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Abstract
The purpose of this paper is to give some further results in a type of generalized
convexity spaces. First, we prove that an abstract convex space has KKM property if
and only if it has a strong Fan-Browder property. Then we introduce an abstract
convex structure via an upper semi-continuous multi-valued mapping and establish
some generalized versions of KKM lemma. By employing our general KKM lemmas,
we derive some generalizations of minimax inequalities, which contain several
existing ones as special cases.
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1 Introduction
Many problems in nonlinear analysis can be solved by nonempty intersection of a certain
family of subsets of an underlying set. One of the remarkable results on such nonempty
intersection is the celebrated Knaster-Kuratowski-Mazurkiewicz theorem (simply, KKM
lemma) in  [], which is concerned with certain types of multi-valued mappings later
called the KKMmaps. Ky Fan [] extends this method to Fan-KKM lemma and Fan’s min-
imax inequality, which have played very important roles in the study of modern nonlinear
analysis. At the beginning, KKM theory named by Park [] was mainly concerned with
original convex subsets of topological vector spaces. Later, it has been extended to con-
vex spaces by Lassonde [], and to spaces having certain families of contractible subsets
(simply, C-spaces or H-spaces) by Horvath [–]. Moreover, a great deal of effort has gone
into KKM theory and its applications such as generalized convexity (simply,G-spaces) and
others (see, Park [–]).
In KKM theory, the convexity of space plays a very important role. There are many

works, dealing with various kinds of generalized, topological, or axiomatically-defined
convexities (see, [–]). Most of them are to establish various KKM lemmas, fixed point
theorems and selection theorems in topological spaces without linear structure. The ques-
tion is whether the various convexity structures should have some common characteris-
tic. Regarding these questions, the authors of [] prove that in a sense, H-condition is
necessary for a convexity structure to ensure the existence of fixed points or continuous
selections of mappings.
The purpose of this paper is to give some further results in generalized convexity spaces.

We prove that an abstract convex space has a KKM property if and only if it has a strong
Fan-Browder property. Then we introduce an abstract convexity structure via an upper
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semi-continuous multi-valued mapping and establish some generalized versions of KKM
lemma. By employing our general KKM lemmas, we derive some generalizations of min-
imax inequalities, in which the functions ϕ are defined on the sets of two different linear
topological spaces or have a weaker convexity condition.

2 Preliminaries
Throughout the work, we assume that Y is nonempty. Let Y denote the class of all subsets
of Y , and let 〈Y 〉 denote the class of all nonempty finite subsets of Y .
As the basic framework of this paper, let us start with an abstract convexity structure,

of which many generalized convexity structures are some special cases (see, [, ]).

Definition . A pair (Y ,C), where C is a family of subsets of Y , called a convex structure
if
() ∅ and Y belong to C ;
() C is closed for arbitrary intersection:

⋂
A∈D A ∈ C for each family of subsets D ⊂ C .

Then the pair (Y ,C) is called an abstract convexity space. Let (Y ,C) be an abstract con-
vexity space. The convex hull coC is defined as

coC(A) =
⋂

{D ∈ C : A⊂D}, ∀A⊂ Y .

A subset C of Y is said to be a convex subset if C ∈ C . It is clear that C is convex if and only
if coC(C) = C, and it is easy to check that this convexity structure includes various abstract
convexity structures mentioned above (see, []). For example, in Horvath’s H-spaces, the
class of a ‘convex’ set

C = {C ⊂ Y : �A ⊂ C for any finite subset A⊂ C},

where {�A} is a family of contractible subsets of Y indexed by all finite subsets of Y such
that �A ⊂ �B, whenever A ⊂ B (see, [–]).

Let (Y ,C) be an abstract convexity space, let X be a subset of Y , and let F : X �→ Y be a
multi-valued mapping. F is said to be convex-valued if for each x ∈ X, F(x) is convex (i.e.,
for each x ∈ X and any finite subset {y, y, . . . , yn} ⊂ F(x), coC{y, y, . . . , yn} ⊂ F(x)). Let Y
be a topological space. F is said to be nonempty-valued (respectively, compact-valued) if
for each x ∈ X, F(x) is nonempty (respectively, compact).

