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1 Introduction

The goal of this article is to reconstruct by means of a (hopefully) novel, and efficient

Monte Carlo method the phase diagram of noncommutative phi-four on the fuzzy sphere.

This was originally done in [1] (see also [2]). The basic theory is given by the following

two-parameter matrix model

S0 = TrH
(

− a[La,Φ]
2 + bΦ2 + cΦ4

)

. (1.1)

In this equation La are the SU(2) generators in the irreducible representation with spin

s = (N − 1)/2, TrH1 = N , b is the mass parameter, and c is the coupling constant.

The parameter a can always be chosen to be equal to 1. There are three known phases

in this model. The usual Ising transition between disorder and uniform order. A matrix

transition between disorder and a non-uniform ordered phase, and a (very hard to observe)

transition between uniform order and non-uniform order. The three phases meet at a

triple point [1, 2]. The non-uniform phase, in which rotational invariance is spontaneously

broken, is simply absent in the commutative theory. The non-uniform phase is the analogue

of the stripe phase observed on the Moyal-Weyl spaces [16], whereas the disorder-to-non-

uniform-order transition is the generalization of the one-cut-to-two-cut transition, observed

in the Hermitian quartic matrix model [17, 18], to the fuzzy sphere.
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This is a highly non-trivial problem, which is due mainly, to the more complicated

phase structure of matrix scalar phi-four. It involves transitions between vacuum states,

with very low probability distributions, and as a consequence, they are extremely difficult to

sample correctly with the Metropolis algorithm. In particular the non-uniform-to-uniform

transition is virtually unobservable in ordinary Metropolis, due to the absence of tunneling

between the identity matrix, corresponding to the uniform phase, and the other idempotent

matrices, corresponding to the non-uniform phase. This means simply that the Metropolis

updating procedure does not sample correctly, and equally, i.e. according to the Boltz-

mann weight, the entire phase space which includes an infinite number of vacuum states.

This was circumvented, in [1, 2], by a complicated variant of the Metropolis algorithm,

in which detailed balance is broken. This problem was also studied in [3, 4, 7, 8]. The

analytic derivation of the phase diagram of noncommutative phi-four on the fuzzy sphere

was attempted in [19–21].

The related problem of Monte Carlo simulation of noncommutative phi-four on the

fuzzy torus, and the fuzzy disc was considered in [5, 6], and [9] respectively.

The main strategy employed, in this article, towards a better resolution of this prob-

lem, is to reduce the model down to its eigenvalues, without actually altering it. This is

achieved by:

1) coupling the scalar field to a U(1) gauge field, in such a way, that in the commutative

limitN −→ ∞, the two modes decouple completely, and thus we return to an ordinary

phi-four theory, and

2) diagonalizing the scalar field by means of a U(N) gauge transformation, viz

Φ = UΛU+, and then integrating out the unitary matrices U and U+ from the

path integral.

In this algorithm, we thus trade off the Monte Carlo simulation of the unitary matrices U

and U+, in the original model (1.1), with the Monte Carlo simulation of a U(1) gauge field

on the fuzzy sphere, which we know is very efficient using ordinary Metropolis [10].

The primary interest, of this article, is therefore Monte Carlo simulation of a non-

commutative phi-four theory, coupled to a U(1) gauge field on the fuzzy sphere, using the

Metropolis algorithm with exact detailed balance. The scalar field transforms in the ad-

joint representation of the U(1) gauge group, and as a consequence, the scalar and gauge

degrees of freedom decouple in the commutative limit N −→ ∞. In other words, this

theory becomes an ordinary phi-four theory in the commutative limit. In this theory, the

usual scalar kinetic action ∼ −Tr[La,Φ]
2 is replaced with ∼ −Tr[Xa,Φ]

2, where Xa is

itself obtained by Monte Carlo simulation of an appropriate gauge action, which will be

centered around ∼ La, in the so-called fuzzy sphere phase.1 The pure gauge action is given

by D = 3 Yang-Mills action, with a Chern-Simons (Myers) term. For b = c = 0 the full

action is in fact D = 4 Yang-Mills action, with a Chern-Simons (Myers) term.

This article is organized as follows. In section 2, we present the detail of the U(1)

gauge covariant noncommutative phi-four theory on the fuzzy sphere, and also explain

1The behavior in the matrix phase is very different and is not treated in here.
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the Metropolis algorithm employed in our Monte Carlo simulations. In section 3, we

report our first numerical results, on the phase diagram of noncommutative phi-four on

the fuzzy sphere, using our new algorithm. We give independent measurements, of the

three transition lines, discussed above, and then derive our estimation of the triple point.

These results are obtained with small values of N up to N = 10, and large numbers of

statistics. In section 4, we give a construction of a one-parameter family of noncommutative

phi-four models on the fuzzy sphere, which define, a regularization of duality covariant

noncommutative phi-four on the Moyal-Weyl plane. We conclude in section 5, with a brief

summary, and outlook.

2 Model and algorithm

2.1 The action

Instead of the basic model (1.1), which is the primary interest in this article, we consider

a four matrix model given by the action

S = Sg + Sm , (2.1)

Sg = N Tr

(

− 1

4
[Xa, Xb]

2 +
2iα

3
ǫabcXaXbXc

)

+N Tr
(

M Tr(X2
a)

2 + βX2
a

)

, (2.2)

Sm = −Na0
2

Tr[Xa,Φ]
2 + TrV (Φ) , (2.3)

V (Φ) = rΦ2 + uΦ4. (2.4)

The fuzzy sphere phase is given by the background

Xa = αϕLa , ϕ =
1 +

√

1 + 4µ(1 +m2)

2(1 +m2)
. (2.5)

The values m2 = 2c2M and µ = −9β/α2, of interest, are (with c2 = (N2 − 1)/4 being the

Casimir operator)

1) m2 = 0 , µ = 0 , 2) m2 = c2 , µ =
2

9
(2c2 − 1). (2.6)

In the remainder we will be interested in the first case.

The first scaled parameter is [10]

α̃ = α
√
N. (2.7)

In the notation of [1],2 after replacing with Xa = αϕLa in Sm, we have a = α̃2ϕ2a0/2,

b = r and c = u. The other scaled parameters are therefore given by

b̃ =
b

aN
3

2

=
2

a0α̃2ϕ2N
3

2

r , c̃ =
c

a2N2
=

4

a20α̃
4ϕ4N2

u. (2.8)

2We will also refer to this article as FDX.
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The dependence of the model on the coupling constant a0 is fully taken into account by

considering b̃ and c̃ instead of b and c. The situation with the coupling constant α̃ is more

subtle. We expect that for large values of α̃ the gauge sector Sg describes a U(1) gauge field

on the fuzzy sphere, and as a consequence, the matter sector Sm describes a (real) scalar

field in the adjoint representation of the gauge group on the fuzzy sphere. More precisely

we have in general Xa = αϕ(La + Aa), where Aa is the U(1) gauge field which depends

generically on α̃. For large values of α̃, the gauge field is weakly coupled to the scalar field,

and in the commutative limit N −→ ∞, the two fields become fully decoupled due to the

commutator structure of the interaction. This is one of the main principles underlying our

algorithm. Hence, the dependence of the model on the coupling constant α̃ is also fully

taken into account, in the limit N −→ ∞, by considering b̃ and c̃ instead of b and c. The

theory Sg + Sm describes therefore, for large values of α̃ and large values of N , a scalar

phi-four on the fuzzy sphere.

