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Abstract The upper limit of climate predictability in mid

and high northern latitudes on seasonal to interannual time

scales is investigated by performing two perfect ensemble

experiments with the global coupled atmosphere–ocean–

sea ice model ECHAM5/MPI-OM. The ensembles consist

of six members and are initialized in January and July from

different years of the model’s 300-year control integration.

The potential prognostic predictability is analyzed for a set

of oceanic and atmospheric climate parameters. The pre-

dictability of the atmospheric circulation is small except for

southeastern Europe, parts of North America and the North

Pacific, where significant predictability occurs with a lead

time of up to half a year. The predictability of 2 m air

temperature shows a large land–sea contrast with highest

predictabilities over the sub polar North Atlantic and North

Pacific. A combination of relatively high persistence and

advection of sea surface temperature anomalies into these

areas leads to large predictability. Air temperature over

Europe, parts of North America and Asia shows significant

predictability of up to half a year in advance. Over the ice-

covered Arctic, air temperature is not predictable at time

scales exceeding 2 months. Sea ice thickness is highly

predictable in the central Arctic mainly due to persistence

and in the Labrador Sea due to dynamics. Surface salinity

is highly predictable in the Arctic Ocean, northern North

Atlantic and North Pacific for several years in advance. We

compare the results to the predictability due to persistence

and show the importance of dynamical processes for the

predictability.
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1 Introduction

Knowledge of future weather and climate states would be

of great value for society. Unfortunately, numerical

weather predictions are limited to several days or a few

weeks by the chaotic nature of the atmosphere (Lorenz

1963; Mu et al. 2002), which leads to the rapid growth of

small errors in initial conditions. Hence, longer predictions

into the future are only possible for the mean state and the

statistics of weather in a certain time period. Seasonal to

interannual climate predictions are promising if their

response to boundary forcing is large enough to overcome

the uncertainties of the initial conditions. The predictability

of most atmospheric variables improves with increasing

time averaging interval at the expense of losing informa-

tion about individual weather and climate events (Reichler

and Roads 2003). The most prominent example of seasonal

forecast is El Nino-Southern Oscillation (ENSO, e.g.

Keenlyside et al. 2005; Tang et al. 2006; Zheng et al.

2006). However, ENSO affects mainly tropical and Pacific

regions. Climate in Arctic regions does not show any or

only weak teleconnections to ENSO. The response of the

extra-tropical North Atlantic region to ENSO is still under

debate but is obviously much weaker than in the Pacific.

(Van Oldenborgh 2005a; Compo and Sardeshmukh 2004;

Pozo-Vasquez et al. 2005). Motivated by the strong impact

of the North Atlantic Oscillation (NAO) on North Atlantic

and European winter climate, considerable effort has been

devoted to improving the prediction of the sign of next
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winter’s NAO-index. However studies by Saunders and

Qian (2002), Müller et al. (2005) and Kushnir et al. (2006)

showed that the predictability of the NAO-index of the

following winter or the following month is rather small.

Peng et al. (2005) analyzed the impact of tropical Atlantic

SST and the ‘‘horse shoe pattern’’ on the NAO but found

only a slightly increased predictability compared with the

climatologically means. Other studies analyzed the atmo-

spheric response on North Atlantic sea surface temperature

(SST) more generally and tried to find seasonal predicta-

bilities (e.g. Lin and Derome 2003; Frankignoul et al.

2003; Friedrichs and Frankignoul 2003). They all found a

significant predictability of atmospheric circulation in

spring but no or only weak signals in the other seasons.

Rodwell et al. (2004) analyzed the impact of Atlantic

Ocean SST on climate in different models and found

similar patterns in all models. They suggested that the

response of the extra-tropical Atlantic region is mainly

associated with Caribbean and tropical Atlantic SST

anomalies. An overview of Atlantic climate variability and

predictability is given by Hurrell et al. (2006).

Predictability on decadal time scales focuses mainly on

the meridional overturning circulation (MOC) and low-

frequency SST variations (Latif et al. 2006). Pohlmann

et al. (2004) found evidence for SST predictability in the

North Atlantic in a global coupled atmosphere–ocean–sea

ice model on a decadal to multi-decadal time scale. Collins

and Sinha (2003) performed ensemble experiments with a

coupled climate model and found a significant predict-

ability of the MOC for the following two decades. In a

recent paper, Collins et al. (2006) analyzed ensemble

experiments of five different coupled atmosphere-ocean

models. They related decadal variability of the MOC to

surface temperature variability in the North Atlantic and

found both parameters potentially predictable.

In this study, we performed a large number of perfect

model experiments with a global coupled atmosphere–

ocean–sea ice model (AOGCM) to analyze the potential

predictability at seasonal to interannual time scales.

Besides the fact that we present a unique and comprehen-

sive study of mid and high latitude climate predictability,

predictabilities with lead times between half a year and a

few years are not captured by most previous studies con-

cerning mid and high northern latitude climate. We focus

mainly on atmospheric and near surface oceanic and

atmospheric variables in mid and high latitudes. This

includes in particular sea ice whose predictability was

poorly analyzed so far. The article is organized as follows.

In the following chapter we describe briefly our model.

Chapter three explains the experimental design and meth-

odology. In chapter four, we present our results and in the

last chapter our results are summarized and conclusions are

drawn.

2 Model description

The model used in this study is the Max-Planck-Institute

for Meteorology global atmosphere–ocean–sea ice model

consisting of the atmosphere model ECHAM (ECmwf

HAMburg) and the ocean model MPI-OM (Max-Planck-

Institute Ocean Model). The atmosphere model ECHAM5

(Roeckner et al. 2003) is run at T31 resolution, which

corresponds to a horizontal resolution of about

3.75� 9 3.75� It has 19 vertical levels up to 10 hPa. The

ocean model MPI-OM (Marsland et al. 2003; Jungclaus

et al. 2006) includes a Hibler-type dynamic-thermody-

namic sea ice model with viscous-plastic rheology (Hibler

1979). The ocean grid is based on an Arakawa C-grid and

allows for an arbitrary placement of the grid poles. In this

setup, the model’s North Pole is shifted to Greenland and

the South Pole is placed in the center of Antarctica. This

approach avoids the numerical singularity at the North

Pole. It has the additional advantage of a relatively high

resolution in the deep-water formation regions near

Greenland and in the Weddell Sea. The grid spacing varies

between about 30 km around Greenland and 368 km in the

tropical Pacific. The model has 40 vertical levels.

