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1 Overview and motivation

In the recent years the AdS/CFT correspondence [1–4] has been found to provide an

excellent framework to study various properties of a large class of strongly coupled gauge

theories that admit a dual description in the form of the classical theory of gravity defined

in asymptotically Anti-de-Sitter (AdS) space time. One of the significant achievements of

AdS/CFT duality is that it provides a universal lower bound for the shear viscosity to

entropy ratio namely,
η

s
=

1

4π
(1.1)

for a wide class of strongly coupled field theories that could be described in terms of the

usual two derivative Einstein gravity as the dual counterpart [5–12]. This universal bound

has remarkable agreement to that with the experimentally measured shear viscosity in

various systems like the quark gluon plasma or the cold atom systems at unitarity [13–23].

As per as the real world systems are concerned, it has been known for quite some time

that the shear viscosity to entropy ratio is not universal in the sense that it depends on the

temperature of the system. This observation was in fact enough motivating to look forward

for certain theoretical framework that eventually explains this crucial experimental fact.

At this stage it is worthwhile to mention that one such (theoretical) attempt to address the

above observational fact comes from the standard prescription of gauge/gravity duality.
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Recently in certain holographic calculations it has been observed that for p-wave (non

abelian) superfluids the above universality of the η/s ratio seems to get violated below

certain critical temperature (T < Tc) [24–31]. This is due to the fact that in the presence

of the p- wave order parameter the spatial rotational symmetry times the U(1) rotational

symmetry generated by one of the SU(2) generator namely τ3 gets spontaneously broken in

the bulk. As a result the global SO(3) symmetry of the boundary theory gets spontaneously

broken to the global SO(2) symmetry which therefore results in a spatial anisotropy for

the boundary theory [32–39].

Motivated from the above analysis, the purpose of the present article is to compute

the η/s ratio corresponding to the symmetry broken phase considering the Einstein Gauss-

Bonnet (EGB) gravity coupled to Yang-Mills field in AdS5. Computation of η/s ratio

in higher derivative theories of gravity is an interesting project in itself since the univer-

sality of the lower bound does get violated automatically without going into any super-

fluid/symmetry broken phase of the system [40–67].1 The question that we would mostly

like to address in this article could be stated as what is the corresponding finite tem-

perature corrections to shear viscosity to entropy (η/s) ratio in EGB gravity. In other

words, the kind of question that we are going to address in this paper eventually raises

the fact that the result for η/s ratio that we know for the EGB gravity should also receive

some finite temperature correction like in the case for the usual two derivative theory of

gravity [24–31].

In our analysis we consider the symmetry to be broken explicitly in the (x, y) plane

while it preserves symmetry in the (y, z) plane. Therefore a natural expectation would be

to find the corresponding ηyz/s ratio to be unchanged and it should match with the earlier

observations in EGB gravity [41, 42]. Whereas, on the other hand, the interesting physics

should emerge while we compute the ηxy/s ratio corresponding to the symmetry broken

phase since the interaction between the gravitons to that with the gauge bosons in the

symmetry broken phase should yield some finite temperature corrections to the existing

result for η/s ratio in EGB gravity. In other words the ratio should get modified due to

the fact that the shear modes corresponding to the (x, y) plane are no more helicity two

excitations rather they transform as the helicity one or vector modes of the unbroken SO(2)

symmetry group which interact with other helicity one modes of the theory namely the

gauge bosons in the symmetry broken phase.

The second motivation of our analysis comes from the fact that in EGB theory of

gravity the GB coupling (λ) is actually constrained by the fact that the theory has to

satisfy the causality namely the velocity of the graviton wave packet cannot exceed the

velocity of photon [41, 42].2 This eventually motivates us to explore the bound on λ

corresponding to the unbroken as well as the symmetry broken phase in the presence of

Yang-Mills coupling. Finally, It should be noted that throughout the analysis we treat the

Gauss-Bonnet (GB) coupling (λ) non perturbatively while on the other hand we treat the

SU(2) gauge sector perturbatively while solving the equations in the bulk.

1There exists a huge literature on this topic. For more interesting aspects of bounds of η/s ratio interested

readers are referred further to [68–93].
2For more aspects of causality constraints interested readers are referred to [94–97].
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The organization of the paper is the following: in section 2 we discuss the basic holo-

graphic set up where we consider the Einstein Gauss-Bonnet (EGB) gravity coupled to

Yang-Mills field in the presence of back reaction. In section 3 we compute the η/s ratio

corresponding to the symmetry broken phase. In section 4 we explore the causality con-

straint on GB coupling (λ) corresponding to the symmetry broken as well as symmetry

unbroken phase. Finally we conclude in section 5.

2 The holographic set up

Before we actually start our analysis, we would first like to note down all the crucial

assumptions as well as the approximations that have been taken care of in the subsequent

computations. The purpose of the present section is to provide a detail discussion on

holographic set up as well as the solutions to the field equations in the bulk AdS5 in detail.

This might be regarded as the first step towards constructing the anisotropic superfluid

phase at the boundary of the AdS5 whose dual gravitational counterpart comprises of the

standard Einstein Gauss-Bonnet (EGB) gravity coupled to SU(2) Yang-Mills theory in an

asymptotically AdS5 space time.

In our analysis we consider the Gauss-Bonnet (GB) coupling (λ) to be non perturbative

whereas on the other hand we treat the Yang-Mills sector to be perturbative near the critical

point (T ∼ Tc). This construction has two notable features — firstly, it provides us with

the exact framework to compare the η/s ratio corresponding to the anisotropic/symmetry

broken phase to that with the earlier results known for the symmetry unbroken phase [30]

and, secondly with this assumption one can easily construct solutions to the field equations

near the UV as well as the IR sector of the theory. This is in fact sufficient for the present

analysis since the only entity that we finally want to compute is the retarded Green’s

function for the boundary theory.

