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1 Introduction

Practically, any reasonable physical theory refers, in more or less explicit way, to assump-

tions concerning space-time structure and its symmetries. Usually, it is postulated that

space-time has a structure of smooth manifold parameterized (in general, locally) by four

real commuting coordinates. This does not lead to any essential controversy in classical

or nonrelativistic quantum theory. However, the validity of this assumption is not evi-

dent when trying to combine quantum theory with special or general theory of relativity

in a consistent way. Indeed, in relativistic quantum theories a possibility of probing the

space-time is limited by occurrence of creation/annihilation processes or even gravitational

collapse (when gravitation is taken into account ) if energy density contained in a tiny

volume is large enough to create new particles or to form a black hole. Therefore, it is

believed that at short-distance scale the model of smooth and commutative space-time

should be somehow modified or even replaced by some other mathematical framework.

In the simplest scenario, instead of local coordinates xm, m = 0, 1, 2, 3, hermitian

generators x̂mare introduced. They obey commutation relations

[x̂m, x̂n] = iΘmn (1.1)

where Θmn is real antisymmetric (in general, xm - depending ) matrix of dimension

(length)2 [1–11].

For example, in the case of so called θ - Minkowski space this matrix is constant and

plays a role analogous to Planck’s constant. In particular, there are space-time uncertainty

relations ∆xi∆xj ≥ 1
2 | Θij | giving a bound to the resolution in which space-time itself

can be probed. As a consequence there is no definite notion of a ”point”.

These simple semi-classical arguments demonstrate that a sort of space-time quanti-

zation is expected to be a generic feature of quantum theory consistent with relativity.
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Although the idea of noncommutative space-time is almost as old as quantum mechan-

ics is [12] a real impetus to the study of the subject has been provided by string theory [13–

21]. It has appeared that if the endpoints of open strings are confined to propagate on a

D-brane in a constant B-field background, then they live effectively on noncommutative

space whose coordinates satisfy the commutation relations given by eq. (1.1).

It is worth noting here that noncommutative spaces can be regarded as usual ones

equipped, however, with additional structure so called star product [22–28]. For instance,

in the case of θ - Minkowski space an appropriate star product of two functions on this

space is given by the equation

f(x) ⋆ g(x) = µ

(

exp

{

1

2
Θmn∂m ⊗ ∂n

}

f ⊗ g

)

(x) (1.2)

µ(f ⊗ g) = fg

Now, given deformed space-time one is faced with the important question of its symme-

tries. The point is that, in general, the commutation relations defining space deformation

break its standard (i.e. the ones corresponding to undeformed case) symmetries [29–32].

For example, the relations given by eq. (1.1) violate Lorentz invariance (if Lorentz trans-

formations are assumed to be ”undeformed” and to act in the usual way).

This fundamental space-time symmetries breaking is one of the major problems around

theories on noncommutative spaces. There are at least two possible approaches to this

question.

In the first one, Θmn matrix is assumed to distinguish a reference frame and symmetry

transformation group is restricted to a stability group of this matrix. It appears that the

stability group ( SO(1, 1)×SO(2) for time noncommutativity or O(1, 1)×O(2) in the case

of space noncommutativity [33, 34] ) being abelian one has only one-dimensional irreducible

representations. Consequently, in addition to violation of relativity principle the notion of

spin becomes unclear in theories with such symmetry group.

In the second approach, proceeding in the spirit of quantum group theory [35–39] de-

formed algebras and group transformations which leave relations defining noncommutative

space unchanged [40–45] are introduced.

In the case of θ - Minkowski space such deformed algebra, so called twisted Poincare

algebra, has been introduced in ref. [41]. A starting point there was an observation that the

differential operator defining the star product given by eq. (1.2) can be interpreted as the

inverse of the so called twist operator F [46]. The star product given by the twist operator is

covariant with respect to the twisted Poincare algebra. The algebraic sector of this algebra

coincides with the usual Poincare algebra one. Consequently, the representation content

of the twisted symmetry algebra is the same as the nontwisted one. That is the main

advantage of this approach justifying the use of the ordinary representations of Poincare

algebra in the study of theories on θ - Minkowski space even though the ordinary Poincare

algebra is not the symmetry algebra of these theories.