The atmosphere model and the sea ice–ocean model are

coupled by the OASIS coupler (Valcke et al. 2003). The

coupler transfers fluxes of momentum, heat, and freshwater

from the atmosphere to the ocean and performs the inter-

polation onto the ocean grid. It also transmits sea surface

temperature, sea ice thickness and concentration, snow

thickness and surface velocity from the ocean to the

atmosphere. The climate model includes a river runoff

scheme (Hagemann and Dümenil 1998; Hagemann and

Dümenil-Gates 2003). The river runoff is transferred to the

ocean together with the difference of precipitation and

evaporation. Glacier calving is included such, that any

snow falling on Greenland and Antarctica is instanta-

neously transferred to the nearest ocean grid point. Hence,

the mass balance of glaciers and ice sheets is not accounted

for. In the coupled model, no flux adjustment is used.

The model we use here is the coarse resolution version

of the model version that has been used for the IPCC-AR4

simulations (e.g. Koenigk et al. 2007; Jungclaus et al.

2006). Due to the coarser resolution, the model climate

differs for certain parameters and regions slightly from the

high resolution version. Key components of the climate of

this model version are shown in Fig. 1. The SLP agrees

well with observations and reanalysis in the North Atlantic

sector and over most parts of Europe, Asia and North

America. However, the Aleutian Low is too weak and the

Pacific subtropical high is too pronounced. Over the central

Arctic, the pressure is slightly overestimated. The annual

mean air temperature shows the typical discrepancies from

the zonality but is generally slightly too cold in high
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latitudes by 1–3 K. In the Barents Sea, air temperature is

up to 5 K too cold. This large negative bias is due to too

much sea ice in this area. However, the Barents Sea is

mainly ice-free during summer. Compared to satellite data,

the ice extends slightly far south into the Labrador Sea and

the Greenland Sea. Ice thickness is overestimated at the

Siberian coast due to too weak offshore winds, which is a

common problem in global coupled atmosphere-ocean-sea

ice models. The simulated surface salinity agrees well with

the Polar Science Center Hydrographic Climatology

(Steele et al. 2001) in most areas of the North Atlantic and

the Nordic Seas. Main discrepancy in this area is a too

pronounced low-salinity tongue extending from New-

foundland into the Atlantic. In the Arctic Basin , the model

captures well the areas of low salinity at the coasts, which

is due to the fresh water input of rivers. In the Central

Arctic, the surface salinity is slightly too high. The maxi-

mal meridional overturning circulation in the North

Atlantic reaches about 16 Sv in the coarse resolution ver-

sion compared to 22 Sv in the high resolution version. The

first Empirical Orthogonal Function (EOF) of annual mean

SLP and 2 m air temperature between 30� and 90�N in the

model and NCEP-reanalyses agree well and explain a

similar amount of the total variance (not shown). Alto-

gether, the model version used here realistically simulates

the mean climate and its variability. The use of the coarse

resolution model version in this study allowed us to cal-

culate a large number of ensembles.

3 Experiments and methods

A 300-year control integration of this model setup is ana-

lyzed and two perfect ensemble experiments are

performed. Experiment one (EXPJAN) consists of 40

ensemble simulations. The ensembles are initialized from

different years of the 300-year control integration because

the predictability skill may strongly depend on the initial

state (e.g. Palmer 1993; Reichler and Roads 2003). Each

ensemble consists of six members and all runs were ini-

tialized at 1st January from slightly perturbed initial

conditions and were run for 8 years. For 20 out of 40

ensembles, initial conditions of the ensemble members

were constructed by a slight change of the atmospheric

diffusion parameter in the first model month. For the

remaining 20 ensembles, a small randomly distributed

perturbation was added to ocean temperature, salinity and

sea ice thickness. However, it turned out that, on the time

scales of interest, it does not make any difference where a

perturbation, if small enough, is introduced to the system.

Therefore, the 40 ensembles are analyzed together in

EXPJAN.

The setup of experiment two (EXPJUL) is similar to

EXPJAN but consists of 20 ensembles. All runs were ini-

tialized at 1st July with a slight perturbation in the

atmospheric diffusion parameter.

The predictability of the model climate is analyzed by

calculating the prognostic potential predictability (PPP,

Pohlmann et al. 2004). The PPP is a measure for the

ensemble variance of a climate variable X at time t in

relation to its variance in the control run and is defined as:

PPPðtÞ ¼ 1�

1
NðM�1Þ

P

j¼1;N

P

i¼1;M

½Xi;jðtÞ � XjðtÞ�2

r2

Xi,j: run i of ensemble j, Xj: mean of ensemble j, N (M):

number of ensemble runs (ensemble members), r2: vari-

ance of the control run.

A PPP of 1 shows perfect predictability while a value of 0

shows no predictability at all. In this case, the ensemble

spread is equal to the variance of the control integration. The

95% significance level (using an f test) of PPP in EXPJAN

varies between values of 0.2 and 0.3 depending on the

decorrelation time of the different variables, which also

changes with the location of the variable. In EXPJUL, a PPP

exceeding 0.24–0.42 is significant at the 95% level due to the

smaller number of ensembles. For most atmospheric vari-

ables except for 2 m air temperature in the central parts of the

Fig. 1 Model climate: annual mean SLP (in hPa), 2 m air temper-

ature (in Kelvin), 6 m salinity (in psu) and sea ice concentration (in

parts) in the control integration
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northern North Atlantic and Pacific, the 95% significance

level is near 0.2 and 0.24 in EXPJAN and EXPJUL,

respectively. Ocean variables normally have longer decor-

relation times and the significance level is slightly higher.

PPP in EXPJAN and EXPJUL differ significantly if the PPP-

difference exceeds 0.25 (for 1-year decorrelation time). The

results are compared to the predictability gained from

persistence of the control integration. This predictability is

given by the square of the autocorrelation (r2
auto). If the

correlation with the month before initialization (December

in EXPJAN, June in EXPJUL) exceeds the autocorrelation

then we take this correlation instead of the autocorrelation.