We start our analysis by considering Einstein Gauss-Bonnet (EGB) gravity coupled to

SU(2) Yang-Mills field in an asymptotically AdS5 space time. The corresponding action

reads as,

S=

∫

d5x
√−g

[

1

2κ25

[

R+
12

L2
+
λL2

2

(

RαβγδR
αβγδ − 4RαβR

αβ+R2
)

]

− 1

4g2
F a
αβF

aαβ

]

(2.1)

where the field strength tensor could be formally expressed as,

F a
αβ = ∂αA

a
β − ∂βA

a
α − ǫabcAb

αA
c
β . (2.2)

The corresponding Einstein and Yang-Mills equations of motion turn out to be,

Rαβ+4gαβ − λ

6

[

gαβ

(

RγδµνR
γδµν − 4RµνR

µν+R2
)

+Hαβ

]

−κ25

(

Tαβ−
1

3
Tgαβ

)

=0

∇βF
aβ
α − ǫabcAb

βF
β
α =0 (2.3)

respectively.3 The function Hαβ as well as the energy momentum tensor (Tαβ) take the

following form namely,

Hαβ = 2Rδ
αRβδ − 2RδσRδαβσ −RRαβ −RασδµRβ

σδµ

Tαβ =
1

g2

(

F a
αγF

aγ
β − 1

4
FµνaF

µνagαβ

)

. (2.4)

3We will set L = 1 for convenience.

– 3 –



J
H
E
P
0
3
(
2
0
1
5
)
0
6
3

The metric ansatz as well as the ansatz for the SU(2) gauge field for our analysis could

be formally expressed as,

ds2 = −N(r)σ(r)2N2
#dt

2 +
1

N(r)
dr2 +

r2

L2
f(r)−4dx2 +

r2

L2
f(r)2

(

dy2 + dz2
)

A = φ(r)τ3dt2 + ω(r)τ1dx (2.5)

where ω(r) corresponds to the p- wave order parameter that spontaneously breaks the SO(3)

symmetry of the boundary theory below T < Tc. Here N2
# is a an arbitrary constant. In

our analysis we set

N2
# =

1

2

(

1 +
√
1− 4λ

)

(2.6)

so that the velocity of light at the boundary of the AdS5 becomes unity [41, 42]. Also we

could define the ratio of the AdS length scale to that with the cosmological length scale as,4

f∞ =

(

LAdS

L

)2

(2.7)

which satisfies the following equation of motion,

1− f∞ + f2
∞
λ = 0 . (2.8)

Eq. (2.8) will in general have two roots of which we take the one which smoothly connects

with the Einstein case (λ = 0) when f∞ goes to one.

Our next goal would be to solve (2.3) in the large r limit. In order to do that we first

consider the following perturbative expansion of the gauge field namely,

Aa
µ = Aa(0)

µ + εAa(1)
µ + ε2Aa(2)

µ +O
(

ε3
)

(2.9)

where ε(= (1 − T/Tc)) is a small positive dimensionless parameter such that | ε |≪ 1.

The expansion (2.9) in fact reflects the fact that we are essentially considering our system

(superfluid) at a temperature T which is very close to the critical temperature (T ∼ Tc).

In the next step we shall further expand each of the terms on the r.h.s. of (2.9) as a

perturbation in the parameter α2
(

=
κ2
5

4g2

)

namely,

Aa(i)
µ = Aa(i)(α(0))

µ + α2Aa(i)(α(2))
µ +O

(

α4
)

. (2.10)

Using the above expansions (2.9) and (2.10) we finally solve eq. (2.3) separately near

the UV as well as the IR sector of the theory as it is in fact quite difficult to solve eq. (2.3)

for any generic value of the radial coordinate (r). The solutions corresponding to the large

4Here we closely follow the notation of [98, 99]. For a detailed discussion on f∞ interested readers

are referred to [98, 99], in particular the equations (2.7) and (2.8) of the first of the references provided

in [98, 99].
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values of the radial coordinate (r) turn out to be,

σ(r) = 1− ε2α2 2

9r6
f(r) = 1 + ε2α2 1

9r6

N(r) = f∞ r2 − 1√
1− 4λ r2

+O
(

1

r6

)

+
32α2

3

(

− 1√
1− 4λN2

# r2
+

1√
1− 4λN2

#r
4
+O

(

1

r6

)

)

− ε2α2





281

1260r2
+

f∞

(

840N2
# + 281

)

1260N2
# (f∞ − 2)

+O
(

1

r6

)





ω(r) = ε





1

r2
−

2
(

N2
# − λ

)

N2
# r4

+O
(

1

r6

)



+O
(

ε2
)

φ(r) = 4

(

1− 1

r2

)

+ ε2
(

71

6720
− 281

6720 r2
+O

(

1

r6

))

. (2.11)

A number of comments are to made at this stage. Firstly, for the computation of η/s

we only need the metric upto O
(

1
r4

)

. For that it is sufficient to expand f(r) upto O
(

1
r6

)

as in the metric components it comes with a r2 factor multiplying it. We have expanded

N(r) upto O
(

1
r4

)

. Now as the leading term of N(r) goes as r2 we have to expand σ(r)

upto O
(

1
r6

)

as in the metric they come in the form of N(r)σ(r)2 . Secondly we have set

the radius of the horizon equal to unity namely, rh = 1 and lastly the solutions mentioned

above in (2.11) are exact in the Gauss-Bonnet (GB) coupling (λ).

Next we perform the near horizon expansion in order to obtain solutions corresponding

to the IR sector of the theory. The solutions thus obtained are found to be valid upto

O(r − 1). In the following we quote the near horizon solutions that turn out to be,5

σ(r) = 1 + ε2α2

(

− 1

36
+

r − 1

12

)

; f(r) = 1 + ε2α2

(

1

288

)

; ω(r) =
ε

4

N(r) = 4(r − 1)− 64α2

3N2
#

(r − 1) + ε2α2
52
(

208 + 315N2
#

)

54915N2
#(3− 16λ)

(r − 1)

φ(r) = 8(r − 1)− 13 ε2

420
(r − 1). (2.12)

The temperature of the black brane is defined as usual by defining the surface gravity. The

temperature is defined as usual by the formula shown below.

T =
1

2π

√

(

−1

4
gttgrr(∂rgtt)2

)

∣

∣

∣

r=rh=1
. (2.13)

Using (2.12) in (2.13) and expanding upto O(ε2α2) we get the black brane temperature as,

T =
N#

π

(

1− 16α2

3N2
#

− 4ε2α2

9(3− 16λ)

(

165

8368
− 2028

18305N2
#

− λ

))

. (2.14)

5We require the near horizon data in order to compute the temperature (T ) of the black brane correctly.