Having the twist operator one can construct first a universal R matrix and then,

referring to Faddeev - Reshetikhin -Takhtajan (FRT) [47] method for example, the global

counterpart of twisted Poincare algebra - so called θ- Poincare group [40, 48], which is in
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fact noncommutative Hopf algebra of functions on Poincare group. The θ -Poincare group

can also be obtained in more direct way starting with the following assumptions:

1. Θ-Poincare group acts on Θ-Minkowski space as the usual Poincare group does on

undeformed Minkowski space.

2. Θ -Poincare group transformations commute with Lorentz transformations as well as

with Θ - Minkowski space coordinates.

3. Commutation relations defining θ - Minkowski space are preserved under Θ -Poincare

group action.

This, based on deformed algebras/group, approach to symmetries of noncommutative

Minkowski space can be applied without essential modifications in Euclidean case. The

application of this scheme to symmetries of non(anti)commutative supersymmetric exten-

sions of Euclidean/Minkowski space [49–57] is more involved. A new ingredient here is the

possibility of additional non-trivial contributions to deformations of Euclidean/Minkowski

(super)-space stemming from deformations of grassmannian sector of superspace.

Twisted superalgebra technique has been used to study various deformations of Eu-

clidean superspace in refs. [58–64]. Some preliminary description concerning only one type

of deformation of Euclidean superspace in terms of deformed Euclidean supergroup (global

counterpart of twisted superalgebra) can be found in ref. [45].

The present paper and the companion one are devoted to more systematic study of su-

persymmetric extensions of θ - Poincare group and its Euclidean counterpart - θ-Euclidean

group as well as to the construction of covariant ( with respect to these extensions )

(anti)commutation relations defining deformations of relevant superspaces.

In the first paper we start with simple, intuitive and natural from ”physical” point

of view assumptions basically concerning the action of generalized Euclidean/Poincare

transformations on corresponding deformed superspace and proceed in a spirit of Corrigan

et al., Manin, Takhtajan, Wess, Zumino approach to (super)space deformations [65–68].

This leads to general relations between (anti)commmutation rules of deformed space-time

coordinates and (anti)commmutation ones of generalized Euclidean/Poincare transforma-

tion parameters. Then taking into account the structure of these relations and requiring

the preservation of commutators defining space-time deformation under these generalized

transformations allows one to find (for a given consistent grassmannian superspace sector

deformation) a sufficient conditions on (anti)commutation rules of deformed superspace

coordinates as well as on commutators of relevant transformation parameters.

In a case of probably the simplest grassmannian sector superspace deformation given

by constant matrices our procedure gives algebraic sector of global symmetries of wide class

of deformed Euclidean/Minkowski superspace. In fact, most of the deformations of this

type discussed in literature [45, 58–62], belong to our class. In general, (anti)commutation

relations obtained in this way do not satisfy Jacobi identities. Imposing these identities

gives some constraints on matrices defining deformations. It appears that in Minkowski

superspace case Jacobi identities can be satisfied provided the matrix elements of these

matrices belong to some Grassmann algebra. Finally, the construction of algebraic sector
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of symmetry transformations is completed by introducing coalgebraic structure given by

appropriately defined coproduct, counit and antipode maps. If it happens that both struc-

ture algebraic and coalgebraic ones are consistent one is dealing with non(anti)commutative

Hopf superalgebras i.e. quantum supergroups. Such symmetry transformations are ana-

lyzed within the so called R - matrix (or FRT) approach as well as in the framework of

star product in the companion paper [69]. It appears that all three methods lead directly

to the same results.