In all of the simulations reported in this article, we take a0 = 1 and α̃ = 10 for

concreteness. The choice for α̃ is dictated by the fact that a fuzzy sphere phase, in the

model with r = u = 0 (the four dimensional Yang-Mills action), is known to persist only

for values of α̃ given by [10]3

α̃ ≥ α̃∗ = 2.55± 0.1. (2.9)

Let us discuss the phase structure of the pure potential model V (Φ). The ground state

configurations are given by the matrices

Φ0 = 0 , (2.10)

Φγ =

√

− r

2u
UγU+ , γ2 = 1N , UU+ = U+U = 1N . (2.11)

We compute V [Φ0] = 0 and V [Φγ ] = −r2/4u. The first configuration corresponds to the

disordered phase characterized by < Φ >= 0. The second solution makes sense only for

r < 0, and it corresponds to the ordered phase characterized by < Φ >=
√

− r
2uUγU+.

There is a nonperturbative transition between the two phases which occurs, not at r = 0,

but at r = r∗ = −2
√
Nu, which is known as the one-cut-to-two-cut transition.4 The

idempotent γ can always be chosen such that γ = γk = diag(1k,−1N−k). The orbit of

γk is the Grassmannian manifold U(N)/(U(k) × U(N − k)), the dimension of which is

dk = 2kN − 2k2. It is not difficult to show that this dimension is maximum at k = N/2

(assuming that N is even), and hence from entropy argument, the most important two-cut

solution is the so-called stripe configuration given by γ = diag(1N/2,−1N/2).

In the theory given by the action Sm, we have therefore three possible phases. The

phase characterized by the expectation value < Φ >= 0, the phase characterized by <

3The scalar sector is strictly speaking independent of the parameter a0 for allN , whereas it is independent

of α̃ only in the limit N −→ ∞. We can use values of α̃ near α̃∗, which corresponds to large Aa, in order

to enhance the contribution of the kinetic scalar action, and hence, excite the system to tunnel to the true

minimum in each phase. This idea is not investigated thoroughly here.
4In terms of b̃ and c̃ the critical value occurs at b̃ = −2

√
c̃. If the relation between r∗ and u were on the

other hand linear, viz r∗ ∼ u, then we would have instead b̃/
√
N ∼ c̃.
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Φ >= ±
√

−r/2u 1N , and the phase characterized by < Φ >= ±
√

−r/2u γ, where γ =

(1N/2,−1/2). We use the terminology

< Φ > = 0 disordered phase. (2.12)

< Φ > = ±
√

− r

2u
1N Ising (uniform) phase. (2.13)

< Φ > = ±
√

− r

2u
γ matrix (nonuniform or stripe) phase. (2.14)

There are therefore three possible phase transitions, and as a consequence, there exists

a triple point. The famous 2nd order Ising phase transition 0 −→ ±
√

−r/2u 1N . The

famous 3rd order matrix phase transition 0 −→ ±
√

−r/2u(1N/2,−1N/2). Clearly then,

there must exist also a transition between the Ising and matrix configurations, viz 1 −→ γ,

which is expected to be a continuation of the Ising line to large values of the coupling

constant u, and thus it is expected to be 2nd order.

In the numerical simulations, we will be interested in the values m2 = µ = 0. As a

test of our simulations, we will use the following exact Schwinger-Dyson identity5

< IDE > = 4N2. (2.15)

The operator IDE is given by

IDE = 4N Tr

(

− 1

4
[Xa, Xb]

2

)

+ 3N Tr

(

2iα

3
ǫabcXaXbXc

)

+ 4

(

− N

2
Tr[Xa,Φ]

2

)

+2rTrΦ2 + 4uTrΦ4. (2.16)

2.2 Algorithm and simulation

The path integral we want to simulate is

Z =

∫

∏

a

dXa

∫

dΦ exp

[

−N Tr

(

− 1

4
[Xa, Xb]

2 +
2iα

3
ǫabcXaXbXc

)

+
N

2
Tr[Xa,Φ]

2 − Tr
(

rΦ2 + uΦ4
)

]

. (2.17)

Let us now diagonalize the hermitian N ×N matrix Φ by writing the polar decomposition

Φ = U+ΛU , Λ = diag(λ1, . . . ., λN ) for unitary N ×N matrices U . The measure becomes

dΦ = [dU ]
N
∏

i=1

dλi∆N (λ) , ∆N (Λ) =
∏

1≤i<j≤N

(λi − λj)
2. (2.18)

In above [dU ] is the Haar measure on the group U(N), whereas ∆N (x) is the Vandermonde

determinant. By using now gauge invariance of the above path integral, we can reabsorb

5By changing Xa to X
′

a = (1 + ǫ)Xa and Φ to Φ
′

= (1 + ǫ)Φ, in the partition function, we can derive

from the invariance of the path integral this identity.
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the unitary matrix U , by changing Xa as Xa −→ UXaU
+, and as a consequence, the

integral over U decouples. The path integral becomes then

Z =

∫

∏

a

dXa

∫

dΛ exp

[

−N Tr

(

− 1

4
[Xa, Xb]

2 +
2iα

3
ǫabcXaXbXc

)

+
N

2
Tr[Xa,Λ]

2 − Tr
(

rΛ2 + uΛ4
)

+ ln∆N (Λ)

]

. (2.19)

The scalar action is, then, given by

S[Λ] = −N

2
Tr[Xa,Λ]

2 + Tr
(

rΛ2 + uΛ4
)

− ln∆N (Λ)

= −N
∑

ij

(Xa)ij(Xa)jiλiλj +N
∑

i

(X2
a)iiλ

2
i

+
∑

i

(rλ2
i + uλ4

i )−
∑

i 6=j

ln |λi − λj |. (2.20)

We will apply the Metropolis algorithm in which we change the eigenvalues λi one at a

time. Under the change of the eigenvalue λi (fixed i), i.e. under λn −→ λ
′

n = λn+ δniǫ, the

action S[Λ] changes as

∆Si[Λ] = 2Nǫ(X2
a)iiλi +N(X2

a)iiǫ
2 − 2Nǫ

∑

n

(Xa)ni(Xa)inλn −N(Xa)
2
iiǫ

2

+r(ǫ2 + 2ǫλi) + u(ǫ2 + 2ǫλi)(ǫ
2 + 2ǫλi + 2λ2

i )− 2
∑

j 6=i

ln

∣

∣

∣

∣

1 +
ǫ

λi − λj

∣

∣

∣

∣

. (2.21)

The first line is the variation of the kinetic term, the two first terms of the second line

provide the variation of the potential, whereas the last term is the variation of the Van-

dermonde determinant.