Near horizon solutions also play an important role to understand the near horizon behaviour of the graviton

as well as the gauge fluctuations to compute the shear viscosity to entropy ratio.
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The critical temperature at which the system undergoes a second order phase transition

turns out to be,6

Tc =
N#

π

(

1− 16α2

3N2
#

)

. (2.15)

Note that in order to obtain the critical temperature (2.15) what one essentially needs to

do is to turn off the order parameter (ω = 0) which essentially instructs us to set ε = 0

in (2.14) (see 2.11). The reason for this is the fact that the critical temperature marks

the phase transition point where we have no symmetry breaking parameter as we have an

exact scale symmetry there. So turning off the symmetry breaking parameter i.e the ε

in (2.14) we identify the the critical temperature Tc. Also notice that Tc explicitly contains

the information about the gauge coupling constant inside the parameter α2
(

=
κ2
5

4g2

)

which

has been defined as the ratio of the Newton’s constant to that of the Yang-Mills couplings.

Finally, the entropy of the black brane could be formally expressed as [100],

S =
2π

κ25
V3 (2.16)

where V3(=
∫

dxdydz) is the world volume of the black brane. With the above machinery

in hand, we are finally in a position to compute the shear viscosity to entropy (η/s) ratio

corresponding to both the symmetry broken as well as the symmetry unbroken phase in

presence of higher derivative corrections. This is basically the goal of our next section.

3 η/s for anisotropic superfluid

In this section, using the Kubo’s formula, we compute the shear viscosity to entropy ratio

for anisotropic superfluids in Einstein Gauss-Bonnet (EGB) gravity. In order to do that

we turn on fluctuations of the metric as well as the gauge fields namely hµν and δAa
µ . The

gravity fluctuations like hyz and hyy−hzz transform as the tensor modes of unbroken SO(2)

symmetry group. On the other hand the fluctuations like hxy , δA
1
y and δA2

y transform as

the vector modes of SO(2). This basically suggests the fact that the graviton fluctuations

along the (x, y) plane do not transform as pure helicity two states of SO(2) rather they are

coupled with the gauge fluctuations which eventually results in some finite temperature

corrections to shear viscosity bound.

3.1 Calculation of ηyz/s

Let us first consider the graviton fluctuations along (y, z) plane namely hyz. We start with

the linearized equation of motion and set,

hyz(r) ≡ r2f2(r)Φ(r, t). (3.1)

Using Fourier transformation we can write down the field Φ(r, t) as,

Φ(r, t) =

∫

∞

−∞

e−iνtΦν(r)dν. (3.2)

6At this point one should note that for f∞ = 1 and N# = 1, the expression for T and Tc match exactly

with the corresponding expressions of the two derivative Einstein gravity [30].
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Substituting (3.2) in to (2.3) one finally arrives at some second order differential equa-

tion of Φν(r) which could be read off as,

0 =

(

λN ′(r)

r
− 1

)

Φ′′

ν(r) +

(

λN ′′(r)

r
+

2λN ′(r)

r2
+

λN ′(r)2

rN(r)
− N ′(r)

N(r)
− 3

r

)

Φ′

ν(r)

+

(

4λN ′(r)

r3
+

8

N(r)
− 2N ′(r)

rN(r)
− 2α2φ′(r)2

3N2
#N(r)σ(r)2

− 4

r2

)

Φν(r)

+ ν2

(

λN ′(r)

rN2
#N(r)2σ(r)2

− 1

N2
#N(r)2σ(r)2

)

Φν(r) (3.3)

where the prime denotes derivative in the radial coordinate (r).

In order to solve the full equation of motion corresponding to the graviton perturbation

hyz, we consider an ansatz for Φν(r) that basically reflects the incoming wave boundary

condition for graviton modes namely,

Φν(r) =

(

N(r)

r2

)

−i νT̃
4

F (r) (3.4)

where

T̃ =
1

N#

(

1 +
16α2

3N2
#

+
4ε2α2

9(3− 16λ)

(

165

8368
− 2028

18305N2
#

− λ

))

. (3.5)

We then proceed to calculate the retarded Green’s function using the recipe of [101–104].

In order to do that, as a first step we substitute (3.4) in to (3.3) which yields,

0 =
(

λN ′(r)− r
)

F ′′(r) +

(

1− rN ′(r)

N(r)
− 2λN ′(r)

r
+

λN ′(r)2

N(r)
+ λN ′′(r)

)

F ′(r)

+
iνT̃

2

(

rN ′(r)

N(r)
− 2 +

2λN ′(r)

r
− λN ′(r)2

N(r)

)

F ′(r) +

(

8r

N(r)
− 4

r
+

6λN ′(r)

r2
−

2λN ′(r)2

rN(r)
− 2λN ′′(r)

r

)

F (r)− 128α2N(r) + 3r5ν2(r − λN ′(r))

3r5N(r)2σ(r)2N2
#

F (r)

+
iνT̃

4

(

4

r
− 3N ′(r)

N(r)
+

rN ′′(r)

N(r)
− 6λN ′(r)

r2
+

4λN ′(r)2

rN(r)
+

2λN ′′(r)

r
−

2λN ′(r)N ′′(r)

N(r)

)

F (r)− ν2T̃ 2

16

(

4N ′(r)

N(r)
− 4

r
− rN ′(r)2

rN(r)
+

4λN ′(r)

r2
−

4λN ′(r)2

rN(r)
+

λN ′(r)3

N(r)2

)

. (3.6)

In order to solve the above equation (3.6), as a first step we expand F (r) perturbatively

in ν as,

F (r) = F0(r) +
iν

4
F1(r) +O

(

ν2
)

. (3.7)

In the next step we expand each of the F0(r) as well as F1(r) around the boundary and

we get,

F (r) = Φ0 +
Φ2

r4
+O

(

1

r6

)

+
iν(1− 4λ)

4N#

(

Φ0 +
Φ2

r4
+O

(

1

r6

))

(3.8)
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where Φi(i = 0, 2 · · · )s are some constant factors that appear in the expansion of the radial

function F (r) near the boundary of the AdS5. For the present purpose of our analysis it

is sufficient to consider terms upto O
(

1
r4

)

.