This is mainly the case for seasonal predictabilities and the

first-year predictability of sea ice thickness and

concentration. In the following, we refer to persistence in

both cases. The difference between the potential predict-

ability and persistence is called gain of predictability:

PPPa = PPP - r2
auto.

This study concentrates on the predictability of atmo-

spheric and near surface variables, as most areas of the

deep ocean do not respond significantly to marginal per-

turbations at seasonal to interannual time scales. Note, that

we analyze the potential predictability of climate in this

particular coupled climate model. The predictability shown

in this study is based on having a perfect model and having

near perfect knowledge of the current state of climate

system. Both will of course never be achieved in the real

world. Initial conditions are not the only source of uncer-

tainty for predictability but model errors contribute to the

uncertainties as well. If a model realistically simulates

climate, it can be expected that predictability of real-world

climate is always smaller than predictability in perfect

ensemble experiments. Thus, the predictability, which is

analyzed in our study, can be called upper limit of pre-

dictability. It has to be noted that this study analyzes

predictability of natural climate variability. External forc-

ing as increased greenhouse gases is not included in this

study. Including greenhouse gases may lead to enhanced

predictabilities in Arctic regions since future climate

change is predicted to be particularly large in the Arctic

(Koenigk et al. 2007; Holland and Bitz 2003).

It is also worth noting that analyzing the potential pre-

dictability with a coupled model seems to be more realistic

than using a SST-forced atmospheric GCM model (van

Oldenborgh 2005b).

4 Results

4.1 Predictability in the atmosphere

4.1.1 Atmospheric circulation

Wind, temperature and precipitation are the atmospheric

climate variables that affect the majority of people most of

all. Hence, the motivation to predict these parameters is

particularly large. Figure 2 shows the potential predict-

ability of annual mean SLP (January to December in

EXPJAN, July to June in EXPJUL) in the first and second

year after initialization in January and July. The predict-

ability patterns of the first year are similar in EXPJAN and

EXPJUL. Predictability is significant over southern Eur-

ope, southern and central Asia, the northwestern North

Pacific and northern North America. PPP is significantly

larger over the northwestern Pacific and over Canada/

Alaska in EXPJUL than in EXPJAN. No or only low PPP is

found from Greenland over Eurasia to the Bering Sea north

of 50�–60�N. Predictability is generally small in the second

year in most mid and high latitude regions. The persistence

of SLP is very low and explains hence only a small part of

the interannual predictability of SLP.

The predictability of seasonal SLP is shown in Fig. 3.

The predictability of the first 2 months is relatively good in

most areas, which is favored by the small perturbation in

the initial conditions. In the following spring, SLP is only

significantly predictable over the northern North Pacific,

parts of Canada and a region in southwestern Asia. Pre-

dictability of the summer season (6–8 months) is quite high

over most of mid-latitude continents and exceeds the pre-

dictability of spring SLP (although lead time is longer).

The predictability of autumn (lead time 9–11 months) is

very small in the entire mid and high northern latitudes.

PPP of SLP of the first 2 months is higher in most areas in

EXPJUL than in EXPJAN. The predictability pattern is

similar to the JJA-pattern of EXPJAN although PPP is

higher due to shorter lead time. This indicates that both

Fig. 2 Top: potential

prognostic predictability of

annual mean SLP in the first and

second year after start of the

simulations in January (left) and

July (right)
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lead time of the prediction and the period to be predicted

are important for the predictability. The 3–5 months pre-

dictability is very small in EXPJUL except for the

northeastern North Pacific. In the following two seasons

PPP is below 0.4 but increases in the next summer again

(not shown). Generally, predictability of the atmospheric

circulation is smallest in autumn, which agrees to sensi-

tivity and predictability studies by Straus et al. (2003) and

Quan et al. (2004).

A comparison of the year-1 PPP pattern and seasonal

patterns indicate that these timescales are not independent

from each other. The mean of the four seasons provides a

pattern similar to the year-1 pattern. Similar to the inter-

annual predictability, persistence of seasonal SLP is very

small and accounts only in the first 2 months for a con-

siderable amount of predictability.

The high predictability of summer (JJA) SLP in our

model can mainly be explained by connection to ENSO.

Lag correlation analyses of the control integration show

a much larger relation between summer SLP over mid

and high latitude continents and preceding tropical

Pacific SST than in the other seasons. The same corre-

lations have been performed with NCEP/NCAR-

reanalysis data. The results support the suggestion of a

particular strong relation between mid and high latitude

summer SLP over continents and surface temperature

over the tropical Pacific. It has to be noted that El Nino

occurs much more regularly in our model than in

observations and much likely too regular. Hence, our

climate model might overestimate the predictability

caused by ENSO. Van Oldenborgh et al. (2005a) ana-

lyzed the seasonal forecast of SLP from the ECMWF

seasonal forecasts over a 15-year period. They found a

good forecast skill of summer SLP over south eastern

Europe starting the forecast in April. This agrees well

with our results.

The predictability of the NAO in our model is relatively

small. First year’s annual mean predictability is significant

in EXPJAN but slightly below 95% significance in EX-

PJUL. PPP of winter NAO is 0.5 for the mean of January

and February after start in January in EXPJAN and 0.2 for

DJF (6–8 months) in EXPJUL. Generally, SLP shows a

better predictability over the Azores than over Iceland. In

agreement with these results, most studies show, if any,

small predictabilities of the NAO (e.g. Fletcher and

Saunders 2006; Doblas-Reyes et al. 2003). The predicta-

bility of the Arctic Oscillation (AO) is similar to the NAO

rather small.

The predictability of the Pacific North American

Oscillation (PNA) is slightly higher than those for NAO or

AO. PPP of PNA is significant in year 1 in both experi-

ments but not anymore in year 2. Since ENSO influences

the PNA (Straus et al. 2003), predictability of the PNA

might be overestimated in our simulations. An overview of

the main results of this section is presented in Table 1.