In order to make the paper more readable we will generally omit the prefix ”anti” and

use the words ”commutators”, ”commutation rules”, etc. irrespectively of the parity of

variables under consideration. However, we keep the standard notation for the commutators

([., .]) and the anticommutators ({., .}).

2 Global Symmetries of Deformed Superspaces

2.1 N=1 deformed Euclidean Superspace

Roughly speaking, (super)space deformations as well as construction of their symmetries

can be considered as a procedure of replacing commuting coordinates of undeformed (su-

per)spaces and commuting parameters of transformations acting on these coordinates by

noncommuting quantities satisfying some well-defined, consistent commutation rules. In

most cases, this vague definition can be made mathematically sound within framework

of non(anti)commutative Hopf (super)algebras theory. Nevertheless, we will follow this

slightly informal approach believing that it can be formalized if needed.

So we start with simplest N = 1 Euclidean superspace [70–73] which is parametrized

by four commuting real coordinates xm (m = 0, 1, 2, 3) and by four anticommuting grass-

mannian variables ηα, η̄α̇ (α = 1, 2, α̇ = 1̇, 2̇). The metric structure in bosonic sector is

given by metric tensor gmn = gmn ≡ diag(1, 1, 1, 1) = δmn i.e. xm = xm = gmnx
m. In

grassmannian sector the role of gmn is played by completely antisymmetric symbols

ε̃αβ = ε̃α̇β̇ =

[

0 −1

1 0

]

(2.1)

εαβ = εα̇β̇ =

[

0 1

−1 0

]

(2.2)

ηα = ε̃αβηβ , η̄α̇ = ε̃α̇β̇ η̄β̇

ηα = εαβη
β , η̄α̇ = εα̇β̇ η̄

β̇ (2.3)

This superspace can be regarded as the coset one resulting from dividing N = 1

Euclidean supergroup by group of four dimensional rotations.

Let Mmn and Pm (m,n = 0, 1, 2, 3 ) be the generators of rotations (ωmn = −ωnm)

respectively translations (am) in R
4 while Qα, Q̄α̇ (α=1, 2, α̇ = 1̇, 2̇) - the additional odd

generators of supertranslations (ξα, ξ̄α̇).
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A generic element of N = 1 Euclidean supergroup can be written in the following

exponential parametrization

g(ξ, ξ̄, a, ω) = exp
{

i(ξαQα + Q̄α̇ξ̄
α̇)
}

exp {iamPm} exp

{

i

2
ωmnMmn

}

(2.4)

Let us remind the standard notation ( below σi, i = 1, 2, 3, are Pauli matrices )

σm = (iI, σi)

σ̄m = (iI,−σi) (2.5)

σmn =
i

4
(σmσ̄n − σnσ̄m) (2.6)

σ̄mn =
i

4
(σ̄mσn − σ̄nσm).

σmn ( resp. σ̄mn ) are generators of D( 1
2
,0) (resp. D(0, 1

2
)) representations of sO(4) ∼

su(2)
⊕

su(2) algebra.

The generators Qα, Q̄α̇, Pm, Mmn satisfy commutation relations defining N = 1

Euclidean superalgebra:

[Mab,Mcd] = −i(δacMbd + δbdMac − δadMbc − δbcMad) (2.7)

[Pm,Mab] = i(δmaPb − δmbPa)

[Pa, Pb] = 0

[Qα,Mmn] = (σmn)
β
α Qβ

[Qα, Pm] = 0 = [Q̄α̇, Pm]

[Q̄α̇,Mmn] = (σ̄mn)
α̇
β̇
Q̄β̇

{Qα, Qβ} = 0 =
{

Q̄α̇, Q̄β̇

}

= 0

{Qα, Q̄β̇} = 2(σm)αβ̇(Pm)

Let

A(ω) = e−
1

2
ωmnσmn B†(ω) = e

1

2
ωmnσ̄mn (2.8)

be elements of D( 1
2
,0) resp. D(0, 1

2
) representations of SU(2) × SU(2) group. They obey

A(ω)σmB†(ω) = (e−ω)mnσ
n.