In order to compute the shear viscosity from the retarded Green’s function we only

need to register the leading fall off of F (r) corresponding to the radial coordinate (r) at

the leading order in ν which finally yields,

F (r) = Φ0 +
Φ2

r4
+

iν(1− 4λ)

4N#

(

Φ0 +
Φ2

r4

)

. (3.9)

In order to compute the retarded Green’s function (GR(ν,~k = 0)) we only need to evaluate

the following quantity namely [101–104],

F = lim
r→∞

√
ggrr

F (r)

Φ0Φ2f∞
∂rF (r) = −4N# − 2i ν (1− 4λ). (3.10)

Using (3.10) we finally obtain the retarded Green’s function as,

GR
yz , yz

(

ν,~k = 0
)

=
1

2κ25
F = −2N#

κ25
− iν(1− 4λ)

κ25
. (3.11)

Finally, the shear viscosity ηyz corresponding to the y z plane turns out to be,

ηyz = − lim
ν→0

1

2ν
Im
(

GR
yz , yz

)

=
1− 4λ

2κ25
. (3.12)

Using (2.16), the shear viscosity to entropy ratio corresponding to the graviton fluctu-

ations along (y, z) plane turns out to be,

ηyz
s

=
(1− 4λ)

4π
. (3.13)

This is the famous η/s result for the EGB gravity known for quite a long time [41,

42] and is quite expected from the physical arguments that we had mentioned earlier in

section 1. This result is due to the fact that the graviton modes along the (y, z) direction

are essentially decoupled from the gauge degrees of freedom and therefore gives rise to

the universal result as known for the EGB gravity. In the next section we are going to

compute the ηxy/s ratio where due to the presence of the interaction between the graviton

and the gauge degrees of freedom we expect some finite temperature corrections to the

above universal result in EGB gravity.

3.2 Calculation of ηxy/s

In order to compute the ηxy/s ratio we turn on graviton fluctuations hxy(= r2f2(r)Ψ(r, t))

as well as the gauge fluctuations namely δA1
y(r, t) and δA2

y(r, t). Upper indices on δA

correspond to SU(2) indices and the lower indices correspond to space time index. Following

– 8 –
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the same procedure as before we Fourier transform all the variables as,

Ψ(r, t) =

∫

∞

−∞

e−iνtΨ(r)dν

δA1
y(r, t) =

∫

∞

−∞

e−iνtδA1
y(r)dν

δA2
y(r, t) =

∫

∞

−∞

e−iνtδA2
y(r)dν. (3.14)

Substituting (3.14) in to (2.3) we arrive at the following set of equations namely,7

0 = X(r)Ψ′′(r) + Y (r)Ψ′(r) +
(

Z(r) + ν2W (r)
)

Ψ(r)

+ 4α2ω′(r)δA1′
y (r)−

4α2ω(r)φ(r)2δA1
y(r)

N2
#N(r)2σ(r)2

−
4iα2νω(r)φ(r)δA2

y(r)

N2
#N(r)2σ(r)2

0 = δA1′′
y (r) +

(

1

r
− 2f ′(r)

f(r)
+

N ′(r)

N(r)
+

σ′(r)

σ(r)

)

δA1′
y (r) +

(

ν2 − φ2(r)

N2
#N(r)2σ2(r)

)

δA1
y(r)

− W̃ (r)Ψ(r)

0 = δA2′′
y (r) +

(

2f ′(r)

f(r)
+

N ′(r)

N(r)
+

σ′(r)

σ(r)
+

5

r

)

δA2′
y (r) +

(

ν2 − φ(r)2

N2
#N(r)2σ(r)2

)

δA2
y(r)

+
f(r)4ω(r)2

r2N(r)
δA2

y(r)−
iνf(r)4ω(r)φ(r)

2N2
#r

2N(r)2σ(r)2
Ψ(r). (3.15)

Considering the in-going boundary condition we take solutions of the following form

namely,

Ψ(r) =

(

N(r)

r2

)

−i νT̃
4

F (r)

δA1
y(r) =

(

N(r)

r2

)

−i νT̃
4

H(r)

δA2
y(r) =

(

N(r)

r2

)

−i νT̃
4

J(r) (3.16)

where T̃ is given in (3.5).

In the next step we substitute (3.16) in to (3.15) which yields,8

0 = −Ũ1(r)F
′′(r) +

(

X̃(r) +
iν T̃ Ỹ (r)

4

)

F ′(r) +

(

Ũ(r) +
i ν T̃

4
Z̃(r)− ν2 T̃ 2

16
Ṽ (r)

)

F (r)

− ν2

N2
#

X̃1(r)F (r) + α2

(

f(r)4ω′(r)2

6r2
− φ′(r)2

6N2
#N(r)σ(r)2

− f(r)4φ(r)2ω(r)2

6N2
#r

2N(r)2σ(r)2

)

F (r)

+
i T̃ ν φ(r)ω(r)

N2
#N(r)2σ(r)2

δA2
y(r) +

α2 φ(r)2 ω(r)

N2
#N(r)2σ(r)2

δA1
y(r) (3.17)

7See appendix A for details.
8For details see appendix B.
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0 = δA1′′

y (r) +

(

N ′(r)

N(r)
+

1

r
+

σ′(r)

σ(r)
− 2f ′(r)

f(r)

)

δA1′

y (r)− φ(r)2

N2
#N(r)2σ(r)2

δA1
y(r)

+
ν2

N2
#N(r)2σ(r)2

δA1
y(r)+

i ν T̃

4

(

4

r
− 2N ′(r)

N(r)

)

δA1′

y (r)− ν2T̃ 2

16

(

N ′(r)2

N(r)2
− 4N ′(r)

rN(r)
+

4

r2

)

δA1
y(r)

+ Ỹ1(r)F (r)− f(r)4ω′(r)

2r2
F ′(r) +

i ν T̃

4
Z̃1(r)δA

1
y(r) +

i ν T̃

4

f(r)4N ′(r)ω′(r)

2 r2 N(r)
F (r) (3.18)

0 = δA2′′

y (r) +
i ν T̃

4

(

4

r
− 2N ′(r)

