8ia(2)−+a(2)++∂V
(1)0(w)−

√
2a(2)++V

(2)−3(w) +
√
2a(2)−+V

(2)+3(w)
)

4(w − z)a(2)−+a(2)++

−4(γ − 1)A−3(w)V (1)0(w)

kcs(w − z)
+

4γA+3(w)V (1)0(w)

kcs(w − z)
+

4V (1)0(w)

(w − z)2

G−−(z)G′+−(w) ∼ −4(γ − 1)A−−(w)V (1)0(w)

kcs(w − z)
+

iV (2)−−(w)

2a(2)−+(w − z)

G−−(z)G′−+(w) ∼ 4γA+−(w)V (1)0(w)

kcs(w − z)
− iV (2)+−(w)

2a(2)++(w − z)

G−−(z)G′−−(w) ∼ 0 (A.3)

G′++(z)G′++(w) ∼ 8(γ − 1)γA−+(w)A++(w)

kcs(w − z)

G′++(z)G′+−(w) ∼ −8(γ − 1)γA−3(w)A++(w)

kcs(w − z)
+

4γ∂A++(w)

w − z
− 8γA++(w)

(w − z)2

G′++(z)G′−+(w) ∼ −8(γ − 1)γA−+(w)A+3(w)

kcs(w − z)
− 4(γ − 1)∂A−+(w)

w − z
+

8(γ − 1)A−+(w)

(w − z)2

G′++(z)G′−−(w) ∼ 8(γ − 1)γA−3(w)A+3(w)

kcs(w − z)
− 2(γ − 1)γA−−(w)A−+(w)

kcs(w − z)

−2(γ − 1)γA−+(w)A−−(w)

kcs(w − z)
− 4(γ − 1)γA−3(w)A−3(w)

kcs(w − z

−2(γ − 1)γA+−(w)A++(w)

kcs(w − z)
− 2(γ − 1)γA++(w)A+−(w)

kcs(w − z)

−4(γ − 1)γA+3(w)A+3(w)

kcs(w − z)

−4
(

− γ∂A−3(w) + γ∂A+3(w) + ∂A−3(w) + T (w)
)

w − z

−8(γA−3(w)− γA+3(w)−A−3(w))

(w − z)2
− 8kcs

(w − z)3

G′+−(z)G′+−(w) ∼ −8(γ − 1)γA−−(w)A++(w)

kcs(w − z)
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G′+−(z)G′−+(w) ∼ 2(γ − 1)γA−−(w)A−+(w)

kcs(w − z)
+

2(γ − 1)γA−+(w)A−−(w)

kcs(w − z)

4(γ − 1)γA−3(w)A−3(w)

kcs(w − z)
+

8(γ − 1)γA−3(w)A+3(w)

kcs(w − z)

+
2(γ − 1)γA+−(w)A++(w)

kcs(w − z)
+

2(γ − 1)γA++(w)A+−(w)

kcs(w − z)

+
4(γ − 1)γA+3(w)A+3(w)

kcs(w − z)

+
4
(

γ∂A−3(w) + γ∂A+3(w)− ∂A−3(w) + T (w)
)

w − z

−8(γA−3(w) + γA+3(w)−A−3(w))

(w − z)2
+

8kcs
(w − z)3

G′+−(z)G′−−(w) ∼ 8(γ − 1)γA−−(w)A+3(w)

kcs(w − z)
+

4(γ − 1)∂A−−(w)

w − z
− 8(γ − 1)A−−(w)

(w − z)2

G′−+(z)G′−+(w) ∼ −8(γ − 1)γA−+(w)A+−(w)

kcs(w − z)

G′−+(z)G′−−(w) ∼ 8(γ − 1)γA−3(w)A+−(w)

kcs(w − z)
− 4γ∂A+−(w)

w − z
+

8γA+−(w)

(w − z)2

G′−−(z)G′−−(w) ∼ 8(γ − 1)γA−−(w)A+−(w)

kcs(w − z)

G++(z)V (2)0(w) ∼ 3(−1)3/4
(

G(5/2)−1(w) + iG(5/2)−2(w) +G(5/2)+1(w) + iG(5/2)+2(w)
)

16(γ − 2)(w − z)

G+−(z)V (2)0(w) ∼ 3(−1)3/4
(

G(5/2)−0(w)−G(5/2)−3(w)−G(5/2)+0(w)−G(5/2)+3(w)
)

16(γ − 2)(w − z)

G−+(z)V (2)0(w) ∼ −3(−1)3/4
(

G(5/2)−0(w) +G(5/2)−3(w)−G(5/2)+0(w) +G(5/2)+3(w)
)

16(γ − 2)(w − z)

G−−(z)V (2)0(w) ∼ −3 4
√
−1

(

iG(5/2)−1(w) +G(5/2)−2(w) + iG(5/2)+1(w) +G(5/2)+2(w)
)

16(γ − 2)(w − z)
.