Definition . Let (Y ,C) be an abstract convexity space, let X be a subset of Y , and let
F : X �→ X be a multi-valued mapping. F is said to be weakly convex-valued if for each
x ∈ X and any finite subset {y, y, . . . , yn} ⊂ F(x), coC{y, y, . . . , yn} ⊂ F(x), whenever x ∈
coC{y, y, . . . , yn}.

Remark . It is clear that F is convex-valued, then F is weakly convex-valued.
Let (Y ,C) be an abstract convexity space and X be a subset of Y .
(i) F : X �→ Y is said to be a KKMmapping if for each A ∈ 〈X〉, F satisfies

coC(A) ⊂
⋃
x∈A

F(x).
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(ii) F : X �→ X is said to be a Fan-Browder mapping if F is convex-valued and has
relatively open preimages in X (i.e., F(x) is convex for each x ∈ X and F–(y) is open
in X for each y ∈ X).

(iii) F : X �→ X is said to be a weak Fan-Browder mapping if F is weakly convex- valued
and has relatively open preimages in X .

Let (Y ,C) be an abstract convexity space, and let X be a subset of Y . X is said to be of
KKM property (briefly KKMP) if every KKM mapping F : X �→ Y with close values has
a finite intersection property (i.e.,

⋂
x∈A F(x) 
= ∅ for each A ∈ 〈X〉). X is said to be of Fan-

Browder fixed point property (briefly FBFP) if every Fan-Browder mapping F : X �→ X

with nonempty values has a fixed point. X is said to be of a strong Fan-Browder fixed point
property (briefly SFBFP) if every weak Fan-Browder mapping F : X �→ X with nonempty
values has a fixed point.

The following is just an inverse negative proposition of SFBFP.

Proposition . Let (Y ,C) be an abstract convexity space, and let X be a subset of Y . Then
X has SFBFP if and only if, for every weak Fan-Browder mapping F : X �→ X , there exists
some x̂ ∈ X such that F(x̂) = ∅, whenever F has no fixed point.

3 KKM property and Fan-Browder fixed point property
In this section, we give an equivalent relation between KKMP and SFBFP.

Theorem . Let (Y ,C) be an abstract convexity space, and let X be a compact subset of
(Y ,C). Then X has KKMP if and only if it has SFBFP.

Proof For any mapping F : X �→ Y , denote T : X �→ X by

T(x) = X \ F–(x), ∀x ∈ X.

Before proving the equivalence between KKMP and SFBFP, the following contraposi-
tives are needed:

(i) {x : T(x) = ∅} = ⋂
x∈X F(x) and {x : F(x) = ∅} = ⋂

x∈X T(x).
(ii) If F : X �→ Y is a KKMmapping with closed values, then T : X �→ X is a weak

Fan-Browder mapping with no fixed point.
(iii) If F : X �→ X is a weak Fan-Browder mapping with no fixed point, then T : X �→ X

is a KKMmapping with closed values.
We first prove (i), (ii) and (iii).
() It is easy to check that (i) holds.
() Let F : X �→ Y be a KKMmapping with closed values. If x ∈ X, then

T–(x) =
{
y ∈ X : x ∈ T(y)

}
=

{
y ∈ X : x ∈ X \ F–(y)

}
= X \ F(x)

is an open subset in X. On the other hand, if T has a fixed point, suppose x∗ ∈ X and
x∗ ∈ T(x∗). Then x∗ ∈ X \ F–(x∗), so x∗ /∈ F(x∗), which contradicts that F is a KKM
mapping. Hence T has no fixed point. It remains to show that T is weakly convex-
valued. Fix x ∈ X, and let {y, y, . . . , ym} ⊂ T(x) be an arbitrary finite subset. By Defini-
tion ., it suffices to show that x /∈ coC{y, y, . . . , yn}. Indeed, since {y, y, . . . , ym} ⊂ T(x),

http://www.fixedpointtheoryandapplications.com/content/2013/1/209
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yj ∈ T(x) = X \ F–(x) for each j = , , . . . ,m, so x /∈ ⋃m
j= F(yj). Note that F is a KKMmap-

ping. Then coC{y, y, . . . , ym} ⊂ ⋃m
j= F(yj), which implies x /∈ coC{y, y, . . . , yn}. Hence T