N(r)

)

δA2′

y (r) +
i ν T̃

4
W̃1(r)δA

2
y(r)

− ν2 T̃ 2

16

(

4

r2
− 4N ′(r)

rN(r)
+
N ′(r)2

N(r)2

)

δA2
y(r)+

ν2

N2
#N(r)2σ(r)2

δA2
y(r)−

i ν f(r)4φ(r)ω(r)

2N2
# r2N(r)2σ(r)2

F (r)

+

(

2 f ′(r)

f(r)
+
N ′(r)

N(r)
+
σ′(r)

σ(r)
+
5

r

)

δA2′

y (r)+

(

f(r)4ω(r)2

r2 N(r)
− φ(r)2

N2
#N(r)2σ(r)2

)

δA2
y(r). (3.19)

Following the same procedure to find the retarded Green’s function we expand F (r),

H(r) and J(r) upto linear order in the parameter ν namely,

F (r) = F0(r) +
iν

4
F1(r) +O

(

ν2
)

H(r) = H0(r) +
iν

4
H1(r) +O

(

ν2
)

J(r) = J0(r) +
iν

4
J1(r) +O

(

ν2
)

. (3.20)

Using the above expansion (3.20) we finally calculate the shear viscosity (ηxy) associ-

ated with the (x, y) plane. In order to do that we first substitute the expansion (3.20) in

to (3.17) and note the overall fall off of the radial function F (r) at large values of the radial

coordinate (r). As we have seen earlier in section 3.1, in order to compute the shear viscos-

ity (ηxy) from the retarded Green’s function we only need to register the fall off O
(

1/r4
)

in the radial coordinate (r) at the leading order in ν which finally yields,

F (r) = Ψ0 +
Ψ2

r4
+

iν (1− 4λ)

4N#

(

1 + ε2α2 29

896

)(

Ψ0 +
Ψ2

r4

)

(3.21)

where Ψis are some constants as we have seen before.

At this stage it is indeed quite interesting to note that in the λ = 0 limit, the above ex-

pression (3.21) reduces correctly to its corresponding Einstein counterpart as given in [30].

Finally, using (3.10) we arrive at the expression for the shear viscosity to entropy ratio in

the (x, y) plane corresponding to the symmetry broken phase namely,

ηxy
s

=
1− 4λ

4π

(

1 + ε2 α2 29

896

)

. (3.22)

Before we proceed further a few comments are in order. First of all, the presence of

the ε2α2 term in the above expression (3.22) essentially corresponds to the fact that we are

explicitly sitting in the symmetry broken phase of the system. One can easily identify this

particular piece in the theory appearing due to some finite temperature corrections below

certain critical temperature (Tc). As a matter of fact it is in fact quite evident from (2.14)
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and (2.15) that this ε2α2 term is proportional to (T − Tc) with certain proportionality

factor K(λ). Therefore we multiply both side of (3.22) by 4π
1−4λ in order to extract out the

ε2α2 factor which finally yields,

4π

1− 4λ

ηxy
s

= 1 +K(λ) Tc

(

1− T

Tc

)β

(3.23)

where β = 1 and,

K(λ) = − 682515πN#(3− 16λ)

32
(

32448− 35N2
#(165− 8368λ)

) . (3.24)

Note that β has to be equal to one as long as we stick to the order ε2α2 in our calculations.

At this stage it is noteworthy to mention that in the λ = 0 limit eq. (3.23) reduces to its

corresponding Einstein counterpart as given in [30]. Speaking more specifically, eq. (3.23) is

the generalization of the earlier results [30] in the presence of higher derivative corrections.

The point that we want to stress at this stage is the following: like in the pure Einstein

case, we note that the η/s ratio in particular in the EGB gravity is also not universal rather

it explicitly contains the finite temperature corrections below certain critical temperature

(T < Tc). This is the first non trivial observation regarding the non universality of the η/s

ratio in higher derivative theories of gravity to the best of our knowledge.

4 Causality constraint9

In this section we will try to explore the causality constraints on the Gauss-Bonnet (GB)

coupling both in the broken as well as the unbroken phase in presence of SU(2) Yang-

Mills matter. To start with we investigate the unbroken phase where the boundary SO(3)

symmetry is preserved. In order to do that we turn on perturbations along (y, z) plane

and from the linearized equation of motion we calculate the group velocity of the graviton

wave packets near the boundary of the AdS5 in the large momentum limit. Demanding

that the group velocity of graviton wave packet must be less than the speed of light we get

the constraint on Gauss-Bonnet (GB) coupling (λ) following [41, 42]. We repeat the same

analysis for the symmetry broken phase where besides the graviton fluctuations gauge filed

perturbations are also turned on.

4.1 Unbroken phase

In this case we have only A3
t component of the gauge field turned on. In order to calculate

the bound on λ, we turn on graviton fluctuations along (y, z) plane and retain terms upto

α2 order. We take the graviton fluctuations of the following form namely,

hyz(r, t, x) = e−iνt+ik1x+ikrr. (4.1)

For the metric we take the following ansatz namely,

N(r) =

[

r2

2λ

(

1−
√

1− 4λ

(

1− 1

r4

)

)

− α2

(

32
(

r2 − 1
)

3r2N2
#

√

4λ+ (1− 4λ)r4

)]

,

ω(r) = 0 , σ(r) = 1 , f(r) = 1 . (4.2)

9We thank Aninda Sinha for suggesting this.

– 11 –



J
H
E
P
0
3
(
2
0
1
5
)
0
6
3

Substituting (4.1) in to (2.3) we obtain the linearized graviton equation of motion in

large momentum (kµ) limit as,

− 1

N2
#N(r)

ν2 +N(r)k2r +
(1− λN ′′(r))

r (r − λN ′(r))
k23 = 0. (4.3)

Eq. (4.3) could be expressed as,

gµνkµkν = 0 (4.4)

with the metric gµν of the following form namely,

gµνdx
µdxν = N(r)N2

#

(

−dt2 +
1

c2g
dx2
)

+
1

N(r)
dr2 (4.5)

where,

c2g =
N2

#N(r)

r2
1− λN ′′(r)

1− λN ′(r)
r

(4.6)

is the group velocity of the graviton wave packet.