The commutation rules (2.7) imply the following composition law for N = 1 Euclidean

supergroup elements:

g(ξ, ξ̄, a, ω)g(η, η̄, b, ω′) =g(Λ, Λ̄, c, ω′′) (2.9)

Λα =ξα + (AT (ω))αβη
β

Λ̄α̇ =ξ̄α̇ + (B†(ω))α̇
β̇
η̄β̇

cm =e(−ω)mnb
n + am − iξα(σm)αα̇(B

†(ω))α̇
β̇
η̄β̇

− iξ̄α̇(σ̄m)α̇α(A
T (ω))αβη

β

e
i

2
ω′′

ab
Mab

=e
i

2
ωabM

ab

e
i

2
ω′

ab
Mab
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The action of N = 1 Euclidean supergroup on N = 1 Euclidean superspace can be

deduced from eq. (2.9)

g(ξ, ξ̄, a, ω) : (xm, ηα, η̄α̇) 7−→(x′m, η′α, η̄′
α̇
) (2.10)

η′α = ξα + (AT (ω))αβη
β

η̄′
α̇
= ξ̄α̇ + (B†(ω))α̇

β̇
η̄β̇

x′m =(e−ω)mnx
n + am − iξα(σm)αα̇(B

†(ω))α̇
β̇
η̄β̇

− iξ̄α̇(σ̄m)α̇α(A
T (ω))αβη

β

Now, replacing commuting coordinates xm and ηα, η̄α̇ by (non)commuting quantities

x̂m, η̂α and ˆ̄ηα̇ satisfying some consistent commutation rules one obtains N = 1 deformed

Euclidean superspace. In general, these commutation rules are no longer covariant under

the action of usual N = 1 Euclidean supergroup. So, the standard Euclidean trans-

formations have to be modified somehow if one wants the relations defining superspace

deformation to be preserved under the action of these transformations. It appears that for

a wide class of N = 1 Euclidean superspace deformations (including most of deformations

considered in literature [45, 58–62]) this can be done in relatively simple way, starting with

the following intuitive and natural from a ”physical” point of view assumptions:

a. In order to get generalized transformations one replace commutative parameters (α)

by noncommutative ones (α̂)

(α) ≡ (ξ, ξ̄, a, ω) 7−→ (α̂) ≡ (ξ̂, ˆ̄ξ, â, ω̂), (2.11)

In more formal approach, supergroup parameters are regarded as functions of super-

group elements and passing from commutative parameters to (non)commmutative

ones is interpreted as passing from commutative superalgebra of functions on super-

group to, in general, noncommutative algebra.

b. These noncommuting transformation parameters commute with deformed superspace

coordinates.

c. Generalized transformations act on deformed superspace as the usual ones on unde-

formed space

g(ξ̂, ˆ̄ξ, â, ω̂) :(x̂m, η̂α, ˆ̄ηα̇) 7−→ (x̂′m, η̂′α, ˆ̄η′α̇) (2.12)

η̂′
α
=ξ̂α + (AT (ω̂))αβ η̂

β

ˆ̄′ηα̇ =ˆ̄ξα̇ + (B†(ω̂))α̇
β̇
ˆ̄ηβ̇

x̂′
m

=(e−ω̂)mnx̂
n + âm − iξ̂α(σm)αα̇(B

†(ω̂))α̇
β̇
ˆ̄ηβ̇

− i ˆ̄ξα̇(σm)αα̇(A
T (ω̂))αβ η̂

β ,

To avoid the ordering problem one puts

[ξ̂, B†(ω̂)] = [ ˆ̄ξ, AT (ω̂)] = 0. (2.13)

– 6 –
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d. Commutation rules defining superspace deformation should be covariant under action

of these generalized transformations.

Assumptions (a-c) enable one to find the relations between deformed space-time coordi-

nates x̂m, η̂α, ˆ̄ηα̇ commutators and commutators of transformation parameters. Both,

coordinates and parameters commutation rules, remain apriori unspecified.