is a weak Fan-Browder mapping, and (ii) is proved.
() Let F : X �→ X be a weak Fan-Browder mapping with no fixed point. Since F has rel-

atively open preimages, T(x) = X \ F–(x) is closed for each x ∈ X. Let {x,x, . . . ,xn} ⊂ X
be an arbitrary finite subset. It remains to show that coC{x,x, . . . ,xn} ⊂ ⋃n

i=T(xi).
If not, there exists some x∗ ∈ coC{x,x, . . . ,xn} such that x∗ /∈ ⋃n

i=T(xi). It follows
that x∗ ∈ ⋂n

i= F–(xi), which implies that xi ∈ F(x∗) for each i = , , . . . ,n, that is,
{x,x, . . . ,xn} ⊂ F(x∗). Note that F is weakly convex-valued and x∗ ∈ coC{x,x, . . . ,xn}.
Then x∗ ∈ coC{x,x, . . . ,xn} ⊂ F(x∗), which contradicts that F has no fixed point. Hence
T is a KKMmapping with closed values, and (iii) is proved.
Next we prove that KKMP is equivalent to SFBFP.
KKMP ⇒ SFBFP: Let F : X �→ X be a weak Fan-Browder mapping with no fixed point.

By Proposition ., what follows to show is that there exists some x̂ ∈ X such that F(x̂) = ∅.
By (ii),T is a KKMmappingwith closed values. Then {T(x) : x ∈ X} has a finite intersection
property and hence

⋂
x∈X T(x) 
= ∅ by the compactness of X. Thus there exists some x̂ ∈ X

such that x̂ ∈ ⋂
x∈X T(x) = {x : F(x) = ∅} 
= ∅. This implies that F(x̂) = ∅.

SFBFP ⇒ KKMP: Let F : X �→ Y be a KKM mapping with closed values. By (ii), T is
a weak Fan-Browder mapping with no fixed point. Since X has SFBFP, there exists some
x̂ ∈ X such that T(x̂) = ∅, and (i) implies x̂ ∈ {x : T(x) = ∅} = ⋂

x∈X F(x) 
= ∅. In particular, X
has a finite intersection property. �

Corollary . Let (Y , coC) be an abstract convexity space, and let X be a compact subset
of (Y , coC). If X has KKMP, then it has FBFP.

4 An abstract convexity structure
In this section, we introduce an abstract convexity structure via an upper semi-continuous
multi-valued mapping and establish some generalized versions of KKM lemma based on
this convexity structure.
Let N = {, , , . . . ,n}, �n = ee · · · en be the standard simplex of dimension n, where

{e, e, . . . , en} is the canonical basis of Rn+, and for J ⊂ N , let �J = co{ej : j ∈ J} be a face
of �n.

Definition . Let Y be a compact set of a topological space, let �n = ee · · · en be the
standard simplex, and let q : �n �→ Y be a multi-valued mapping. If for each continuous
mapping p : Y �→ �n (called a simplex mapping), there exists some x ∈ �n such that
x ∈ p · q(x), then we say that q has a fixed point property with respect to �n and simplex
mappings.

Lemma . Let Y be a metric space, let {F,F, . . . ,Fn} be a family of closed subsets of Y . If
there exists an upper semi-continuous mapping q :�n �→ Y such that

q(�J ) ⊂
⋃
j∈J

Fi, ∀J ⊂N = {, , . . . ,n},

and q has a fixed point property with respect to �n and simplex mappings. Then⋂n
i= Fi 
= ∅.

http://www.fixedpointtheoryandapplications.com/content/2013/1/209
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Proof Suppose that
⋂n

i= Fi = ∅. Denote βi : Y �→ [, ] by

βi(y) =
d(y,Fi)∑n
i= d(y,Fi)

, i = , , . . . ,n;∀y ∈ Y .

Then for each y ∈ Y , βi(y) ≥  and
∑n

i= βi(y) = .
Define the simplex mapping p : Y �→ �n as follows

p(y) =
n∑
i=

βi(y)ei, ∀y ∈ Y .