To avoid any acausal propagation at the boundary we should have c2g ≤ 1 which finally

leads to the bound on the GB coupling (λ) namely,

λ ≤ 9

100
. (4.7)

This matches with the earlier results of [41, 42, 94–97] in the absence of any matter cou-

plings. In this case ω = 0 i.e only the temporal component of the gauge is field is turned

one. So effectively we have a U(1) gauge field coupled with gravity. Our analysis shows

that in this case also we get the same bound as what one gets in absence of any matter

fields. This translates into the following well known statement of ηyz/s namely,

ηyz
s

≥ 4

25π
. (4.8)

4.2 Broken phase

In order to study the bound on GB coupling (λ) corresponding to the symmetry broken

phase we turn on graviton fluctuations (hxy(r, t, z)) as well as the gauge fluctuations namely

δA1
y(r, t, z) and δA2

y(r, t, z). Under this circumstances the graviton fluctuations will mix

with the gauge field perturbations and as a result we have to consider the full back reacted

metric as mentioned in (2.12). We take the graviton fluctuations of the following form

namely,

hxy(r, t, z) = e−iνt+ik3z+ikrr. (4.9)

Also we take the gauge field perturbations of the form,

δA2
y(r, t, z) = δA1

y(r, t, z) = e−iν̃t+ik̃3z+ik̃rr. (4.10)

Using the profile mentioned in (4.9), the linearized graviton equation of motion in large

momentum (kµ) limit turns out to be,

− 1

N(r)N2
#σ(r)

2
ν2 + grrk2r + gxxk23 = 0 . (4.11)
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This could be further rewritten as,

gµνkµkν = 0 (4.12)

where the metric gµν could be expressed as,

gµνdx
µdxν = N(r)N2

#σ(r)
2

(

−dt2 +
1

c2g
dx2
)

+ grrdr
2 (4.13)

with,

grr =
σ(r) (λ (rf ′(r)N ′(r) + 2N(r) (rf ′′(r) + 2f ′(r))) + f(r) (λN ′(r)− r))

N(r) (λ rf ′(r) (σ(r)N ′(r) + 2N(r)σ′(r)) + f(r) (σ(r) (λN ′(r)− r) + 2λN(r)σ′(r)))

c2g =
N2

#N(r)σ(r) (−λσ(r)N ′′(r)− 3λN ′(r)σ′(r)− 2λN(r)σ′′(r) + σ(r))

rf(r) (−2λ rN(r)f ′′(r)− λ f ′(r) (rN ′(r) + 4N(r)) + f(r) (r − λN ′(r)))
. (4.14)

Finally expanding c2g around the boundary r → ∞ and demanding the fact that the

leading term has to be less than or equal to zero we note that the GB coupling (λ) has the

following upper bound even in the symmetry broken phase namely,

λ ≤ 9

100
. (4.15)

This result is indeed quite surprising. Although in the symmetry broken phase we have

the full SU(2) sector of the gauge field turned on, still it is quite surprising to note that one

gets the same upper bound on the GB coupling (λ) as we found earlier corresponding to

the symmetry unbroken phase. Note that the above result is valid only in certain special

circumstances in the sense that on one hand we have treated the GB coupling (λ) non

perturbatively and on the other hand we have treated the SU(2) gauge sector perturbatively

near the critical point (T ∼ Tc). This shows that at least in this perturbative framework

the bound on λ doesn’t change even in the presence of a non-abelian gauge coupling.

Mathematically it can be justified as follows, if one looks at the linearized Gauss-Bonnet

equation of motion (3.15) carefully, even though there is in general a mixing between the

graviton and gauge fluctuations but in the high frequency limit they seem to get decoupled.

It is evident from the linearized Gauss-Bonnet equation (3.15) that hxy(r, t, z) comes with

double derivative with respect to r, t and z but the gauge fluctuations δA1
y(r, t, z) and

δA2
y(r, t, z) come with no derivatives. So naturally in the high frequency limit terms with

double derivatives dominate over those terms with lesser number of derivatives. As a

consequence of this the graviton fluctuations decouple from the gauge fluctuations. Hence

we get the same bound although there are gauge fields present. At this stage it is worthwhile

to mention that one might get some nontrivial result in the case when both the gauge and

gravitational sectors are treated non perturbatively. We leave this issue as a part of future

investigations.

The key observation from the above analysis is that the proportionality factor K(λ)

(in equation (3.24)) corresponding to the above (upper) bound (4.15) of GB coupling (λ)

turns out to be,

K(λ) = −
√

41

2

682515π

5059184
≈ −1.91893 . (4.16)
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As a result the corresponding lower bound for ηxy/s changes to,

ηxy
s

≥ 4

25π
− 0.09773 Tc

(

1− T

Tc

)β

(4.17)

with β = 1 .

5 Summary and final remarks

Before we conclude this article, it is now a good time to summarize all the crucial re-

sults/findings of the present analysis. One of the major outcomes of the present analysis is

the finding of the non universal shear viscosity to entropy (η/s) ratio (corresponding to the

super fluid phase) in higher derivative gravity. This deviation is caused due to the mutual

interactions of the helicity two modes to that with the helicity one modes in the symmetry

broken phase.

Another important outcome of our analysis is the fact that the upper bound of the

Gauss- Bonnet coupling (λ) does not seem to get changed even in the super fluid phase as

long as we are close to the critical point (T ∼ Tc) of the phase diagram. However we note

that along the symmetry broken direction the corresponding lower bound of η/s ratio gets

modified due to the presence of finite temperature corrections. It would be an interesting

exercise to explore what amount this upper bound on λ is changed as we move away from

the critical point or we treat the p- wave order parameter non perturbatively. Also it will be

interesting and insightful to repeat this analysis for other anisotropic models, for example

one can look at the models mentioned in [105–108].
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A Details of linearized equations of motion for symmetry unbroken phase

In this appendix we give the detailed expressions for X(r), Y (r), Z(r),W (r) and W̃ (r) as

mentioned in equation (3.15).