Here G(5/2)±j are a set of spin-52 fields, but we have not attempted to write them in a

particular basis. For the comparison to the CFT calculation we also need the OPEs

G++(z)V (2)++(w) ∼ −
8i(γ − 2)γa(2)++A

++(w)G
′++(w)

kcs(w − z)
(A.4)

V (2)++(z)V (2)++(w) ∼
128(γ − 2)γ2a2(2)++A

++(w) ∂A++(w)

kcs(w − z)

−
128(γ − 2)γ2a2(2)++A

++(w)A++(w)

kcs(w − z)2
, (A.5)

as well as

V
(2)++(z)V (2)+−(w)

∼
128(γ − 2)(γ − 1)A−−(w) ∂A−+(w)a2

(2)++

3kcs(w − z)
+

128(γ − 2)(γ − 1)A−+(w) ∂A−−(w)a2
(2)++

3kcs(w − z)

+
256(γ − 2)(γ − 1)A−3(w) ∂A−3(w)a2

(2)++

3kcs(w − z)
+

128(γ − 2)γ(2γ − 1)A+−(w) ∂A++(w)a2
(2)++

3kcs(w − z)
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+
128(γ − 2)(γ − 1)γA++(w) ∂A+−(w)a2

(2)++

3kcs(w − z)
+

512(γ − 2)γA+3(w)T (w)a2
(2)++

3kcs(w − z)

+
256(γ − 2)γ(3γ − 1)A+3(w) ∂A+3(w)a2

(2)++

3kcs(w − z)
+

64(γ − 2)V (1)0(w)V (1)0(w)a2
(2)++

3kcs(w − z)2

+
16(γ − 2)(5γ − 7)G−+(w)G+−(w)a2

(2)++

9kcs(w − z)
+

64(γ − 2)2G
′
−−(w)G

′++(w)a2
(2)++

9kcs(w − z)

+
512(γ − 2)(γ − 1)γA−−(w)A−+(w)A+3(w)a2

(2)++

3k2
cs(w − z)

+
512(γ − 2)(γ − 1)γ(A−3(w))2 A+3(w)a2

(2)++

3k2
cs(w − z)

+
512(γ − 2)(γ − 1)γ2A+−(w)A++(w)A+3(w)a2

(2)++

3k2
cs(w − z)

+
512(γ − 2)(γ − 1)γ2(A+3(w))2 A+3(w)a2

(2)++

3k2
cs(w − z)

+
256(γ − 2)γA+3(w)a2

(2)++

(w − z)3
−

64(γ − 2)V (1)0(w) ∂V (1)0(w)a2
(2)++

3kcs(w − z)

−
16(γ − 3)(γ − 2)G

′
−+(w)G

′+−(w)a2
(2)++

3kcs(w − z)

−
64(γ − 2)2G−−(w)G++(w)a2

(2)++

9kcs(w − z)
−

128(γ − 2)γA+3(w)V (1)0(w)V (1)0(w)a2
(2)++

3k2
cs(w − z)

−
256(γ − 2)(γ − 1)A−−(w)A−+(w)a2

(2)++

3kcs(w − z)2
−

256(γ − 2)(γ − 1)A−3(w)A−3(w)a2
(2)++

3kcs(w − z)2

−
128(γ − 2)γ(3γ − 2)A+−(w)A++(w)a2

(2)++

3kcs(w − z)2
−

256(γ − 2)γ(3γ − 1)A+3(w)A+3(w)a2
(2)++

3kcs(w − z)2

−
512(γ − 2)γA+3(w)V (2)0(w)a2

(2)++

3kcs(w − z)a(2)k
−

128(γ − 2)a2
(2)++

(

2a(2)kT (w)− 2V (2)0(w) + 3γa(2)k∂A
+3(w)

)

3(w − z)2a(2)k

+
8a2

(2)++

3(w − z)a(2)k

(

16a(2)k∂
2
A

+3(w)γ2 + 16a(2)kT
′(w)γ − 16∂V (2)0(w)γ

−32a(2)k∂
2
A

+3(w)γ + 3a(2)kV
(3)+3(w)− 32a(2)kT

′(w) + 32∂V (2)0(w)
)