4.1.2 Air temperature

Variability of the atmospheric circulation is the main

source of temperature variations over the continents. Over

the oceans and ocean-near regions, variations of SST and

sea ice play an important role as well. The predictability of

annual mean 2 m air temperature in the first 2 years is

shown in Fig. 4. A strong land-sea contrast dominates the

PPP distribution. PPP over the northern North Atlantic and

the northern North Pacific is very high and is significant for

several years. Largest PPP occurs in the Iceland Basin,

where air temperature is mainly governed by SST and

Fig. 3 Top: potential

prognostic predictability of

seasonal mean SLP for months

1/2, 3–5, 6–8, 9–11 after start of

the simulations in January.

Bottom: same for initialization

in July
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southwest of the Kamchatka Peninsula. Ocean surface

temperature itself is highly predictable in these regions

(Fig. 5) for several years. The Iceland Basin is rather far

away from all continents and SST is spatially uniformly.

Hence, atmospheric circulation has only a small impact on

2 m air temperature. Results by Pohlmann et al. (2004)

with a former version of our model showed a high decadal

predictability of surface air temperature in this region. Also

Boer (2004) showed that decadal potential predictability of

surface air temperature is found predominantly over the

high latitude oceans.

Our simulations show the largest gain of skill in the

northwestern parts of both the North Atlantic and North

Pacific (Fig. 4, bottom). In areas dominated by westerlies,

persistence is larger over the eastern parts of the oceans

than over the western parts because air masses are advected

over the oceans and air temperatures are dominated by

SST. Advection of air masses from the continents is more

important for the western ocean parts. Persistence of air

temperature becomes much smaller in the eastern parts

after 2 years as well, particularly over the North Atlantic.

Hence, dynamic processes must contribute to the high

predictability. A lag correlation analysis of 2 m air tem-

perature over the North Atlantic (averaged over 42–62N,

Table 1 Summary of seasonal to interannual potential predictability of SLP for the annual means of the first 2 years and the means of the

months 1/2, 3–5, 6–8, 9–11

SLP EXPJAN SLP EXPJUL

Year 1 Small PPP north of 50�N,

sign. PPP over S. Europe

and NW Pacific

Year 1 Similar to EXPJAN, higher PPP over

Pacific than in EXPJAN

Year 2 Almost no sign. PPP Year 2 Almost no sign. PPP

1–2 month

JF

High PPP in most areas, sign. PPP

of NAO and PNA

1–2 month

JA

High PPP in most areas, slightly

higher than in EXPJAN

3–5 month

MAM

Sign. PPP over N. Pacific 3–5 month

SON

Sign. PPP over N Pacific

6–8 month

JJA

High PPP over N America,

S. Europe, SW Asia

6–8 month

DJF

PPP \ 0.4 in all areas, PPP

of NAO and PNA not sign.

9–11 month

SON

Almost no sign. Areas 9–11 month

MAM

Almost no sign. Areas

Fig. 4 Top: potential

prognostic predictability of

annual mean 2 m air

temperature in the first 2 years

after start of the simulations in

January (left) and July (right).
Bottom: gain of predictability in

comparison to the predictability

from persistence

Fig. 5 Potential prognostic predictability of annual mean 6 m ocean

temperature in the first 2 years after start of the simulations in January
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15–45W, Fig. 6) and gridded SST in the 300-year control

integration shows that SST anomalies are advected in the

North Atlantic Current into the Iceland Basin and in the

sub-polar gyre from the Labrador Sea. Advection times are

2–3 years from the Labrador Sea and 4–5 years from the

east coast of North America. These advection processes are

well documented in literature (Dickson et al. 1988; Ellett

and Blindheim 1992). It is more difficult to explain the gain

of predictability in the North Pacific. Lag regressions do

not show strong advections of upper ocean temperature

into this region. However, correlation analyses of the

control run suggest that sea ice anomalies in the northern

North Pacific may play a role. Furthermore, interannual

variations of the atmospheric circulation are partly pre-

dictable in this area (Fig. 2) and may explain a part of the

predictability.

The predictabilities in EXPJAN and EXPJUL are simi-

lar in most ocean regions except for the Labrador Sea. PPP

of first-year 2 m air temperature in the Labrador Sea is very

high in EXPJAN and the gain of predictability is the largest

in the entire Atlantic Ocean. In contrast, PPP in the Lab-

rador Sea is rather small in EXPJUL. In both experiments,

PPP of year 1 is significant in most of western North

America and in southern Europe in both experiments.

Additionally, EXPJAN shows a positive skill over North-

ern Europe and over Asia, south of 50�N while EXPJUL

shows significant values in western Siberia. Predictability

of air temperature is small over the Arctic Ocean although

PPP of Arctic SST is very large (Fig. 5). In the central

Arctic, sea ice cover is high year-round and strongly iso-

lates the atmosphere from the ocean. Hence, air

temperature is governed by the atmospheric circulation and

the connection to SST is weak. Some areas at the ice edge

as, e.g. the Barents Sea or near the coast have a significant

PPP since the amount of sea ice plays an important role for

air temperature. The second-year PPP is very small over

almost all land regions of mid and high northern latitudes

and over the Arctic Ocean. Only over southwestern Europe

and very few regions of Siberia, predictability reaches up

to 0.3 in both experiments.

Analyses of temperature predictability at 850 and

500 hPa height (not shown) indicate a vertical extension of

2 m air temperature predictability over the North Atlantic

and North Pacific up to 850 hPa. However, we do not find

any significant predictability at 500 hPa height in these

regions. The high PPP is limited to the lower troposphere

because of the declining impact of the SST with height.

Other regions with significant 2 m air temperature pre-

dictability like southern Europe or Alaska show also

significant predictability at 500 hPa height. Atmospheric

dynamics are responsible for this predictability. The largest

500 hPa predictability occurs southwest of Spain, in the

southeastern Mediterranean and west of the United States.