Let q : �n �→ Y be an upper semi-continuous mapping such that

q(�J ) ⊂
⋃
j∈J

Fi, ∀J ⊂N = {, , . . . ,n},

and q has fixed point property with respect to�n and simplexmappings. Then p ·q : �n �→
�n has a fixed point in �n. Let e ∈ �n, and let e ∈ p · q(e). Then there exists some y∗ ∈ q(e)
such that e = p(y∗) =

∑n
i= βi(y∗)ei.

Let I(y∗) = {i : βi(y∗) > , i = , , . . . ,n}. Given i ∈ I(y∗), we have βi(y∗) >  and y∗ /∈ Fi,
and hence y∗ /∈ ⋃

i∈I(y∗) Fi.
On the other hand,

q(e) = q
(
p(y∗)

)
= q

( n∑
i=

βi(y∗)ei
)
= q

( ∑
i∈I(y∗)

βi(y∗)ei
)

⊂ coC
{
yi : i ∈ I(y∗)

}
.

Consequently,

y∗ ∈ q(e) ⊂ coC
{
yi : i ∈ I(y∗)

} ⊂
⋃

i∈I(y∗)
Fi,

which is a contradiction. �

Weobtain the following approximation result, because the partition of unity {βi}, subor-
dinate to the finite covering {Fc

i : i = , , . . . ,n} of Y , can be given by using the compactness
of X instead of the hypothesis of metric space in the proof of Lemma ..

Lemma . Let Y be a compact space, let {F,F, . . . ,Fn} be a family of closed subsets of Y .
If there exists an upper semi-continuous mapping q :�n �→ Y such that

q(�J ) ⊂ coC{yj : j ∈ J}, ∀J ⊂ N = {, , . . . ,n},

and q has a fixed point property with respect to �n and simplex mappings. Then⋂n
i= Fi 
= ∅.

Definition . Let (Y ,C) be an abstract convexity space. If for each finite subset {y, y,
. . . , yn} ⊂ Y and the standard simplex �n = ee · · · en, there exists multi-valued mapping

http://www.fixedpointtheoryandapplications.com/content/2013/1/209
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q :�n �→ Y such that

q(�J ) ⊂ coC{yj : j ∈ J}, ∀J ⊂ N = {, , . . . ,n}

and q has a fixed point property with respect to �n and simplex mappings. Then (Y ,C) is
said to be of Hq-property.

Theorem . Let (Y ,C) be an abstract convexity space, X ⊂ Y be a subset of Y , and F :
X �→ Y be a KKM mapping with closed values. If Y is a compact topological space or
a metric space, and (Y ,C) is of Hq-property, then {F(y) : y ∈ X} has a finite intersection
property.

Proof Given an finite subset {y, y, . . . , yn} ⊂ X, we prove that
⋂n

i= F(yi) 
= ∅. Since F is a
KKMmapping, we have

coC{yj : j ∈ J} ⊂
⋃
i∈J

F(yj), ∀J ⊂N = {, , . . . ,n}.

Note that (Y ,C) is of Hq-property. There exists a multi-valued mapping q :�n �→ Y such
that

q(�J ) ⊂ coC{yj : j ∈ J}, ∀J ⊂ N = {, , . . . ,n},

and q has a fixed point property with respect to �n and simplex mappings.
Consequently,

q(�J ) ⊂
⋃
j∈J

F(yj), ∀J ⊂N = {, , . . . ,n}.

From Lemma . and ., it follows that
⋂n

i= F(yi) 
= ∅ by using {F(y),F(yi), . . . ,F(yn)}
instead of {F,F, . . . ,Fn}. �

The latter result follows from Theorem . and Theorem ..

Corollary . Let (Y ,C) be an abstract convexity space, let X ⊂ Y be a subset of Y , and
let F : X �→ Y be a KKM mapping with closed values. If Y is a compact topological space
and (Y ,C) is of Hq-property, then X has a strong Fan-Browder fixed point property.

Let {y, y, . . . , yn} be a finite subset of (Y , coC). Sometimes it is convenient to construct
an upper semi-continuous multi-valued mapping q :�n �→ Y such that

q(�J ) ⊂ coC{yj : j ∈ J}, ∀J ⊂ N = {, , . . . ,n}.

To see this, we give the following example.