These relations can be divided into three groups. The first one includes: commutators

of grassmannian space-time coordinates η̂α, ˆ̄ηα̇, commmutators of grassmannian transfor-

mation parameters ξ̂, ˆ̄ξ, commmutators of grassmannian parameters with A, B matrices

and commutator of A and B matrices.

There are no commmutators of space-time variables and commutators of parameters

(except ones mentioned above ) in this group.

The second group of relations contains, in addition, commutators of space-time co-

ordinates (except commutator between two bosonic elements x̂m) and commmutators of

transformation parameters (except the ones between parameters âm).

The commutators [x̂m, x̂n] and [âm, ân] appear in the third group of relations.

Such structure means that one can look for consistent commutation rules defining

deformed superspaces and relevant commutation rules determining generalized symmetry

transformations by successive analysis of these groups starting with the first one being

described by the following equations:

{η̂′α, η̂′β} =[(AT )αγ , (A
T )βδ]η̂

γ η̂δ + (AT )βδ(A
T )αγ{η̂

γ , η̂δ} (2.14)

+ η̂γ([(AT )αγ , ξ̂
β ] + [(AT )βγ , ξ̂

α]) + {ξ̂α, ξ̂β}

{ˆ̄η
′α̇
, ˆ̄η′β̇} =[(B†)α̇γ̇ , (B

†)β̇
δ̇
]ˆ̄ηγ̇ ˆ̄ηδ̇ + (B†)β̇

δ̇
(B†)α̇γ̇{ˆ̄η

γ̇ , ˆ̄ηδ̇}

+ ˆ̄ηγ̇([(B†)α̇γ̇ ,
ˆ̄ξβ̇ ] + [(B†)β̇γ̇ ,

ˆ̄ξα̇]) + { ˆ̄ξα̇, ˆ̄ξβ̇}

{η̂′α, ˆ̄η′β̇} =[(AT )αγ , (B
†)β̇

δ̇
]η̂γ ˆ̄ηδ̇ + (B†)β̇

δ̇
(AT )αγ{η̂

γ , ˆ̄ηδ̇}

+ {ξ̂α, ˆ̄ξβ̇}.

Now, covariant (in view of assumption d) commutation rules of grassmannian space-

time coordinates should be defined in such a way that eqs. (2.14) are satisfied for all

space-time variables x̂m, η̂α, ˆ̄ηα̇.

Consider the simplest deformation of the grassmannian sector:

{η̂α, η̂β} = Cαβ = {η̂′α, η̂′β} (2.15)

{η̂α, ˆ̄ηβ̇} = Eαβ̇ = {η̂′α, ˆ̄η′β̇}

{ˆ̄ηα̇, ˆ̄ηβ̇} = Dα̇β̇ = {η̂′α, ˆ̄η′β̇}

with Cαβ , Eαβ̇ and Dα̇β̇ being the even elements of a Grassmann algebra, in particular,

c-numbers.
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Then, the sufficient conditions for eqs. (2.14) to hold read

[(AT )αγ , (A
T )βδ] = 0

[(B†)α̇γ̇ , (B
†)β̇

δ̇
] = 0

[(B†)α̇γ̇ , (A
T )βδ] = 0

[ξ̂α, (AT )βδ] = 0

[(B†)α̇γ̇ ,
ˆ̄ξβ̇] = 0

{ξ̂α, ξ̂β} = Cαβ
−

{ ˆ̄ξα̇, ˆ̄ξβ̇} = Dα̇β̇
−

{ξ̂α, ˆ̄ξβ̇} = Eαβ
− (2.16)

where Cαβ
− , etc. are defined as follows

Cαβ
± = [δαγ δ

β
δ ± (AT )αγ(A

T )βδ]C
γδ (2.17)

Dα̇β̇
± = [δα̇γ̇ δ

β̇

δ̇
± (B†)α̇γ̇(B

†)β̇
δ̇
]Dγ̇δ̇

Eαβ̇
± = [δαγ δ

β̇

δ̇
± (AT )βγ(B

†)β̇
δ̇
]Eγδ̇

Eqs. (2.17) define also Cαβ
+ , etc. which will be used below.