Figure 7 shows the seasonal predictability of 2 m air

temperature in EXPJAN and EXPJUL. In EXPJAN, air

temperature is highly predictable in most regions of mid

and high northern latitudes in the first 2 months after start

of the ensemble simulations. PPP exceeds 0.8 over the

northern North Atlantic and in some regions of the North

Pacific. This is related to a relatively small predictability of

SLP in this region. PPP over Europe and North America

reaches generally 0.5–0.7. As the persistence of continental

air temperature is very low, the gain of predictability is

similar to the PPP-values. Over most ocean regions, the

gain varies between 0.3 and 0.5 (not shown). A very

interesting region is the Barents Sea where predictability is

very high and largely exceeds the predictability of the

surrounding areas. Air temperature in the Barents Sea is

strongly determined by sea ice concentration, which has a

high persistence for several months. Hence, the gain of

predictability is small (not shown). In the Barents Sea, our

model overestimates ice cover, which might have an

Fig. 6 Top: lag correlation

between annual mean 6 m

ocean temperature at the North

American east coast and 6 m

ocean temperature in the 300-

year control integration.

Temperature at the American

east coast leads by 1, 2 and

4 years. Bottom: same for 6 m

ocean temperature in the

Labrador Sea. Temperature in

the Labrador Sea leads by 1, 2

and 3 years
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impact on the predictability. Most likely this leads to a shift

of the high predictabilities in the Barents Sea with the ice

edge to the southwest compared to real world conditions.

The 3–5 month PPP of 2 m air temperature is dominated

by a strong land–sea contrast with high PPP over the

oceans and small PPP over the continents. Nevertheless,

PPP is still significant in most European regions, in parts of

Northern America and in southeastern Russia/northeastern

China. This predictability is mainly due to dynamical

features and cannot be obtained by persistence. In summer

(mean of 6–8 months, JJA) predictability stays high over

the oceans but is close to zero in all Arctic regions. A high

potential predictability occurs over southeastern Europe

and still over southeastern Russia/northeastern China. As

discussed above, ENSO is responsible for these high pre-

dictabilities in our model. Colman and Davey (1999) used

January–February SST anomalies in the North Atlantic to

predict the following summer air temperature over Europe.

They found significant forecast skills in large parts of

western Europe. Barnston and Smith (1996) showed a

significant skill of summer air temperature over southern

Europe, the US including parts of Alaska and over a small

area near Lake Baikal. This agrees with our results of

summer air temperature over Europe and North America

but our results show a much larger region with significant

skill over southeastern Russia/northeastern China.

Predictability in our EXPJAN simulations is strongly

reduced in the autumn season (mean of 9–11 months,

SON). Even over the North Atlantic and North Pacific, PPP

decreases due to strong winds, which lead to a higher

dependency of air temperature on the atmospheric

circulation.

The seasonal predictabilities of air temperature in

EXPJUL and EXPJAN differ. In EXPJUL, PPP is larger in

almost all areas of mid and high northern latitudes except

for the Arctic Ocean in the first 2 months. The impact of

ENSO explains higher PPP-values over land regions in

EXPJUL. The spatial predictability distribution is similar

to the summer pattern in EXPJAN but values are larger in

EXPJUL due to shorter lead time. The persistence over the

oceans is especially large in summer due to weak winds,

and leads to almost perfect predictability. The 3–5 month

predictability is smaller in EXPJUL than in EXPJAN. In

months 6–8, there is still some predictability of tempera-

ture over western North America. Some parts of Asia show

significant predictability in the following spring (months

9–11). PPP over the North Atlantic and North Pacific

remains high in these seasons. The predictability pattern of

year-1 is obviously related to the seasonal predictability.

For example, the significant predictability in EXPJAN over

Europe in the first year is mainly due to high predictabil-

ities in the first two seasons. The summer predictability

strongly contributes to the year-1 predictability over

southeastern Europe and southeastern Russia/northeastern

China. There are no regions with significant annual pre-

dictability, which do not show significant seasonal

predictabilities.

Main results from the analysis of seasonal to interannual

potential predictability of 2 m air temperature are sum-

marized in Table 2.

The predictability of area means may lead to different

predictabilities than the average of the grid point predict-

ability in the same region. Thus, Figs. 8 and 9 show the

seasonal predictability of area mean air temperatures for

different land regions in mid and high northern latitudes in

EXPJAN and EXPJUL. The predictability of air tempera-

ture in northern and middle Europe is significant in the first

two seasons after initialization in January. In southern

Fig. 7 Top: potential

prognostic predictability of

seasonal mean 2 m air

temperature for months 1/2,

3–5, 6–8 and 9–11 after start of

the simulations in January.

Bottom: same for initialization

in July
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Europe, predictability is larger and significant in the entire

first year. This changes if initialization takes place in

summer. PPP is already quite small in autumn and below

(northern Europe) or near the 95% significance level

(middle and southern Europe). However, predictability

increases in northern Europe in the following winter, in

middle Europe in the following spring and in southern

Europe in spring and summer. Obviously, PPP of air

temperature in Europe shows a seasonal cycle. In southern

Europe, PPP is largest in summer and in northern Europe

largest in winter. The 3–5 month predictability is small in

Siberia and only significant in western Siberia in EXPJAN.

In EXPJUL, air temperature shows significant predictive

skill in eastern Siberia during winter. Predictability over

North America is largest in the southwestern part in

EXPJAN and in the northwestern part in EXPJUL. This

agrees with findings of Van den Dool et al. (2006) who

showed that seasonal predictability over North America is

mainly dominated by the Pacific. Barnston and Smith

(1996) found lowest predictability over Europe with little

skill in late summer and a clear seasonal cycle with mod-

erate forecast skill in summer and winter over North

America. This is similar to our findings, although not

directly comparable because they averaged temperature

over the entire continents.

Table 2 Summary of seasonal to interannual potential predictability of 2 m air temperature for the annual means of the first two years and the

means of the months 1/2, 3–5, 6–8, 9–11

T 2 m EXPJAN T 2 m EXPJUL

Year 1 High PPP over N. Atlantic and N. Pacific, sign.

but \0.5 over Europe and N. America

Year 1 Similar to EXPJAN but smaller

PPP over the continents

Year 2 High PPP over N. Atlantic and N. Pacific, small

over continents and Arctic

Year 2 Similar to EXPJAN

1–2 month

JF

High PPP in most areas 1–2 month

JA

High PPP in most areas, slightly

higher than in EXPJAN

3–5 month

MAM

High PPP over ice-free oceans, sign. in Europe

and parts of NW America

3–5 month

SON

High PPP over ice-free oceans,

sign. over Alaska/N. Canada

6–8 month

JJA

High PPP over N. Atlantic and N. Pacific, high

over SE Europe, S. Russia/N. China

6–8 month

DJF

High PPP over N. Pacific and N.