Example . Let (Y ,C) be an abstract convexity space, let {y, y, . . . , yn} be a finite subset
of (Y ,C), and let �n = ee · · · en be the standard simplex.

http://www.fixedpointtheoryandapplications.com/content/2013/1/209
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Let I(e) = {i : e = ∑n
i= tiei, ti ≥ 

n }. The multi-valued mapping q :�n �→ Y is defined as

q(e) = coC
{
yi : i ∈ I(e)

}
, ∀e ∈ �n.

It is easy to check that q :�n �→ Y is upper semi-continuous and satisfies

q(�J ) ⊂ coC{yj : j ∈ J}, ∀J ⊂ N = {, , . . . ,n}.

To obtain some results in a specific abstract convexity space, we recall a fixed point
theorem (see, [, ]).

Lemma . Let Y be a compact set of a topological space, and let �n = ee · · · en be
the standard simplex. If p : Y �→ �n is continuous, and q : �n �→ Y is an upper semi-
continuous mapping with nonempty, closed and contractible values, then there exists some
e ∈ �n such that e ∈ p · q(e). Therefore, q has a fixed point property with respect to �n and
simplex mappings.

As an immediate corollary of Lemma ., . and ., we state the following result.

Corollary . Let Y be a compact topological space or ametric space, let {F,F, . . . ,Fn} be
a family of closed subsets of Y . If there exists an upper semi-continuous mapping q : �n �→
Y with nonempty, closed and contractible values such that

q(�J ) ⊂
⋃
i∈J

Fi, ∀J ⊂N = {, , . . . ,n}.

Then
⋂n

i= Fi 
= ∅.

Definition . Let (Y , coC) be an abstract convexity space. If for each finite subset
{y, y, . . . , yn} ⊂ Y and the standard simplex �n = ee · · · en, there exists an upper semi-
continuousmapping q :�n �→ Y with nonempty, closed and contractible values such that

q(�J ) ⊂ coC{yj : j ∈ J}, ∀J ⊂ N = {, , . . . ,n}.

Then (Y , coC) is said to be of Hq
-property.

Remark .
() If (Y , coC) is of H

q
-property, then (Y , coC) is of Hq-property.

() Let (Y ,C) be an abstract convexity space. If C is of H-property, then it also is of
Hq

-property. H-space and G-convexity space have Hq
-property because both of

them satisfy H-condition.

Theorem . embraces the following special case.

Theorem . Let (Y , coC) be an abstract convexity space, let X be a subset of Y , and let
F : X �→ Y be a KKMmapping with closed values. If Y is a compact topological space and
(Y , coC) is of H

q
-property, then {F(x) : x ∈ X} has a finite intersection property, and so that

X has a strong Fan-Browder fixed point property.

http://www.fixedpointtheoryandapplications.com/content/2013/1/209
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5 Minimax inequalities
As applications, we give some minimax inequality theorems in this section. To prove the
main results, we introduce the following lemma.

Lemma . Let X be a subset of linear topological space, let Y be a compact topological
space, and let s : X �→ Y be an upper semi-continuous mapping with nonempty, closed
and contractible values. Let F : X �→ Y be a closed valued mapping such that for each
finite subset {x,x, . . . ,xn} ⊂ X,

s
(
co{x,x, . . . ,xn}

) ⊂
n⋃
i=

F(xi).

Then
⋂

x∈X F(x) 
= ∅.

Proof Given a finite subset {x,x, . . . ,xn} ⊂ X, p : �n �→ X is defined as

p(e) =
n∑
i=

tixi, ∀e =
n∑
i=

tiei ∈ �n.

Let q = s · p. Then q :�n �→ Y and satisfies

q(�J ) = s
(
p(�J )

)
= s

(
co{xj : j ∈ J}) ⊂

⋃
j∈J

F(xi), ∀J ⊂N = {, , . . . ,n}.

By Corollary .,
⋂n

i= F(xi) 
= ∅. Since Y is compact,
⋂

x∈X F(x) 
= ∅. �

We now derive some general versions of minimax inequalities from Lemma ..