The variation of the action S[Λ], under the change of the entry (i, j) of one of the

matrices Xa, say Xa −→ Xa +∆Xa, is given by

∆Sa,(i,j)[Λ] = 2N
∑

n,m

(Xa)nm(∆Xa)mn(λ
2
n − λnλm)

+N
∑

n,m

(∆Xa)nm(∆Xa)mn(λ
2
n − λnλm). (2.22)

We choose

(∆Xa)mn = δniδmjǫ
∗ + δnjδmiǫ. (2.23)

The variation becomes

∆Sa,(i,j)[Λ] = 2N(Xa)ijǫ
∗(λ2

i − λiλj) + 2N(Xa)jiǫ(λ
2
j − λiλj) + 2Nǫǫ∗(λi − λj)

2. (2.24)

We remark that for diagonal elements, i.e. i = j, this variation vanishes identically. This is

simply due to the fact that the scalar kinetic action does not depend on diagonal elements of

the matricesXa. The full variation under the change of the entry (i, j) of one of the matrices

– 6 –
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Xa, which will enter the Metropolis algorithm, will naturally contain contributions coming

from the pure gauge action. This part has been used elsewhere with great success [10].

The identity in this case still reads as in (2.15), with the operator IDE given by

IDE = 4N Tr

(

− 1

4
[Xa, Xb]

2

)

+ 3N Tr

(

2iα

3
ǫabcXaXbXc

)

+ 4

(

− N

2
Tr[Xa,Λ]

2

)

+2rTrΛ2 + 4uTrΛ4. (2.25)

The Vandermonde action contributes to the integer 4N2, and as a consequence, it does not

appear in IDE.

It is very hard to generate, in the simulation, a sample of gauge and scalar configura-

tions which satisfy this exact identity, due to the large degree of auto-correlation observed

in the fuzzy sphere phase, i.e. for large values of α̃. To reduce this undesirable effect, we

separate any two successive configurations used in our measurements, by a large number

of unused Monte Carlo configurations.

We measure the expectation value of the action < Sm >, the total power PT , the power

in the zero mode P0, the kinetic term < K >, the specific heat Cv,
6 the magnetization M

and the susceptibility χ. The action has already been defined. The other observables are

defined by

K = −N

2
< Tr[Xa,Λ]

2 > (2.26)

Cv = < S2 > − < S >2 , (2.27)

M = < |TrΛ| > , (2.28)

χ = < |TrΛ|2 > − < |TrΛ| >2 , (2.29)

P0 = < ( TrΛ)2 > /N2 , (2.30)

PT = < TrΛ2 > /N. (2.31)

We use the Metropolis algorithm to update configurations, and we use the jackknife method

to estimate error bars. The choice of the initial state is irrelevant. The Metropolis algorithm

and the initial state used are discussed below in more detail. Typically, starting from a

given/prepared initial state we run the Metropolis algorithm for TT thermalization steps to

achieve thermalization, and TMC Monte Carlo steps for the actual Monte Carlo evolution.

We record all of the TMC configurations and compute averages over them. Each two

successive Monte Carlo steps are separated by TC auto-correlation steps. The value of TC

can be chosen to be at least equal to the auto-correlation time, for a given set of parameters,

which can be computed using the usual formula.

6In the formula of the specific heat the action does not include the Vandermonde.
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c̃ N = 10 N = 6 N = 4 b̃∗(arithmetic average)

0.1 −0.45± 0.1 −0.53± 0.13 −0.63± 0.13 −0.54± 0.12

0.3 −1.5± 0.2 −1.53± 0.33 −1.53± 0.33 −1.52± 0.29

Table 1. The Ising transition points.

3 The phase diagram

3.1 The ising phase transition

In this case, the Metropolis updating procedure consists in going through the entries of each

matrix Xa, and through each of the eigenvalues of Λ, sequentially, and then attempting to

change them in the usual way.

The initial state is prepared as follows. First, we start from Λ = 0 and Xa = αLa,

at b̃ = 0, which we know is the true minimum at this point, and then run a Metropolis

updating procedure, on this initial state keeping Xa fixed, without taking into account the

effect of the Vandermonde determinant, which is obviously the hardest part to thermalize,

to obtain the actual initial state for b̃ = 0. Using this initial state, we launch the full

Metropolis updating procedure.

Next, we start changing b̃ adiabatically (slowly), in such a way that the initial con-

figuration for each new value of b̃ is the last configuration obtained for the previous value

of b̃. Each time, we run starting from this initial state, a Metropolis updating procedure,

keeping Xa fixed, and without the effect of the Vandermonde determinant, to obtain the

actual initial state for that particular value of b̃, before we launch the full Metropolis

updating procedure.

We have checked that the location of the disordered-to-uniform-ordered transition does

not depend on the above procedure, and thus it is fully independent of the initial condi-

tions utilized.

A simulation consists typically of 2TT + TC × TMC steps where TMC = TT = 213(N =

4, 6) or TMC = TT = 214(N = 10), and TC = 25. The first TT steps is done at fixed

Xa = αLa, and without the Vandermonde determinant.

We have verified that the identity (2.15) holds within statistical errors. More precisely,

we have only admitted data points satisfying < IDE > /N2 = 4.00± 0.25 (N = 6, 10) and

< IDE > /N2 = 4.00± 0.30 (N = 4).

The disordered-to-uniform-ordered transition is shown on figure 1. This transition

can appear only for small values of c̃. We take for example c̃ = 0.1. The 2nd order

Ising transition (location of the peaks in the specific heat and the susceptibility) occurs at

b̃∗ = −0.5 ± 0.1 (for Cv, N = 10), b̃∗ = −0.4 ± 0.1 (for χ, N = 10), b̃∗ = −0.63 ± 0.13

(for Cv, χ, N = 6) and b̃∗ = −0.53 ± 0.13 (for Cv, χ, N = 4). If we take the arithmetic

average of the values obtained from the specific heat and the susceptibility for different N ,

as an estimation of the location of the Ising transition, we obtain for c̃ = 0.1 the value

−0.54± 0.12. These results for c̃ = 0.1, and those for c̃ = 0.3, are included in table 1.
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Figure 1. The disordered-to-uniform-ordered phase transition.

Using just these two points, we can determined the boundary between the disordered

and the uniform-ordered phases, as a straight line, with slope given by

slope =
0.3− 0.1

−1.54− (−0.54)
= −0.2. (3.1)

The fit to the uniform-ordered-to-disordered transition line is given by (suppressing error

bars because they are quite insignificant in this case)

c̃ = −0.2b̃. (3.2)

This agrees with [1]. We note that we have dropped out the intercept in the fit equation

because it is, within statistical errors, completely negligible. This confirms the general

expectation that the Ising line must go through the origin (c̃, b̃) = (0, 0).

We note finally that this transition can also be obtained using the usual Metropolis

algorithm with the ordinary pure scalar action, i.e. with the action (2.3), with Xa fixed

given by Xa = αLa.

3.2 The uniform-to-non-uniform phase transition

Thermalization and tunneling: the non-uniform-ordered-to-uniform-ordered transi-

tion can appear only for medium and large values of c̃. It is a second order phase transition,

which is the continuation of the Ising transition, to larger values of c̃.
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The non-uniform-ordered phase is the phase associated with spontaneous breaking of

rotational/translational symmetry on the fuzzy sphere.7 This fact lies at the heart of its

fundamental importance.

Firstly, we note that this transition is virtually impossible to be observed using the

Metropolis algorithm, with the action (2.3), where Xa = αLa.