Atlantic, sign. over parts of

western N. America

9–11 month

SON

High PPP over N. Pacific, sign. over N. Atlantic,

not sign. over continents

9–11 month

MAM

High PPP over N. Atlantic and N.

Pacific, not sign. over continents

Fig. 8 Potential prognostic predictability of seasonal mean 2 m air

temperature, averaged over different land regions of mid and high

northern latitudes, in the first year after start of the simulation in

January. The dotted line shows the gain of predictability and the red

line the level of 95% significance

Fig. 9 Same as Fig. 8 but after initialization in July
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The predictability of 2 m air temperature averaged over

four different ocean regions is shown in Fig. 10. Predict-

ability over the northern North Atlantic and the northern

North Pacific is very high for several years and has a

marked seasonal cycle. PPP is much larger in spring and

summer than in autumn and winter. Both experiments show

this seasonality. Main reason is a stronger wind in autumn

and winter, which leads to a larger impact of the highly

varying atmospheric circulation on 2 m air temperature.

Particularly in the Pacific, this is connected with a much

higher persistence during spring and summer. The gain of

predictability does not show a marked seasonality over the

North Pacific and the seasonal amplitude is slightly

reduced over the North Atlantic compared to the predict-

ability itself. Our results agree with findings of Collins

(2002), who analyzed SST predictability of the first 5 years

mean with perfect model experiments. He also found a

very high predictability of SST in the North Atlantic. The

predictability shows a seasonal cycle with a maximum in

spring and summer but with slightly reduced amplitude

compared to our simulations. This may be due to the fact

that he used SST while we used 2 m air temperature, which

is more affected by winds. In our control integration,

decadal to multidecadal variations of 2 m air temperature

in the North Atlantic and the North Pacific are of about the

same size as interannual variations and contribute to the

high predictability. Air temperature in the Labrador Sea is

significantly predictable for about one and a half years and

1 year in EXPJAN and EXPJUL, respectively. The gain of

predictability is very high in the Labrador Sea. Koenigk

et al. (2006) showed that sea ice exports through Fram

Strait have a significant impact on air temperature in the

Labrador Sea. However, the general predictability analyzed

in this study seems to be smaller than temperature pre-

dictability after large Fram Strait sea ice export anomalies

as analyzed by Koenigk et al. (2006). A strong oceanic

signal is necessary to overcome atmospheric noise and to

obtain a large impact on air temperature in the Labrador

Sea.

The potential predictability of precipitation is relatively

small (not shown) and is mainly dominated by the atmo-

spheric circulation. Where SLP is significantly predictable,

precipitation reaches similar PPP-values to those of SLP.

Air temperature and SST seem to have only limited impact

on precipitation. At least, we do not find enhanced pre-

dictability of precipitation over the North Atlantic and

North Pacific, where temperature is highly predictable for

several years.

4.2 Predictability of sea ice and ocean variables

Sea ice cover and sea ice thickness control most of the

fluxes of heat, matter and momentum between ocean and

atmosphere. The variations of these fluxes are particularly

large at the ice edge and are important for local and maybe

also for large-scale climate conditions. A number of studies

show an impact of sea ice anomalies on the atmospheric

circulation (Deser et al. 2004; Magnusdottir et al. 2004;

Alexander et al. 2004; Kvamstö et al. 2004; Koenigk et al.

2006) or use sea ice as boundary forcing for predictability

studies. In spite of its large relevance for climate, the

predictability of sea ice is poorly analyzed so far. Figure 11

shows a high potential predictability of annual mean sea ice

thickness in almost the entire Arctic Ocean in the first

2 years. PPP in the Labrador Sea, Hudson Bay and Bering

Sea is much larger in EXPJAN than in EXPJUL. Main

reason is that no or only little ice exists in these regions

during summer. Hence, ice thickness in the first year

depends on ice formation during the following winter,

which is strongly affected by quite unpredictable atmo-

spheric parameters. PPP is slightly higher in EXPJUL than

in EXPJAN in the northern Barents Sea and the Kara Sea.

However, PPP is near zero in the second year in both

experiments. In the Arctic Ocean, persistence of sea ice

thickness dominates the predictability. A considerable gain

of predictability compared to persistence occurs in parts of

the transpolar drift stream (TDS), in the East Greenland

Current (EGC) and particularly in the Labrador Sea. This is

related to a sea ice/climate mode, which is characterized by

formations of sea ice thickness anomalies at the Siberian

Fig. 10 Potential prognostic predictability of seasonal mean 2 m air

temperature, averaged over different ocean regions of mid and high

northern latitudes, in the first 4 years after start of the simulations in

January (top) and July (bottom). The dotted line shows the gain of

predictability and the red line the level of 95% significance
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coast, propagation in the TDS, anomalous Fram Strait sea

ice export and subsequent propagation of the sea ice/

freshwater anomaly to the Labrador Sea (Koenigk et al.

2006). Convection in the Labrador Sea is affected and

consequently SST and sea ice distribution in the Labrador

Sea. The advection of the anomaly in the EGC towards

Labrador Sea is rather independent of the atmospheric

circulation and leads to a large gain of predictability. Sea

ice transports in the EGC have a high predictability in the

first year (not shown). Elsewhere, PPP of sea ice transports

is rather small because they are governed by the atmo-

spheric circulation with low predictability in most Arctic

regions.

The predictability of annual mean sea ice concentration

in the first year is very small in the entire Arctic Basin in

EXPJAN and in the interior of the central Arctic in EX-

PJUL (Fig. 12). Obviously, PPP is small where sea ice

concentration is near one at the initialization time. In these

regions, it is independent from oceanic and atmospheric

initial conditions. This means that the variance of sea ice

concentration in the ensembles is of about the same size

than that in the control integration. Hence, predictability is

very small. High predictabilities occur along the ice edges,

in regions with reduced concentration and additionally

along the coasts of the Arctic Basin in EXPJUL. The

persistence of sea ice concentration is rather small in

EXPJAN but explains most of the first-year predictability

in EXPJUL. The reason is that ice concentration anomalies

are large in summer and persist until next winter while ice

concentration anomalies are small in winter because con-

centration is almost everywhere near one. Hence,

persistence is low for a lag of more than 1 year in both

experiments. The predictability distribution of sea ice

reflects well the variance of sea ice concentration. The

variance is the largest at the ice edge, particularly in the

Barents Sea and is very small in the central Arctic.