X(r) = 1− λf ′(r)N ′(r)

f(r)
− 2λN(r)f ′(r)σ′(r)

f(r)σ(r)
− λN ′(r)

r
− 2λN(r)σ′(r)

rσ(r)
,

W (r) =
1

N2
#N(r)2σ(r)2

− 2λf ′′(r)

N2
#f(r)N(r)σ(r)2

− λf ′(r)N ′(r)

N2
#f(r)N(r)2σ(r)2

− 4λf ′(r)

N2
#rf(r)N(r)σ(r)2

− λN ′(r)

N2
#rN(r)2σ(r)2

,

W̃ (r) =
f(r)3f ′(r)ω′(r)

r2
+

f(r)4N ′(r)ω′(r)

2r2N(r)
− f(r)4ω(r)φ(r)2

2N2
#r

2N(r)2σ(r)2
− f(r)4ω′(r)

2r3

+
f(r)4σ′(r)ω′(r)

2r2σ(r)
+

f(r)4ω′′(r)

2r2
, (A.1)
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Y (r) =
σ′(r)

σ(r)
+

2f ′(r)

f(r)
+

N ′(r)

N(r)
− 1

r
− λf ′′(r)N ′(r)

f(r)
− 2λN(r)f ′′(r)σ′(r)

f(r)σ(r)

− λf ′(r)N ′′(r)

f(r)
− 5λf ′(r)N ′(r)σ′(r)

f(r)σ(r)
− λf ′(r)2N ′(r)

f(r)2
− λf ′(r)N ′(r)

rf(r)

− λf ′(r)N ′(r)2

f(r)N(r)
− 2λN(r)f ′(r)σ′′(r)

f(r)σ(r)
− 2λN(r)f ′(r)2σ′(r)

f(r)2σ(r)
− 2λN(r)f ′(r)σ′(r)

rf(r)σ(r)

− λN ′′(r)

r
+
2λN ′(r)

r2
− 5λN ′(r)σ′(r)

rσ(r)
− λN ′(r)2

rN(r)
+
4λN(r)σ′(r)

r2σ(r)
− 2λN(r)σ′′(r)

rσ(r)
,

Z(r) =
4

r2
− 8

N(r)
− 4f ′(r)

rf(r)
− 8f ′(r)2

f(r)2
+

2α2f(r)4ω(r)2φ(r)2

3N2
#r

2N(r)2σ(r)2
− 2α2f(r)4ω′(r)2

3r2

+
2α2φ′(r)2

3N2
#N(r)σ(r)2

+
2λf ′′(r)N ′(r)

rf(r)
+

4λN(r)f ′′(r)σ′(r)

rf(r)σ(r)
+

2λf ′(r)N ′′(r)

rf(r)

+
4λf ′(r)N ′(r)

r2f(r)
+

10λf ′(r)N ′(r)σ′(r)

rf(r)σ(r)
+

2λf ′(r)N ′(r)2

rf(r)N(r)
+

16λf ′(r)3N ′(r)

f(r)3

+
22λf ′(r)2N ′(r)

rf(r)2
+

8λN(r)f ′(r)σ′(r)

r2f(r)σ(r)
+

8λN(r)f ′(r)2

r2f(r)2
+

4λN(r)f ′(r)σ′′(r)

rf(r)σ(r)

+
24λN(r)f ′(r)3σ′(r)

f(r)3σ(r)
+
32λN(r)f ′(r)2σ′(r)

rf(r)2σ(r)
− 8λN(r)f ′(r)4

f(r)4
+
8λN(r)f ′(r)2f ′′(r)

f(r)3

+
8λN(r)f ′(r)f ′′(r)

rf(r)2
+

2λN ′′(r)

r2
− 6λN ′(r)

r3
+

10λN ′(r)σ′(r)

r2σ(r)
+

2λN ′(r)2

r2N(r)
−

8λN(r)σ′(r)

r3σ(r)
+

4λN(r)σ′′(r)

r2σ(r)
. (A.2)

B Details of linearized equations of motion for symmetry broken phase

In this appendix we give the detailed expressions for X̃(r), Ỹ (r), Z̃(r), Ũ(r), Ṽ (r), X̃1(r),

Ỹ1(r), Ũ1(r), Z̃1(r) and W̃1(r) as mentioned in equation (3.17).

Ỹ (r) = −1

r
+

N ′(r)

N(r)
+

λN ′(r)

r2
+

λ f ′(r)N ′(r)

r f(r)
− λN ′(r)2

2 r N(r)
− λ f ′(r)N ′(r)2

2 f(r)N(r)
+

2λN(r)σ′(r)

r2 σ(r)

+
2λN(r) f ′(r)σ′(r)

r f(r)σ(r)
− λN ′(r)σ′(r)

r σ(r)
− λ f ′(r)N ′(r)σ′(r)

f(r)σ(r)
, (B.1)

X̃(r) =
1

4 r
− f ′(r)

2 f(r)
− N ′(r)

4N(r)
− σ′(r)

4σ
− λN ′(r)

2 r2
+

λ f ′(r)N ′(r)

4 r f(r)
+

λ f ′(r)2N ′(r)

4 f(r)2

+
λN ′(r)2

4 r N(r)
+

λ f ′(r)N ′(r)2

4 f(r)N(r)
− λN(r)σ′(r)

r2 σ(r)
+

λN(r)f ′(r)σ′(r)

2 r f(r)σ(r)
+

λN(r) f ′(r)2σ′(r)

2 f(r)2 σ(r)

+
5λN ′(r)σ′(r)

4 r σ(r)
+

5λ f ′(r)N ′(r)σ′(r)

4 f(r)σ(r)
+

λN ′(r) f ′′(r)

4 f(r)
+

λN(r)σ′(r)f ′′(r)

2 f(r)σ(r)
+

λN ′′(r)

4 r

+
λ f ′(r)N ′′(r)

4 f(r)
+

λN(r)σ′′(r)

2 r σ(r)
+

λN(r) f ′(r)σ′′(r)

2 f(r)σ(r)
, (B.2)

Ṽ (r) = − 1

r2
+

N ′(r)

N(r)r
− N ′(r)2

4N(r)2
+

λN ′(r)

r3
+

λ f ′(r)N ′(r)

r2 f(r)
− λN ′(r)2

r2 N(r)
− λ f ′(r)N ′(r)2

r N(r) f(r)