We can probe the uniform-to-non-uniform phase transition (although still very diffi-

cult), using the Metropolis algorithm with the action (2.20), where Xa is obtained itself

via the Metropolis algorithm, with the action (2.2), where M = β = 0.

The initial state, for a fixed b̃ and c̃, is prepared as follows. We start from a random

configuration Λ, and from Xa = αLa, and then run a Metropolis updating procedure for

TT steps on this initial state, without taking into account the effect of the Vandermonde

determinant at fixed Xa, to obtain the actual initial state. Starting from this resulting

state, we run a full Metropolis updating procedure for TT + TC × TMC steps. This whole

process consists a single simulation.

A simulation consists typically of 2TT + TC × TMC steps, where TMC = TT = 213, and

TC = 25 for N = 6, and TMC = TT = 214 and TC = 26 for N = 8.

Only simulations satisfying < IDE > /N2 = 4.00 ± 0.25 (N = 6, 8) are admitted in

accordance with the Schwinger-Dyson identity (2.15).

We have studied thermalization in great detail. Typically, we tend to repeat the same

simulation TS = 27+1 times, where each simulation is started from the final state obtained

in the previous simulation. The goal is to assess tunneling transitions between the different

vacua < Φ >∼ 1, γ and γk.

As pointed out earlier the vacuum state < Φ >∼ 1 has always the smallest energy,

whilst the vacuum state < Φ >∼ γ has always the largest energy. The other states

are naturally somewhere in between. However, from entropy considerations, it is the state

< Φ >∼ γ, which has the largest phase space volume, which can be seen from the size of the

Grassmannian manifold U(N)/(U(k)×U(N−k)), given by the dimension dk = 2kN−2k2,

which is maximal for k = N/2.

At infinite N , we therefore expect that only < Φ >∼ 1 and < Φ >∼ γ are stable

vacua and thus must be observed, while for finite N , tunneling transitions to other states

are expected and will in fact also be observed.

Some of our results are:

• We present, in figure 2 and 3, scatter plots for the kinetic action K and the magne-

tization M respectively, for c̃ = 2.5, and various values of b̃, for N = 6. Each point

is a single simulation consisting of 2TT + TC × TMC steps. There are at most TS

points. The first simulation has been started off from a random Λ and Xa = αLa,

whereas each successive simulation is started off from the final state obtained in the

previous simulation.

• We observe that each scatter plot consists of different plateaus, corresponding to the

values of the kinetic action/magnetization in the vacua < Φ >∼ 1, γ and γk. The

7Under a unitray transformation U the idempotent γ transforms as γ −→ UγU+. For γ = 0 (disorder)

and γ = ±1N (uniform) we obtain rotational/translational invariance.
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Figure 2. Thermalization of the kinetic action across the non-uniform-ordered-to-uniform-ordered

phase transition.

kinetic action in the vacuum state < Φ >∼ 1 corresponds to the smallest plateau

(almost vanishing), while the kinetic action in the vacuum state < Φ >∼ γ,8 corre-

sponds to the largest plateau. For N = 6 there are two other vacuum states which are

< Φ >∼ γ1 ∼ (+1,+1,+1,+1,+1,−1), and < Φ >∼ γ2 ∼ (+1,+1,+1,+1,−1,−1),

and γ2 is approximately degenerate with γ.

Conversely, the magnetization in the vacuum state < Φ >∼ 1 corresponds to the

largest plateau, while the magnetization in the vacuum state < Φ >∼ γ corresponds

to the smallest (almost vanishing) plateau. In this case there are clearly four dis-

tinct plateaus.

• We observe, in figures 2/3, that for large values of |b̃|, thermalized states corre-

spond to the vacuum states < Φ >∼ 1. See, for examples, the graphs for b̃ =

−15.5,−14.5,−13.5. These thermalized states are very stable states, and tunneling

to other states is very rare, and in fact becomes non-existent as |b̃| gets larger.
As |b̃| decreases, transitions away from < Φ >∼ 1 become more frequent, and scatter

plots start showing various plateaus corresponding to the other vacuum states.

As |b̃| decreases further, the plateau corresponding to < Φ >∼ 1 becomes virtually

empty, while the plateaus corresponding to < Φ >∼ γ1, < Φ >∼ γ2, and < Φ >∼ γ

8We only consider even values of N and thus γ = diag(+1N/2,−1N/2).
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Figure 3. Thermalization of the magnetization across the non-uniform-ordered-to-uniform-ordered

phase transition.

become more populous. For example, for b̃ = −9.0,−8.5,−7.5, it is very rare to see

transitions to < Φ >∼ 1, and in fact these transitions become non-existent as |b̃| gets
sufficiently small (but not too small).

We conjecture that if we repeat the simulation a sufficient number of times TS, then the

system will settle into its true minimum. This may take a long time only in the transition

region between large and small |b̃|. It is immediately obvious, from the above discussion,

that for large |b̃| the minimum is < Φ >∼ 1, while for small |b̃| the minimum is < Φ >∼ γ.

Eigenvalues distributions: it is quite obvious, that the most revealing order parameter,

is the eigenvalue distribution of the scalar field Φ. In our approach, the eigenvalues are

precisely the degrees of freedom which we are sampling. We can then use immediately the

TMC sets of eigenvalues λi obtained in the Monte Carlo evolution, for a fixed c̃ and b̃, to

construct appropriate histograms. These are precisely the eigenvalue distributions ρ(λ) of

the scalar field Φ.

In figure 4, we plot the eigenvalue distributions for various values of b̃, across the

uniform-to-non-uniform transition point, for N = 6 and c̃ = 2.5. We observe that we go

from the one-cut solution, centered about +
√

−r/2u, to the two-cut solution, centered

about ±
√

−r/2u, around b̃ = −10.5 ± 0.5, which agrees with our other measurement

(see below).
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Figure 4. The eigenvalue distributions across the uniform-to-non-uniform transition.

Although in the two-cut solution we know that the eigenvalues are ±
√

−r/2u, we can

not tell how many of them are pluses, and how many of them are minuses.9 In order to

determine the distribution of the plus and minus signs, we may then plot, the probability

distribution of the values of the magnetization TrΦ. Alternatively, we can directly look

at the eigenvalues themselves, to see which matrices are involved. As it turns out, in the

transition region between large and small |b̃|, the vacuum states are not given simply by the

pure states 1, γ, γ1 and γ2 ,but they are, typically, given by admixture of these pure states.

Critical values: according to [1], the non-uniform-ordered-to-uniform-ordered transi-

tion, should occur at the value of b̃, where the susceptibility and the specific heat are

peaked, which is something we were not able to reproduce in our scheme in any consis-

tent way.

The determination of the location of the non-uniform-ordered-to-uniform-ordered tran-

sition, can also be based, on the location of the “discontinuity/jump” in the expectation

value of the kinetic term. This discontinuity is also associated with a discontinuity in the

total power, power in the zero mode and magnetization.

As opposed to all other simulations reported in this article, we will attempt in the

current case to cross the critical line by holding −b̃ fixed, while varying c̃. In this way,

we are guaranteed to cross, first, the non-uniform-ordered-to-uniform-ordered transition,

as we increase c̃, at some fixed value of −b̃. If we fix c̃ instead, and start increasing −b̃,

9The order of the pluses and minuses is irrelevant, i.e. it can not be observed.
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Figure 5. The non-uniform-ordered-to-uniform-ordered phase transition.

we will hit the matrix phase transition first (see next subsection), then the non-uniform-

ordered-to-uniform-ordered transition.