Grumbine (1994) suggested that predictability of sea ice

cover is particularly long-lasting in areas where growth and

decay rates are only partly dependent on ice thickness. This

is the case during summer and year-round for thick sea ice.

Our results agree only partly with Grumbine’s because we

found a small predictability of sea ice cover in areas with

thick ice. However, our simulations show a large predict-

ability of sea ice thickness in these areas.

The seasonal predictability of sea ice thickness and

concentration averaged over certain Arctic regions after

initialization in January is shown in Fig. 13. In the central

Arctic and in the Laptev/East Siberian Seas, sea ice

thickness is highly predictable mainly due to persistence. In

contrast, sea ice concentration shows very small predict-

ability. Sea ice thickness and concentration are not

significantly correlated in these regions. This is different

along the ice edge, where predictabilities of sea ice thick-

ness and concentration are about the same. PPP in the

Barents/Kara Seas and Greenland/Iceland Seas is signifi-

cant for 6 months to 1 year. Predictability of Barents/Kara

Seas ice lasts somewhat longer in EXPJUL than in EXP-

JAN and vice versa in the Greenland/Iceland Seas (not

shown). Both experiments show smallest predictability of

sea ice in Barents/Kara Seas in autumn. Particularly in the

Barents Sea, persistence is rather high in the first year and

explains a large part of the predictability. Predictability of

Labrador Sea ice conditions is significant for about 2 years

and it is slightly larger in EXPJAN than in EXPJUL. The

gain of predictability is rather large in the Labrador Sea in

comparison to the other regions. Persistence dominates the

first months but thereafter dynamic processes govern the

predictability.

Figure 14 shows the potential predictability of annual

mean surface salinity in the first 2 years after initialization.

Fig. 11 Top: potential

prognostic predictability of

annual mean sea ice thickness in

the first 2 years after start of the

simulations in January (left) and

July (right). Bottom: gain of

predictability in comparison to

the predictability from

persistence
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PPP exceeds 0.8 in most areas in year 1. River runoff and

ice melting/ freezing lead to smaller predictability in some

coastal areas and regions near the ice edge. The gain of

predictability in the first year relative to persistence is

particularly large in the North Atlantic Drift, in the Lab-

rador Sea and the Nordic Seas. Main reason is advection of

water masses in the North Atlantic Drift and the sub-polar

gyres. As already discussed, sea ice exports from the Arctic

through Fram Strait strongly influence upper ocean salinity

in the Labrador Sea (Haak et al. 2003; Häkkinen 1999;

Dickson et al. 1988). The high predictability in the Arctic

Ocean is mainly due to high persistence. With increasing

lead time, areas with low potential predictability extend

from coastal regions and ice edges into the ocean interiors.

However, predictability of surface salinity remains high in

the central Arctic and in the northeastern North Atlantic

and North Sea for several years (not shown). The patterns

of predictability gain become similar to the PPP-patterns

because the persistence is relatively small in most regions

after 2 years. The results from EXPJUL and EXPJAN

agree very well for PPP but differ for the gain of PPP in the

first year. Persistence in the North Atlantic is larger after

start in July than in January. Griffies and Bryan (1997) used

a global coupled model and showed that EOF-1 of surface

salinity in the North Atlantic is predictable for about one

decade. The EOF-1 pattern is dominated by a dipole with

centers in the middle of the North Atlantic south of Iceland

and Greenland and along the northeastern United States

extending towards Labrador Sea. In the area of the eastern

pole, our model simulations show long-lasting predicta-

bilities as well while predictability at the northeastern coast

of the United States is limited in our model.

The freshwater content of the upper 100, 200 and 500 m

has been analyzed (not shown). The patterns are very

similar to the one of surface salinity. However, the PPP

slightly increases with increasing deeper integration limit.

The predictability of seasonal mean surface salinity

averaged over the same ocean regions as for air tempera-

ture is shown in Fig. 15. Predictability is very good for

several years in the North Atlantic. In contrast to air tem-

perature, PPP of salinity does not show any seasonality in

EXPJAN and only a slight tendency to higher PPP during

winter in EXPJUL. Surface salinity does not depend on the

atmospheric circulation but responds on much longer

timescales in the northern North Atlantic. Hence, PPP of

Fig. 12 Top: potential

prognostic predictability of

annual mean sea ice

concentration in the first 2 years

after start of the simulations in

January (left) and July (right).
Bottom: gain of predictability in

comparison to the predictability

from persistence

Fig. 13 Potential prognostic predictability of seasonal mean sea ice

thickness and concentration, averaged over different Arctic regions,

in the first 2 years after start of the simulation in January. The dotted
line shows the gain of predictability and the red line the level of 95%

significance
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salinity is not decreased in autumn and winter. Persistence

accounts for a large part of the predictability in the first

seasons but decreases to about one third after 2 years. PPP

of salinity shows similar high values in the North Pacific in

the first year due to high persistence but drops faster to

smaller values than in the North Atlantic. Persistence

explains about 50–70% of the seasonal predictability in the

second and third year but decreases thereafter. Surface

salinity in the Labrador Sea shows a rather high predict-

ability with lead times up to 2 years. The persistence is

much weaker than in the North Atlantic and North Pacific

and hence, PPPa is very high. The mechanisms leading to

the large gain of predictability has been discussed in detail

above. PPP in the Greenland Sea is significant for about

one and a half years. The predictability shows a seasonal

cycle with maximum in winter and minimum in summer.