Taking into account commutation rules satisfied by AT and B+ (see eqs. (2.16)) allows

one to write out second group of equations relating commutators of spacetime variables

with commutators of parameters

[x̂′m, η̂′α] =(e−ω̂)mn(A
T )αγ [x̂

n, η̂γ ] + [âm, ξ̂α] + [âm, (AT )αβ ]η̂
β (2.18)

+ iσm
δδ̇
(B†)δ̇

β̇
({ξ̂δ, ξ̂α}ˆ̄ηβ̇ − (AT )αγ ξ̂

δ{ˆ̄ηβ̇ , η̂γ})

+ iσm
δδ̇
(AT )δβ({

ˆ̄ξδ̇, ξ̂α}η̂β − (AT )αγ
ˆ̄ξδ̇{η̂β̇ , η̂γ})

[x̂′m, ˆ̄η′α̇] =(e−ω̂)mn(B
†)α̇γ̇ [x̂

n, η̄γ̇ ] + [âm, ˆ̄ξα̇] + [âm, (B†)α̇
β̇
]ˆ̄ηβ̇

+ iσm
δδ̇
(AT )δβ({ξ̄

δ̇, ˆ̄ξα̇}η̂β − (B†)α̇γ̇
ˆ̄ξδ̇{η̂β , ˆ̄ηγ̇})

+ iσm
δδ̇
(B†)δ̇

β̇
({ξ̂δ, ˆ̄ξ

α̇
}η̂β − (B†)α̇γ̇ ξ̂

δ{η̂β̇ , ˆ̄ηγ̇})

Again, these equations should hold for all spacetime variables. This imposes some

constraints on covariant commutation rules of η̂α, x̂m and ˆ̄ηα̇, x̂m coordinates. In fact,

it is not difficult to see that these rules should be at least linear in η̂α and ˆ̄ηα̇ variables.

Assuming that they are exactly linear one can write

[x̂m, η̂α] = iΠmα
β η̂β + iΠmα

β̇
ˆ̄ηβ̇ + iΠmα (2.19)

[x̂m, ˆ̄ηα̇] = i∆mα̇
β η̂β + i∆mα̇

β̇
ˆ̄ηβ̇ + i∆mα̇

where Πmα
β , Πmα

β̇
, Πmα, ∆mα̇

β , ∆mα̇
β̇
, ∆mα̇ are some constants of well-defined parity.
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Now, taking into account eqs. (2.16), one can provide the sufficient conditions for

eqs. (2.18) to be satisfied by all space-time variables. They have the form of the following

relations between the constants Π, ∆ and E, D, C

Πmα
β = Eαβ̇(σm)ββ̇ (2.20)

Πmα
β̇

= Cαβ(σm)ββ̇

∆mα̇
β = Dα̇β̇(σm)ββ̇

∆mα̇
β̇

= Eβα̇(σm)ββ̇

and the following commutation rules for transformation parameters

[(AT )αβ , â
m] =0

[(B†)α̇
β̇
, âm] =0

[âm, ξ̂α] =iEαρ̇
+ (σm)ρρ̇ξ̂

ρ + iCαρ
+ (σm)ρρ̇

ˆ̄ξρ̇ + iΠmα
−

[âm, ˆ̄ξα̇] =iEρα̇
+ (σm)ρρ̇

ˆ̄ξρ̇ + iDα̇ρ̇
+ (σm)ρρ̇ξ̂

ρ + i∆mα̇
−

(2.21)

In the eqs. (2.21) ∆mα̇
− and Πmα

− are defined by

∆mα̇
± = (δmp δα̇

β̇
± (e−ω̂)mp(B

†)α̇
β̇
)∆pβ̇

Πmα
± = (δmp δαβ ± (e−ω̂)mp(A

T )αβ)Π
pβ (2.22)