The detail of this simulation goes as follows. The initial state, for a fixed b̃ and c̃, is

prepared by starting from a random configuration Λ, and from Xa = αLa, and then run

a Metropolis updating procedure for TT steps on this initial state, at fixed Xa without

taking into account the effect of the Vandermonde determinant. We repeat this process for

TS = 24 steps to get the actual initial state. Starting from this resulting state, we run a

full Metropolis updating procedure for TT + TC × TMC.

We work always with TT = TMC = 213, and TC = 24, for N = 6, 8, 10. The constraint

on the identity is < IDE > /N2 = 4.00 ± 0.30 (N = 6), and < IDE > /N2 = 4.00 ± 0.25

(N = 8, 10). The results are shown on figure 5. In the graphs of the total power, and the

power in the zero mode, we can find from the scaling (2.8), that in the Ising phase P0 =

PT ∼ −b̃/(
√
Nc̃), which is why the graphs for the powers for different N do not collapse.

We will take, as our measurement of the non-uniform-ordered-to-uniform-ordered tran-

sition points, the arithmetic average of the critical points, obtained from the discontinu-

ity/jump in the expectation value of the kinetic term for different N .10 We drop here the

calculation of the error bars which requires much more efforts. Some results are given in

table 2.

10The underlying assumption here is that the measurements for different N are, actually, the same and

differences between them are only due to the limitation of the simulations.
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b̃ N = 10 N = 8 N = 6 c̃∗(arithmetic average) c̃(FDX)

−10.0 3.25 2.25 2.25 2.58 2.07

−16.0 4.25 3.75 3.75 3.92 3.27

Table 2. The non-uniform-ordered-to-uniform-ordered transition points.

The fit to the non-uniform-ordered-to-uniform-ordered transition line, as computed

from table 2, is given by c̃ = −0.22b̃ + 0.38. The slope is very close to the slope of the

Ising transition line given by equation (3.2). This confirms the general conjecture of [1],

that the non-uniform-ordered-to-uniform-ordered transition line, is the continuation, of

the Ising transition line, to general values of c̃ and b̃. However, the intercept of the fit

c̃ = −0.22b̃+ 0.38 seems to be quite large. We claim that this is, only, due to our limited

number of data points, and lack of error bars. Clearly, for c̃ = 0, there is no Ising transition,

nor a non-uniform-ordered-to-uniform-ordered transition. In other words, the non-uniform-

ordered-to-uniform-ordered transition line must go through the origin (c̃, b̃) = (0, 0). The

fit to the non-uniform-ordered-to-uniform-ordered transition line, as computed from table 2

plus the point (c̃, b̃) = (0, 0), is now given by

c̃ = −0.25b̃+ 0.03. (3.3)

The error in the intercept is found to be 0.1, while the error bar in the slope is negligible.

The measured slope, as well as the measured small intercept, are reasonably close to the

values measured in [1].

3.3 The matrix phase transition

The non-uniform-ordered-to-disordered transition, also called matrix transition, appears

for medium and large values of c̃. We perform simulations in a similar fashion to the Ising

case, with the exception that we start from a random configuration for each value of b̃. We

take b̃ in the range [−15, 0], with step equal 0.25, and values of c̃ in the range [2, 25].

The matrix transition in the limit of large couplings: it is expected that for large

values of the coupling constant c̃, the matrix transition in the full model, will be given

approximately, by the matrix transition in the pure potential model, i.e. the model without

kinetic term. This approach becomes exact in the limit c̃ −→ ∞.

We include in figure 6, the behavior of the magnetization M = |TrΦ|, the zero power

(power in the zero modes) N2P0, the sepcific heat Cv/N
2, and the average action < Sm >

for c̃ = 16. We plot the pure potential model for comparison.

It is well known that the matrix transition occurs, in the pure potential model, at the

point where the specific heat divided by the number of degrees of freedom becomes equal

to 1/4, after passing through its minimum as we increase |b̃|. This corresponds, for any

fixed value c̃, to the transition point b̃∗ = −2
√
c̃.

This transition is anticipated by the intersection point, which is N−independent, seen

on the graph of the action < Sm >, and by the location of the wide maximum, seen on

– 15 –



J
H
E
P
0
3
(
2
0
1
4
)
0
6
5

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

-12 -10 -8 -6 -4 -2

|T
r 

φ   
|

b∼

α∼  =10, c∼=16

full model, N=10
 N=6
 N=4

pure potential, N=10
 N=6
 N=4

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

-12 -10 -8 -6 -4 -2

N
2  P

0

b∼

α∼  =10, c∼=16

full model, N=10
 N=6
 N=4

pure potential, N=10
 N=6
 N=4

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-10 -8 -6 -4 -2  0

C
v/

N
2

b∼

α∼  =10, c∼=16

full model, N=10
 N=6
 N=4

pure potential, N=10
 N=6
 N=4

-100

-80

-60

-40

-20

 0

 20

 40

-10 -9 -8 -7 -6 -5 -4 -3 -2

<
S

m
>

b∼

α∼  =10, c∼=16

full model, N=10
 N=6
 N=4

pure potential, N=10
 N=6
 N=4

Figure 6. The matrix phase transition.

the graphs of the magnetization M and the zero power P0. However, all these estimates,

provide only an under estimation of the actual transition point in the pure potential model.

If we take, as our measurement of the matrix transition in the full model, the point

where the specific heat becomes equal to 1/4 after passing through its minimum, then we

find, as opposed to the pure potential model, an under estimation of the transition point.

The intersection point of the action < Sm > provides, as before, also an under estimation

of the transition point.

In the full model, we have observed that, for sufficiently large values of c̃, a reasonable

estimation of the matrix transition point, which compares favorably to the theoretical

prediction coming from the pure potential model, can be given by the location of the broad

maximum, seen on the graphs of the magnetization and the zero power.

We search for this maximum for values of b̃ much smaller than the discontinuity point

relevant for the non-uniform-to-uniform transition.

We include in table 3, our measurements of the matrix transition point, for N =

4, 6, 10, coming from the magnetization (first measurement), and the zero power (second

measurement), and compare them with the pure potential model prediction.

Eigenvalues distributions and the behavior near the triple point: we have also

investigated the matrix transition at the level of the eigenvalues distributions. In principle,

the matrix transition occurs where the eigenvalues distributions split into two disjoint

supports (cuts). In other words, it occurs at the point, where the distribution goes from a
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c̃ N = 4 N = 6 N = 10 b̃∗(arithmetic average) b̃∗(pure matrix model,

theory)

25.0 −7.33± 1.33 −9.25± 0.75 −9± 0.5 −9.07± 1.07 −10

−8.67± 2.17 −9.67± 1.17 −10.5± 0.5

16.0 −6.67± 0.67 −7± 0.5 −8± 0.5 −7.47± 0.64 −8

−7.5± 1 −7± 0.5 −8.67± 0.67

9.0 −5.33± 0.83 −5.33± 0.83 −6.5± 1 −6.11± 0.94 −6

−6.67± 0.67 −6.33± 1.33 −6.5± 1

Table 3. The matrix transition points for the full model for large couplings.
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Figure 7. The eigenvalue distributions across the non-uniform-to-disorder (matrix) transition in

the full model and for the pure potential.

symmetric one centered around 0 (as opposed to being centered around either +
√

−r/2u

or −
√

−r/2u in the case of the non-uniform phase), to a distribution with two symmetric

cuts centered respectively around
√

−r/2u and −
√

−r/2u. A sample of the eigenvalues

distributions, in the full model and in the pure potential model, are shown on figure 7 for

N = 6 and c̃ = 6.