Theorem . Let X, Y be compact subsets of linear topological spaces. ϕ : X × Y �→ R
satisfies the following conditions:
() For any fixed y ∈ Y , ϕ(x, y) is lower semi-continuous with respect to x;
() s : X �→ Y is an upper semi-continuous mapping with nonempty, closed and

contractible values and for any finite subset {y, y, . . . , yn} ⊂ Y and
x ∈ s(co{y, y, . . . , yn}), ϕ(x, yi) ≤  for some i = , , . . . ,n.

Then there exists x∗ ∈ X, such that

ϕ
(
x∗, y

) ≤ , ∀y ∈ Y .

Proof The multi-valued mapping F : Y �→ X is defined as

F(y) =
{
x ∈ X : ϕ(x, y)≤ 

}
, ∀y ∈ Y .

Condition () implies that F is closed-valued.
From condition (), it is easy to check that for each finite subset {y, y, . . . , yn} ⊂ Y , F sat-

isfies

s
(
co{y, y, . . . , yn}

) ⊂
n⋃
i=

F(yi).

http://www.fixedpointtheoryandapplications.com/content/2013/1/209
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In fact, for each x ∈ s(co{y, y, . . . , yn}), it follows from () that ϕ(x, yi) ≤  for some i =
, , . . . ,n, i.e., x ∈ F(yi) for some i = , , . . . ,n. Thus x ∈ ⋃n

i= F(yi) and s(co{y, y, . . . , yn}) ⊂⋃n
i= F(yi).
By Lemma ., we have

⋂
y∈Y F(y) 
= ∅. Then there exists some x∗ ∈ X such that x∗ ∈⋂

y∈Y F(y), so that

ϕ
(
x∗, y

) ≤ , ∀y ∈ Y . �

Definition . Let Y be a subset of some linear topological space. A function ϕ : Y �→ R
is said to be quasiconcave if, for each finite subset {y, y, . . . , yn} ⊂ Y , ϕ satisfies

ϕ(y) ≥ min
{
ϕ(y),ϕ(y), . . . ,ϕ(yn)

}
, ∀y ∈ co{y, y, . . . , yn}.

ϕ is said to be s-quasiconcave if there exists an upper semi-continuousmapping s : Y �→ X

and for each finite subset {y, y, . . . , yn} ⊂ Y , ϕ satisfies

ϕ(y) ≥ min
{
ϕ(y),ϕ(y), . . . ,ϕ(yn)

}
, ∀y ∈ s

(
co{y, y, . . . , yn}

)
.

Below, we present two forms of minimax inequalities.

Theorem . Let X, Y be compact subsets of linear topological spaces. If ϕ : X × Y �→ R
satisfies the following conditions:
() For any fixed y ∈ X , ϕ(x, y) is lower semi-continuous respect to x;
() s : Y �→ X is an upper semi-continuous mapping with nonempty, closed and

contractible values, and for any fixed x ∈ s(Y ), ϕ(x, y) is quasiconcave with respect to
y;

() For any y ∈ Y and x ∈ s(y), ϕ(x, y) ≤ .
Then there exists x∗ ∈ X, such that

ϕ
(
x∗, y

) ≤ , ∀y ∈ Y .

Proof By Theorem ., it remains to prove that for each finite subset {y, y, . . . , yn} ⊂ Y
and x ∈ s(co{y, y, . . . , yn}), ϕ(x, yi) ≤  for each i = , , . . . ,n.
If not, there exists some x ∈ s(co{y, y, . . . , yn}) such that ϕ(x, yi) >  for each i =

, , . . . ,n. From condition (), it follows that ϕ(x, y) >  for all y ∈ co{y, y, . . . , yn}. Note
that x ∈ s(co{y, y, . . . , yn}). Then there exists some y ∈ co{y, y, . . . , yn} such that x ∈ s(y).
It is immediate that ϕ(x, y) > , which is a contradiction with condition (). The proof is
complete. �

Theorem . generalizes the Ky Fan minimax inequality theorem to the case that ϕ is
defined on the sets of two different linear topological spaces. We next present a minimax
inequality theorem that ϕ is defined on the same set.