+
λN ′(r)3

4 r N(r)2
+

λ f ′(r)N ′(r)3

4 f(r)N(r)2
+

2λN(r)σ′(r)

r3 σ(r)
+

2λN(r) f ′(r)2 σ′(r)2

r2 f(r)σ(r)
− 2λN ′(r)σ′(r)

r2σ(r)

− 2λ f ′(r)N ′(r)σ(r)

r f(r)σ(r)
+

λN ′(r)2 σ′(r)

2 r N(r)σ(r)
+

λ f ′(r)N ′(r)2 σ′(r)

2 f(r)σ(r)
, (B.3)
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Z̃(r) =
1

r2
− f ′(r)

r f(r)
− 3N ′(r)

4 r N(r)
+

f ′(r)N ′(r)

2N(r) f(r)
− σ′(r)

2 r N(r)σ(r)
+

N ′(r)σ′(r)

4N(r)σ(r)
+

N ′′(r)

4N(r)

− 3N ′(r)

4 r N(r)
− 3λN ′(r)

2 r3
+

λ f ′(r)2N ′(r)

2 r f(r)2
+

λN ′(r)2

r2 N(r)
+

λ f ′(r)N ′(r)2

4 r N(r) f(r)
− λ f ′(r)2 N ′(r)2

4N(r) f(r)2

− 3λN(r)σ′(r)

r3 σ(r)
+

λN(r) f ′(r)2 σ′(r)

r f ′(r)2 σ(r)
+

7λN ′(r)σ′(r)

2 r2 σ(r)
+

2λ f ′(r)N ′(r)σ′(r)

r f(r)σ(r)

− λ f ′(r)2N ′(r)σ′(r)

2 f(r)2 σ(r)
− 3λN ′(r)2 σ′(r)

4 r N(r)σ(r)
− 3λ f ′(r)N ′(r)2 σ′(r)

4N(r) f(r)σ(r)
+

λN ′(r) f ′′(r)

2 r f(r)

− λN ′(r)2f ′′(r)

2 r N(r) f(r)
− λ f ′(r)N ′(r)N ′′(r)

2N(r) f(r)
+

λN(r)σ′(r) f ′′(r)

r f(r)σ(r)
− λN ′(r)σ′(r)f ′′(r)

2f(r)σ(r)

+
λN ′′(r)

2N(r) r2
+

λ f ′(r)N ′′(r)

2 r f(r)
− λN ′(r)N ′′(r)

2 r N(r)
− λσ′(r)N ′′(r)

2 r σ(r)
− λ f ′(r)σ′(r)N ′′(r)

2 f(r)σ(r)

+
λN(r)σ′′(r)

r2 σ(r)
+

λN(r) f ′(r)σ′′(r)

r f(r)σ(r)
− λN ′(r)σ′′(r)

2 r σ(r)
− λ f ′(r)N ′(r)σ′′(r)

2 f(r)σ(r)
, (B.4)

Ũ(r) =
2

N(r)
− 1

r2
+

f ′(r)

r f(r)
+

2 f ′(r)2

f(r)2
− 2λN(r) f ′(r)2

r2 f(r)2
+

2λN(r)f ′(r)2

f(r)4
+

3λN ′(r)

2 r3

− λ f ′(r)N ′(r)

r2 f(r)
− 11λ f ′(r)2 N ′(r)

2 r f(r)2
− 4λ f ′(r)3 N ′(r)

f(r)3
− λN ′(r)2

2 r2 N(r)
− λ f ′(r)N ′(r)2

2 r N(r) f(r)

+
2λN(r)σ′(r)

r3 σ(r)
− 2λN(r) f ′(r)σ′(r)

r2 f(r)σ(r)
− 8λN(r) f ′(r)2 σ′(r)

r f(r)2 σ(r)
− 6λN(r)f ′(r)3σ′(r)

f(r)3 σ(r)

− 5λN ′(r)σ′(r)

2 r2 σ(r)
− 5λ f ′(r)N ′(r)σ′(r)

2 r f(r)σ(r)
− 2λN(r) f ′(r) f ′′(r)

r f(r)2
− 2λN(r)f ′(r)2 f ′′(r)

f(r)3

− λN ′(r) f ′′(r)

2 r f(r)
− λN(r)σ′(r) f ′′(r)

r f(r)σ(r)
− λN ′′(r)

2 r2
− λ f ′(r)N ′′(r)

2 r f(r)
− λN(r)σ′′(r)

r2 σ(r)

− λN(r) f ′(r)σ′′(r)

r f(r)σ(r)
, (B.5)

X̃1(r) =
1

4N(r)2σ(r)2
− λ f ′(r)

r N(r) f(r)σ(r)2
− λN ′(r)

4 r N(r)2σ(r)2
− λ f ′(r)N ′(r)

4 f(r)N(r)2σ(r)2
−

λ f ′′(r)

2N(r)f(r)σ(r)2
, (B.6)

Ỹ1(r) =
f(r)4φ(r)2ω(r)

2N2
#r

2N(r)2σ(r)2
+

f(r)4ω′(r)

2r3
− f(r)3f ′(r)ω′(r)

r2
− f(r)4N ′(r)ω′(r)

2r2N(r)
−

f(r)4σ′(r)ω′(r)

2r2σ(r)
− f(r)4ω′′(r)

2r2
,

Z̃1(r) =
N ′(r)

r N(r)
− 4 f ′(r)

r f(r)
+

2 f ′(r)N ′(r)

f(r)N(r)
+

2σ′(r)

r σ(r)
− N ′(r)σ′(r)

N(r)σ(r)
− N ′′(r)

N(r)
,

W̃1(r) =
8

r2
+

4 f ′(r)

r f(r)
− 3N ′(r)

r N(r)
− 2 f ′(r)N ′(r)

f(r)N(r)
+

2σ′(r)

r σ(r)
− N ′(r)σ′(r)

N(r)σ(r)
− N ′′(r)

N(r)
,

Ũ1(r) =
1

4
− λN ′(r)

4r
− λ f ′(r)N ′(r)

4f(r)
− λN(r)σ′(r)

2 r σ(r)
− λN(r)f ′(r)σ′(r)

2f(r)σ(r)
. (B.7)
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