We have used the eigenvalues distributions of Φ, as the primary set of order parameters,

employed in the determination of the matrix transition point, for smaller values of the

coupling constant c̃. Following [1], we have considered the regime [2, 3]. This is the regime

of interest to the calculation of the triple point (more on this below). We note that, the

method employed above (maximum of magnetization and zero power), becomes unpractical

in this regime. The results obtained for N = 4, 6, 10 are included in table 4, and compared

to the estimation of [1].

We have determined the matrix transition point according to the following (somewhat

arbitrary) criterion. We have looked for the value of b̃, for which the eigenvalues distribution

ρ(λ) at λ = 0, drops below 1. The transition point is taken as the arithmetic average of

this value of b̃, and the next one, for which, typically, the eigenvalues distribution at λ = 0

becomes distinctly below 1. A similar technique, to determine the matrix transition point,

is employed in the recent thesis [11].

A sample of the eigenvalues distributions of Φ is shown on figure 8 for c̃ = 2.5. We also

include, a sample of the probability distribution of TrΦ, which may be used to determine
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Figure 8. The eigenvalues distributions across the non-uniform-to-disorder (matrix) transition in

the full model.

the actual content of a given configuration Φ. The number of pluses and minuses, can

only be inferred, from the plot of the probability distribution of TrΦ. If Φ is a fluctuation

about 0 or γ, then the probability distribution of TrΦ will contain a single symmetric

peak around 0. There is also the possibility that Φ is a fluctuation about γk, then the

probability distribution of TrΦ will contain a single symmetric peak around
√

−r/2u(2k−
N). Typically, Φ will fluctuate about a mixed state, and as a consequence, several peaks

will be present in the probability distribution of TrΦ . For example, if Φ is a mixture of

γk and γ, then, two peaks centered around
√

−r/2u(2k −N) and 0 will be present. Some

examples are shown on figure 8.

Using the results shown in table 4, we can determine the non-uniform-ordered-to-

disordered boundary. The fit to the matrix (non-uniform-ordered-to-disordered) transition

line is given by

c̃ = (−1.3± 0.22)b̃− 2.66± 0.9. (3.4)

This line is slightly different from the one measured in [1], which may be due to our

criterion for determining the matrix transition point. However, we should also recall that

their result was obtained using a modification of the Metropolis algorithm which breaks

detailed balance.
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c̃ N = 4 N = 6 N = 10 b̃∗(arithmetic average) b̃(FDX)

3.0 −4.38± 0.13 −4.38± 0.13 −4.38± 0.13 −4.38± 0.13 −3.38

2.5 −3.88± 0.38 −4± 0.25 −3.5± 0.25 −3.79± 0.29 −3.16

2.0 −3.63± 0.13 −3.63± 0.13 −3.63± 0.13 −3.63± 0.13 −2.94

Table 4. The matrix transition points near the triple point.

3.4 Triple point and phase diagram

The most reliable estimation of the triple point can be obtained from the intersection point

of (3.2) and (3.4), because these two lines are the easiest, and the most accurate, to obtain

with our gauge fixed Metropolis algorithm, and also with the algorithm of [1]. In fact, they

can even be accessed using the plain Metropolis algorithm. We deduce immediately that

the triple point is located at

Ising −matrix intersection point : b̃T = −2.42 , c̃T = 0.48. (3.5)

Another estimation can be obtained from the intersection point of the matrix and the

non-uniform lines. We get

non− uniform−matrix intersection point : b̃T = −2.56 , c̃T = 0.67. (3.6)

These should be compared with the value (−2.3, 0.52) found in [1]. A natural candidate for

the actual value of the triple point is, thus, the average value of the above two estimates, viz

triple point : b̃T = −2.49 , c̃T = 0.58. (3.7)

The error bars can be given by the rectangle with center given by the triple point

(−2.49, 0.58), and corners given by the two intersection points (−2.42, 0.48), (−2.56, 0.67),

and the two points (−2.56, 0.48), (−2.42, 0.67).

The phase diagram is shown on figure 9. See also figures 10 and 11, where a close-up

look at the matrix, the Ising, and the non-uniform transition lines is shown.

3.5 Comparison of various algorithms

The algorithm used in [1] to compute the phase diagram is based on, a very complex

variation, of the Metropolis algorithm, which does not preserve detailed balance. In the

region of the disordered phase, their algorithm behaves essentially as the usual Metropo-

lis algorithm, with a processing time per configuration, with respect to the matrix size,

proportional to N4. The new Metropolis algorithm, described in [1], behaves better and

better, as we go farther and farther, from the origin, i.e. towards the regions of the uni-

form and non-uniform phases. The processing time per configuration, with respect to the

matrix size, is claimed to be proportional to N3, for the values of N between 4 and 64.

See graph 9.12 of F.G Flores’ doctoral thesis,11 where we can fit this region of N with a

11Not available on the ArXiv.
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Figure 9. The phase diagram.

straight line. Also, it is worth noting, that this new algorithm involves, besides the usual

optimizable parameters found in the Metropolis algorithm, such as the acceptance rate, a

new optimizable parameter p, which controls the compromise between the speed and the

accuracy of the algorithm. For p = 0 we have a fast process with considerable relative

systematic error, while for p = 1 we have a slow process but a very small relative error.

This error is, precisely, due to the lack of detailed balance. Typically we fix this parameter

around p = 0.55− 0.7.

The algorithm of [1] is the only known method, until now, which is successful in

mapping the complete phase diagram of noncommutative phi-four on the fuzzy sphere.

However we had found it, from our experience, very hard to reproduce this work.

Our first original goal was to find an alternative method which is, i) conceptually as

simple as the usual Metropolis method, and ii) without systematic errors, and iii) can map

the whole phase diagram. This goal was achieved by the algorithm described and used in

this article. The processing time per configuration, with respect to the matrix size, in our

algorithm, is proportional to N4, which is comparable to the usual Metropolis algorithm,

but with the virtue that we can access the non-uniform phase. There is no systematic

errors in this algorithm, and hence no analogue of the parameter p mention above.

How does our algorithm compares with the algorithm of [1], is a much harder question,

since we have no complete understanding of the detail of their algorithm. Their algorithm

is faster, but this can not be the only concern. Accuracy of the method, and conceptual

simplicity, are also very important virtues, especially, for difficult problems, such as this

one, where the physics is extremely interesting, but very hard to attain. Our algorithm

satisfies both these two requirements.
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Figure 10. The matrix (disorder-to-non-uniform-order) transition points for large and small values

of the quartic coupling constant c̃. For large values of c̃, the Monte Carlo measurements converge

to the prediction of the pure potential model. For small values of c̃, the fit is the straight line

given by equation (3.4), which must be extrapolated to even smaller values of c̃, in order to deduce

an estimation of the triple point. We also compare, for small values of c̃, with the measurement

of [1]. The discrepancies between the two measurements, for small c̃, is stemming from our criterion,

based on the eigenvalues distributions, for determining the location of the matrix transition, which

is different from the one used in [1].