Theorem . Let X be a compact subset of some linear topological space. ϕ : X × X �→ R
satisfies the following conditions:
() For any fixed y ∈ X , ϕ(x, y) is lower semi-continuous with respect to x;

http://www.fixedpointtheoryandapplications.com/content/2013/1/209
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() s : X �→ X is an upper semi-continuous mapping with nonempty, closed and
contractible values and for any fixed x ∈ s(X), ϕ(x, y) is s-quasiconcave with respect to
y;

() ϕ(x,x)≤ , ∀x ∈ X .
Then there exists x∗ ∈ X such that ϕ(x∗, y) ≤  for all y ∈ Y .

Proof By Theorem ., it remains to prove that for each finite subset {y, y, . . . , yn} ⊂ Y
and x ∈ s(co{x,x, . . . ,xn}), ϕ(x, yi)≤  for each i = , , . . . ,n.
If not, there exists some y ∈ co{y, y, . . . , yn} and x ∈ s(y) such that ϕ(x, yi) >  for each

i = , , . . . ,n. Since ϕ(x, y) is s-quasiconcave with respect to y, it follows that ϕ(x, y) ≥
min{ϕ(x, y),ϕ(x, y), . . . ,ϕ(x, yn)} >  for all y ∈ s(co{y, y, . . . , yn}). Note that x ∈ s(y) ⊂
s(co{y, y, . . . , yn}). It is immediate that ϕ(x,x) >  which contradicts condition (). By The-
orem ., the proof is complete. �

Further, we prove that condition () is necessary for the conclusion ofTheorem. under
a certain condition.

Theorem. Let X be a compact subset of linear topological space. ϕ : X×X �→ R satisfies
the following conditions:
() For any fixed y ∈ X , ϕ(x, y) is lower semi-continuous with respect to x;
() ϕ(x,x) = , ∀x ∈ X .

Then there exists x∗ ∈ X such that ϕ(x∗, y) ≤  for all y ∈ Y if and only if there exists an
upper semi-continuous mapping s : X �→ X with nonempty, closed and contractible values
and for any fixed x ∈ s(X), ϕ(x, y) is s-quasiconcave with respect to y.

Proof It only needs to prove the necessity. If there exists x∗ ∈ X such that

ϕ
(
x∗, y

) ≤ , ∀y ∈ Y .

Define s : X �→ X as

s(y) =
{
x∗}, ∀y ∈ Y .

It is clear that s is an upper semi-continuous mapping with nonempty, closed and con-
tractible values.
On the other hand, for any fixed x ∈ s(X), we have y = x∗. Let {y, y, . . . , yn} ⊂ Y . Note

that s(co{y, y, . . . , yn}) = {x∗} and ϕ(x∗, y) ≤  for all y ∈ X. We have ϕ(x∗, y) = ϕ(x∗,x∗) =
 ≥ min{ϕ(x∗, y),ϕ(x∗, y), . . . ,ϕ(x∗, yn)} for all y ∈ s(co{y, y, . . . , yn}), so that ϕ(x, y) is s-
quasiconcave with respect to y. The proof is complete. �

We can weaken the convexity condition of the function ϕ by choosing a proper s : X �→
X . To see this, we observe the following example.

Example . Let X = [, ] ⊂ R, ϕ : X ×X �→ R be a function defined by

ϕ(x, y) =

⎧⎨
⎩ ∀x ≤ y;

x sinπ (x – y), ∀x > y.

http://www.fixedpointtheoryandapplications.com/content/2013/1/209
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Now we check that ϕ satisfies all conditions of Theorem ..
s : X �→ X is defined as

s(y) = {}, ∀y ∈ Y .

It is easy to check that ϕ satisfies () and () of Theorem .. It remains to show that ()
holds. For each x ∈ s(X), it follows from the definition of s that x = . Let {y, y, . . . , yn} ⊂ Y ,
and let y ∈ s(co{y, y, . . . , yn}); we have ϕ(, y) = ϕ(, ) =  ≥ ϕ(, yi), so that ϕ(, y) ≥
min{ϕ(, y),ϕ(, y), . . . ,ϕ(, yn)}. Hence ϕ(x, y) is s-quasiconcave with respect to y.
On the other hand, we observe that ϕ(, y) is neither quasiconcave nor quasiconvex with

respect to y.
Since we can apply minimax inequalities to prove the existence of Nash equilibrium

points in non-cooperative games, Theorems ., . and . enable us to discuss the exis-
tence of Nash equilibrium under some weaker convexity conditions.
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