Figure 16 analyzes the predictability of integrated oce-

anic time series. PPP of sea ice export through Fram Strait

is small but significant in the first 2 years. Advection of sea

ice thickness anomalies from the Siberian coast to the Fram

Strait in the TDS is responsible for the predictability as has

been shown by Koenigk et al. (2006). Predictability of both

Denmark Strait overflow and MOC is very high and sig-

nificant for many years. However, persistence is much

more dominating in the overflow than in the MOC. Spectral

analyses show that decadal to multidecadal variations are

Fig. 14 Top: potential

prognostic predictability of

annual mean salinity in the first

2 years after start of the

simulations in January (left) and

July (right). Bottom: gain of

predictability in comparison to

the predictability from

persistence

Fig. 15 Potential prognostic predictability of seasonal mean 6 m

salinity, averaged over different ocean regions of mid and high

northern latitudes, in the first 4 years after start of the simulations in

January (top) and July (bottom). The dotted line shows the gain of

predictability and the red line the level of 95% significance

Fig. 16 Potential prognostic predictability of annual mean Fram

Strait sea ice export, Denmark Strait overflow and MOC at about

30�N after initialization in January
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more pronounced in the Denmark Strait overflow than in

the MOC. Furthermore, the high-frequency part of the

MOC (f \ 10 years) is at least partly wind-driven (Kanzow

et al. 2007; Hirschi and Marotzke 2007). Collins et al.

(2006) analyzed interannual to decadal predictability of the

MOC in five different AOGCM and found similar to us

high skill for at least 5–10 years.

5 Summary and conclusions

The potential predictability of seasonal to interannual cli-

mate in mid and high northern latitudes has been analyzed

with a perfect model approach. Two sets of ensemble

experiments initialized in January and July have been

performed with the AOGCM ECHAM5/MPI-OM.

The potential predictability of the atmospheric circula-

tion is rather small. However, some significant

predictability has been found for annual mean SLP over

southeastern Europe, northwestern Pacific and Canada.

Predictability is generally smaller in the high latitudes than

further south except for northern Canada. Seasonal climate

predictability seems to be promising over the northwestern

North Pacific up to half a year in advance and over North

America and southern Europe in the summer season. Pre-

dictability of precipitation is rather low because it is mainly

governed by the atmospheric circulation.

The predictability of 2 m air temperature is character-

ized by a strong land–sea contrast. Over the continents,

predictability of annual mean air temperature is limited to

the first year. Significant seasonal predictability is obtained

over southern Europe and western NortSh America up to

half a year in advance. Furthermore, the seasonal predict-

ability over continents except for northern North America

is larger after initialization in winter than in summer. This

is mainly due to the fact that predictability in autumn is

smallest and hence the 3rd–5th month predictability is

smaller after start in July than in January. In contrast to the

continents, predictability over the oceans, particular over

the North Atlantic and North Pacific, is very high for

several years in advance. Here, air temperature is strongly

connected with the ocean surface temperature. Advection

of SST anomalies in the sub polar gyre and the North

Atlantic Drift leads to a strong gain of predictability in the

North Atlantic Ocean compared to the predictability from

persistence. The predictability over the oceans shows a

strong seasonal cycle with higher predictability in summer

than in winter. Winds are weaker and hence the impact of

the highly variable atmospheric circulation on 2 m air

temperature is smaller in summer than in winter. Con-

cerning predictability of air temperature, one may argue

that predictability in inhabited regions is of more interest

than in uninhabited regions. Moreover, predictability in

regions with high temperature variability is more important

than in low-variability-regions. From this point of view, the

high predictability of air temperature in the northern North

Atlantic Ocean is rather useless as no one lives there and

even seasonal standard deviations do not exceed 0.5 K,

which is among the smallest of the entire mid and high

latitudes. However, the existence of high predictability

indicates relevant physical processes in that area. The

analysis of these processes in order to understand the found

predictability deepens the understanding of physical

mechanisms and processes in the climate system. This

might also be important for forecasts in inhabited regions

as well.

Annual mean sea ice thickness in the Arctic Basin is

highly predictable in the first 2 years mainly due to per-

sistence. In the Labrador Sea and the East Greenland

Current, predictability of sea ice thickness is high due to

advection of sea ice from Fram Strait. Some gain of pre-

dictability could also be found in the Transpolar Drift

Stream due to advection of sea ice from the Siberian coast

across the North Pole towards Fram Strait. In contrast to

sea ice thickness sea ice cover has a low predictability in

the central Arctic but shows some skill along the ice edges

and the coasts. Predictability is larger after initialization in

summer than in winter except for the Labrador Sea. We

think the main reason is that differences in sea ice con-

centration in different years are much smaller in winter

than in summer. Sea ice concentration is near one in almost

the entire Arctic Ocean in winter independent of the year,

while summer-to-summer variations are much stronger.

Surface salinity in the Arctic Ocean also shows a high

predictability. Similar to sea ice thickness, this is mainly

due to large persistence in the central Arctic while persis-

tence is highly exceeded in the East Greenland Current and

the Labrador Sea. Very high and long-lasting predictabil-

ities of salinity occur in the North Atlantic. The reason for

this is similar than for air temperature in the North Atlantic.

However, PPP of salinity does not show any seasonal cycle

in the North Atlantic. Salinity in the North Pacific is pre-

dictable for about 4 years and shows a slight tendency to

higher predictabilities during summer and autumn than

during winter and spring. MOC and Denmark Strait over-

flow are highly predictable for 5 or more years.

The analyses of seasonal predictability show that the

forecast skill depends on the target-season and partly on the

time of initialization. The importance of the target-season

for the predictive skill seems to be most pronounced for

atmospheric parameters but plays a small role in ocean and

sea ice as well.

Again, it has to be pointed out that we analyzed perfect

model ensembles. That means initial conditions are perfect

except for a marginal perturbation. In reality such good

initial conditions will probably never be reached.
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Moreover, the concept of perfect model predictability

studies does not take into account existing model errors,

which in the real world will always lead to reduced forecast

skill. Under the assumption that our model realistically

represents real climate, one will never be able to predict a

certain climate variable in regions with no or very small

predictability. A high predictability does not mean that a

forecast is possible in reality but there is clear chance for

climate forecasts in future. Hence, future predictability

studies have to focus on finding suitable initialization

methods for coupled models. In the Arctic, the initializa-

tion of sea ice thickness and concentration is particularly

important for climate forecasts. Since sea ice distribution is

strongly dependent on the atmospheric circulation it may

be possible to obtain rather realistically initial sea ice

conditions in the model with the aid of windstress reanal-

ysis data. The initialization of sea ice may be further

simplified by launching CryoSat in 2009.
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