Our other goal, in this article, was to compare the results obtained by the two methods

for the non-uniform phase. There are still discrepancies between the two methods which is

very puzzling. The non-uniform phase is characterized, in this article, by the “discontinu-

ity/jump” in the expectation value of the kinetic term, the total power, power in the zero

mode and magnetization. According to [1], this jump is also associated with a peak in the

susceptibility and specific heat indicative of a second-order behavior, which is something

we were not able to reproduce in our scheme, in any consistent way. This is very troubling,

to say the least, because we could not, from what we have and know at this point, ascertain

whether this is due to a technical problem, or if it is a genuine discrepancy.

4 The self-dual noncommutative Φ4 on the fuzzy sphere

4.1 Self-dual noncommutative Φ4

We consider, for simplicity, a real scalar field on the noncommutative (Moyal-Weyl) plane

[x̂µ, x̂ν ] = iθµν . The phi-four theory on the noncommutative plane is, a particular limit, of

a one-parameter family of phi-four models on the noncommutative plane, obtained by the

addition of an extra operator, the harmonic oscillator potential , to the kinetic part of the
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Figure 11. The Ising (disorder-to-uniform) and the non-uniform-to-uniform transition lines. The

Ising transition appears for small values of c̃, while the non-uniform-to-uniform transition appears

for large values of c̃. The Monte Carlo measurements of the Ising transition is fully consistent:

more data points can be included quite easily, error bars are under control, large N extrapolation is

straightforward, and result obtained by our algorithm coincides with the measurement of [1]. On the

other hand, the two Monte Carlo measurements of the non-uniform-to-uniform transition, included

in this graph, required much more calculation than their Ising and matrix counterparts put together.

We did not attempt, here, to determine their error bars. The measured slope and small intercept, of

the resulting non-uniform-to-uniform fit, are reasonably close to the measurements of [1]. Work on

this major problem, i.e. a fully consistent determination of the non-uniform-to-uniform transition

line, is still in progress. We also plot the matrix line where the intersection points, with the Ising

and the non-uniform-to-uniform lines, provide our two estimations of the triple point.

action. The action reads explicitly

SΩ =
√
detπθ TrH

[

− 1

2
φ̂ ∂̂2

µφ̂+
Ω2

2θ2
{x̂µ, φ̂}2 +

µ2

2
φ̂2 +

λ

4!
φ̂4

]

. (4.1)

We know that derivations on R2
θ are inner, given by the adjoint action, viz

∂̂µφ̂ =
1

i
(θ−1)µν [x̂ν , φ̂]. (4.2)

Alternatively, the action can be rewritten as

SΩ =
√
detπθ TrH

[

1 + Ω2

θ2
x̂2µφ̂

2 − 1− Ω2

θ2
x̂µφ̂x̂µφ̂+

µ2

2
φ̂2 +

λ

4!
φ̂4

]

. (4.3)

This is the Grosse-Wulkenhaar model. The addition of the harmonic oscillator potential to

the kinetic action modifies, and thus allows us to control, the IR behavior of the theory. A
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particular version of this theory was shown to be renormalizable by Grosse and Wulkenhaar

in [12–14]. It was shown in [15], that this action is covariant under a duality transformation

which exchanges, among other things, positions and momenta. The value Ω2 = 1, in

particular, gives an action which is invariant under this duality transformation. The theory

at Ω2 = 1 is called the Langmann-Szabo model or the self-dual Grosse-Wulkenhaar model.

The usual phi-four theory on the noncommutative plane corresponds to the limit

Ω −→ 0. The other interesting limit is Ω −→ 1, which corresponds to the self-dual Grosse-

Wulkenhaar model. The main technical simplification, occurring in the limit Ω −→ 1, is the

observation that the off-diagonal term in the action drops, and we end up with the action12

SΩ=1 =
√
detπθ TrH

[

2

θ2
x̂2µφ̂

2 +
µ2

2
φ̂2 +

λ

4!
φ̂4

]

. (4.4)

Let us now introduce creation and annihilation operators a+ and a satisfying [a, a+] = θ by

x̂1 =
1√
2
(a+ a+) , x̂2 =

1

i
√
2
(a− a+). (4.5)

The number operator N̂ is defined by N̂ = a+a/θ. We can verify, for example, that

x̂2µ = 2θN̂ + θ. We will work in the number basis defined by

N̂ |n >= n|n > , a+|n >=
√

θ(n+ 1)|n+ 1 > , a|n >=
√
θn|n− 1 > . (4.6)

The components of φ̂, in the number basis, are given by φ̃nm =< n− 1|φ̂|m− 1 >. In the

number basis {|n >} the action SΩ reads explicitly

SΩ = r
∞
∑

m=1

∞
∑

n=1

φ̃mnφ̃nm + u
∞
∑

m=1

∞
∑

n=1

∞
∑

k=1

∞
∑

l=1

φ̃mnφ̃nkφ̃klφ̃lm

+π(1 + Ω2)
∞
∑

m=1

∞
∑

n=1

(m+ n− 1)φ̃mnφ̃nm (4.7)

−π(1− Ω2)
∞
∑

m=1

∞
∑

n=1

[

√

(m− 1)(n− 1)φ̃mnφ̃n−1m−1 +
√
mnφ̃mnφ̃n+1m+1

]

.

This is a three-parameter model, where the mass parameter r and the quartic coupling u,

are given by

r = πθ
µ2

2
, u = πθ

λ

4!
. (4.8)

The other coupling is the harmonic oscillator coupling Ω.

4.2 Fuzzy sphere as a regulator

In the remainder of this section, we will write down a non-perturbative regularization of

this theory on the fuzzy sphere. We only need to consider the kinetic term. Let La be the

generators of SU(2) in the irreducible representation of dimension N , i.e. La are the angular

12After regularization this action becomes the Penner matrix model.
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momenta of spin (N − 1)/2. In other words, [La, Lb] = iǫabcLc, and L2
a = N2−1

4 = c2 is

the quadratic Casimir. The noncommutativity parameter θ, on the fuzzy sphere, is defined

by θ = R2/
√
c2, where R is the radius of the sphere.13 The derivatives, and the round

Laplacian on the fuzzy sphere are defined by

La =
i

R
[La, . . .] , (4.9)

∆0 = L2
a. (4.10)

We will work in the basis {|m >} defined by the usual relations L3|m >= m|m >, L±|m >=
√

l(l + 1)−m(m± 1)|m± 1 >, where l = (N − 1)/2 and L± = L1 ± iL2. We relabel the

basis as |m >= |i >, where m = i− l−1. We compute (L3)ij = δij(2i−N −1)/2, (L+)ij =
√

j(N − j)δi−1,j , (L−)ij =
√

i(N − i)δi+1,j . Rotating around the x-axis, with an angle π,

we have L1 −→ L
′

1 = L1, L2 −→ L
′

2 = −L2, i.e. L± −→ L
′

± = L∓, and L3 −→ L
′

3 = −L3.