−
128kcs(γ − 2)a2

(2)++

(z − w)4
, (A.6)

and

V
(2)0(z)V (2)0(w) ∼

(γ − 1)(γ + 1)a2
(2)kA

−−(w) ∂A−+(w)

(γ − 2)kcs(w − z)
+

(γ − 1)(γ + 1)a2
(2)kA

−+(w) ∂A−−(w)

(γ − 2)kcs(w − z)

+
2(γ − 1)(γ + 1)a2

(2)kA
−3(w) ∂A−3(w)

(γ − 2)kcs(w − z)
−

γ(γ + 1)a2
(2)kA

+−(w) ∂A++(w)

(γ − 2)kcs(w − z)

−
γ(γ + 1)a2

(2)kA
++(w) ∂A+−(w)

(γ − 2)kcs(w − z)
−

2γ(γ + 1)a2
(2)kA

+3(w) ∂A+3(w)

(γ − 2)kcs(w − z)

−
(γ + 1)a2

(2)kV
(1)0(w) ∂V (1)0(w)

2(γ − 2)kcs(w − z)
+

2γ(γ + 1)a2
(2)kA

+−(w)A++(w)

(γ − 2)kcs(w − z)2

+
2γ(γ + 1)a2

(2)kA
+3(w)A+3(w)

(γ − 2)kcs(w − z)2
+

(γ + 1)a2
(2)kV

(1)0(w)V (1)0(w)

2(γ − 2)kcs(w − z)2

−
2(γ − 1)(γ + 1)a2

(2)kA
−−(w)A−+(w)

(γ − 2)kcs(w − z)2
−

2(γ − 1)(γ + 1)a2
(2)kA

−3(w)A−3(w)

(γ − 2)kcs(w − z)2

+
a(2)k

(

γa(2)kT
′(w) + a(2)kT

′(w)− 2γ∂V (2)0(w) + ∂V (2)0(w)
)

(γ − 2)(w − z)
(A.7)

−
2a(2)k(γa(2)kT (w) + a(2)kT (w)− 2γV (2)0(w) + V (2)0(w))

(γ − 2)(w − z)2
−

3(γ + 1)kcsa
2
(2)k

(γ − 2)(w − z)4
.

The remaining OPEs we have worked out can be found in the ancillary file on the arXiv.

– 23 –



J
H
E
P
0
5
(
2
0
1
4
)
1
5
2

B The truncation analysis for the linear Aγ algebra

In this appendix we repeat the truncation analysis of section 4.3 for the linear Aγ algebra.

The ansatz for the null-vectors is now

N+ =
(

G+−

−1/2G
++
−1/2 + aQ+−

−1/2Q
+−

−1/2 + bQ+−

−1/2G
+−

−1/2 + cG+−

−1/2Q
+−

−1/2 + dA++
−1

)

Φs

N− =
(

G++
−1/2G

−+
−1/2 + eQ++

−1/2Q
−+
−1/2 + f Q++

−1/2G
−+
−1/2 + g G++

−1/2Q
−+
−1/2 + hA−+

−1

)

Φs ,

where the Q’s are the modes of the free fermions, see [25] for our conventions. Here Φs is

again a state that corresponds to the bottom component of the R(s) multiplet. These vec-

tors are null provided that they are annihilated by the positive modes of the Aγ generators.

Again, there are two sets of solutions for N+:

solution 1 : a =
−4s

k− + 2
, b =

2

k− + 2
, c =

2

k− + 2
, d =

4(k− + 2)s+ 4

k− + 2
,

k+ = 2

solution 2 : a =
4(s+ 1)2

(k− + 1)2
, b =

2(s+ 1)

k− + 1
, c =

2(s+ 1)

k− + 1
, d = 0 ,

k+ =
1− k−s

s+ 1
.

These solutions correspond to (4.45) under the replacement of k± 7→ k± − 1. Similarly,

N− becomes null for

solution 1 : e =
−4s

k+ + 2
, f =

−2

k+ + 2
, g =

−4((k+ + 2)s+ 1)

k+ + 2
, h =

−2

k+ + 2
,

k− = 2

solution 2 : e =
4(s+ 1)2

(k+ + 1)2
, f = −2(s+1)

k++1
, g = 0 , h = −2(s+ 1)

k+ + 1
,

k− =
1− k+s

s+ 1
,

which correspond, upon setting k± 7→ k±−1, to the solutions found in (4.46). Both vectors

become simultaneously null for k+ = k− = 2 or

k+ = k− =
1

1 + 2s
= 1 +

−2s

1 + 2s
. (B.1)
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