Thus (L
′

3)ij = δij(N + 1− 2i)/2, (L
′

−)ij =
√

j(N − j)δi−1,j , (L
′

+)ij =
√

i(N − i)δi+1,j .

A real scalar field φ̂ is a hermitian N × N matrix which will be expanded in the

obvious way

φ̂ =
l

∑

m1=−l

l
∑

m2=−l

φ̂m1m2
|m1 >< m2|

=

N−1
∑

i=0

N−1
∑

j=0

φ̂ij |i >< j| , φ̂m1m2
≡ φ̂ij . (4.11)

We start by considering a more general Laplacian, obtained by adding a harmonic oscillator

potential to ∆0, in the most obvious way. First, we introduce the coordinates operators x̂a,

on the fuzzy sphere, by x̂a = RLa/
√
c2, which satisfy [x̂a, x̂b] = iRǫabcx̂c/

√
c2 and x̂2a = R2.

We define the right-acting coordinate operators x̂Ra by x̂Ra φ̂ = φ̂x̂a, and then introduce the

coordinates operators Xa by

Xa =
x̂a + x̂Ra

2
. (4.12)

We define the Laplacian

∆
′

Ω = L2
a −

4Ω2

θ2
X2

a . (4.13)

In other words, we consider the kinetic term

K

4πR2
=

1

2
TrH φ̂(−∆

′

Ω)φ̂

=
1

R2
TrH

(

(1 + Ω2)c2φ̂
2 − (1− Ω2)φ̂L3φ̂L3 − (1− Ω2)φ̂L+φ̂L−

)

. (4.14)

13By sitting on the north pole, i.e. x̂3 = R1N , and taking the limit N −→ ∞, and R −→ ∞, keeping

R2/
√
c2 = θ fixed, the fuzzy sphere reduces to the noncommutative plane.
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The normalization 4πR2 is chosen such that in the commutative limit N −→ ∞ we have

(4πR2) TrH/N −→ R2
∫

S2 dΩ2. Explicitly, we compute (with φ̂i−1j−1 = φ̃ij/
√
2π)

K

4πR2
=

1 + Ω2

2πθ

N
∑

i=1

N
∑

j=1

(

i+ j − 1− 2(i− 1)(j − 1)

N − 1

)

φ̃ijφ̃ji

−1− Ω2

2πθ

N
∑

i=1

N
∑

j=1

√

(i− 1)(j − 1)

(

1− i− 2

N − 1

)(

1− j − 2

N − 1

)

φ̃ijφ̃j−1i−1

−1− Ω2

2πθ

N
∑

i=1

N
∑

j=1

√

ij

(

1− i− 1

N − 1

)(

1− j − 1

N − 1

)

φ̃ijφ̃j+1i+1

− Ω2

2πθ

N
∑

i=1

N
∑

j=1

(

2i+ 2j −N − 3− 4(i− 1)(j − 1)

N − 1

)

φ̃ijφ̃ji. (4.15)

The last term is not present on the noncommutative plane which is, clearly, an unwanted

effect. After some trial and error, we have discovered, that the correct Laplacian on the

fuzzy sphere, which reproduces precisely the effect of the harmonic oscillator potential, is

given by

∆Ω = L2
a +Ω2L2

3 −
4Ω2

θ2
(X2

a −X2
3 ). (4.16)

This will describe a squashed fuzzy sphere, which is more appropriate, for the non-

perturbative description of the noncommutative plane. Indeed, we compute

K

4πR2
=

1

2
TrH φ̂(−∆Ω)φ̂

=
1

R2
TrH

(

(1 + Ω2)c2φ̂
2 − (1 + Ω2)φ̂L3φ̂L3 − (1− Ω2)φ̂L+φ̂L−

)

. (4.17)

Equivalently

K

4πR2
=

1 + Ω2

2πθ

N
∑

i=1

N
∑

j=1

(

i+ j − 1− 2(i− 1)(j − 1)

N − 1

)

φ̃ijφ̃ji

−1− Ω2

2πθ

N
∑

i=1

N
∑

j=1

√

(i− 1)(j − 1)

(

1− i− 2

N − 1

)(

1− j − 2

N − 1

)

φ̃ijφ̃j−1i−1

−1− Ω2

2πθ

N
∑

i=1

N
∑

j=1

√

ij

(

1− i− 1

N − 1

)(

1− j − 1

N − 1

)

φ̃ijφ̃j+1i+1. (4.18)

We can now include a mass term and a phi-four coupling in a trivial way. The full action,

on the fuzzy sphere, will read

SΩ = 4πR2TrH

[

− 1

2
φ̂

(

L2
a +Ω2L2

3 −
4Ω2

θ2
(X2

a −X2
3 )

)

φ̂+
µ2

2
φ̂2 +

λ

4!
φ̂4

]

. (4.19)
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We scale the field as φ̂ = φ̃/
√
2π, and also introduce the parameters

r = µ2R2 , u =
λR2

4!π
. (4.20)

The full action can then be rewritten as

SΩ = TrH

[

− [La, φ̃]
2 − Ω2[L3, φ̃]

2 +Ω2{La, φ̃}2 + rφ̃2 + uφ̃4

]

. (4.21)

This is a one-parameter family of phi-four models on the fuzzy sphere which general-

izes (1.1). Coupling to a U(1) gauge field is straightforward, i.e. we make the replacement

La −→
√

N/2Xa. The analogue of (2.3) is obviously given by

SΩ = −N

2
Tr[Xa, φ̃]

2 − NΩ2

2
Tr[X3, φ̃]

2 +
NΩ2

2
Tr{Xa, φ̃}2 + TrV (φ̃). (4.22)

5 Conclusion and outlook

In this article, we have proposed a new algorithm for the Monte Carlo simulation of non-

commutative phi-four on the fuzzy sphere, and also reported our first numerical results on

the corresponding phase diagram, obtained with small values of N up to N = 10, and large

numbers of statistics. Basically, the new algorithm employs gauge invariance in order to

reduce the scalar sector to the core eigenvalues problem. The phase diagram is complex

consisting of three transition lines: the Ising or uniform-to-disorder, the matrix or non-

uniform-to-disorder, and the uniform-to-non-uniform transition lines. These lines intersect

at a triple point. The measurement of the uniform-to-non-uniform transition line, using

our algorithm, remains very demanding but tractable. The measurements, included in this

article, are largely consistent with those reported originally in [1].

The first immediate extension of this work is to optimize the algorithm further, and

push the calculation of the phase diagram to higher values of N , with reasonably large

numbers of statistics, especially in the case of the uniform-to-non-uniform transition line.

We note that a major improvement of our algorithm, may be achievable, by replacing

the Metropolis updating procedure, for the scalar eigenvalues problem, by the Hybrid

Monte Carlo algorithm, whereas we may keep using the very efficient Metropolis for the

gauge sector.

Another immediate line of investigation is the calculation of the phase diagram of the

self-dual noncommutative phi-four on the fuzzy sphere, constructed in the last section. The

main question, here, is what happens to the Ising transition line, as Ω goes from Ω = 0 to

Ω = 1, and as a consequence, what is the fate of the triple point.
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