It follows from eqs. (2.13), (2.16) and (2.21) that the commutativity of AT and B+ with all

parameters of transformations (2.12) is consistent with the basic assumptions (a-d). Using

that, last group of equations relating commutators of ξ̂ coordinates and commutators of

âm parameters can be written in the following form

[x̂′m, x̂′n] = (e−ω̂)mp(e
−ω̂)nq[x̂

p, x̂q] + [âm, ân] (2.23)

− i((e−ω̂)mp(σ
n)αα̇ − (e−ω̂)np(B

†)α̇
β̇
ξ̂α[x̂p, ˆ̄ηβ̇ ] + (AT )αβ

ˆ̄ξα̇[x̂p, η̂β ]

− i((σn)αα̇[â
m, ξ̂α]− (σm)αα̇[â

n, ξ̂α])(B†)α̇
β̇
ˆ̄ηβ̇

− i((σn)αα̇[â
m, ˆ̄ξα̇]− (σm)αα̇[â

n, ˆ̄ξα̇])(AT )αβ η̂
β

+
1

2
(σm)γγ̇(σ

n)δδ̇(B
†)γ̇α̇(B

†)δ̇
β̇
([ξ̂γ , ξ̂δ]{ˆ̄ηα̇, ˆ̄ηβ̇} − {ξ̂γ , ξ̂δ}[ˆ̄ηα̇, ˆ̄ηβ̇ ])

+
1

2
(σm)γγ̇(σ

n)δδ̇(A
T )γα(A

T )δβ([
ˆ̄ξγ̇ , ˆ̄ξδ̇]{η̂α, η̂β} − { ˆ̄ξγ̇ , ˆ̄ξδ̇[η̂α, ˆ̄ηβ̇ ])

+
1

2
((σm)γγ̇(σ

n)δδ̇ − (σn)γγ̇(σ
m)δδ̇(B

†)γ̇α̇(A
T )δβ)([ξ̂

γ , ˆ̄ξδ̇]{ˆ̄ηα̇, η̂β}

− {ξ̂γ , ˆ̄ξδ̇}[η̂β, ˆ̄ηα̇])

All commutation relations in eqs. (2.23), except [x̂m, x̂n] and [âm, ân] commutators,

have been already determined (see eqs. (2.15), (2.16), (2.17), (2.19), (2.20) and (2.21)).

Requiring eqs. (2.23) to be satisfied by all space-time coordinates η̂α, ˆ̄ηα̇, x̂m implies that
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the commutator [x̂m, x̂n] should be at least quadratic in η̂α, ˆ̄ηα̇ variables. We assume the

following general form of the commutator

[x̂m, x̂n] = Γmn
γδ [η̂γ , η̂δ] + Γmn

γ̇δ̇
[ˆ̄ηγ̇ , ˆ̄ηδ̇] + Γmn

δγ̇ [η̂δ, ˆ̄ηγ̇ ] + Γmn
δ η̂δ + Γmn

δ̇
ˆ̄ηδ̇ + iΘmn, (2.24)

where Γmn
γδ , Γmn

γ̇δ̇
, Γmn

δγ̇ , Γmn
δ , Γmn

δ̇
and Θmn are some constants of well defined parity.

Inserting eq. (2.24) into eqs. (2.22) allows one to express Γmn
γδ , Γmn

γ̇δ̇
, Γmn

δγ̇ , Γmn
δ , Γmn

δ̇
in

terms of Cαβ , Dα̇β̇ and Eαβ̇;

Γmn
γδ =

1

2
Dα̇β̇(σm)γα̇(σ

n)δβ̇ (2.25)

Γmn
γ̇δ̇

=
1

2
Cαβ(σm)αγ̇(σ

n)βδ̇

Γmn
δγ̇ =

1

2
Eαβ̇((σm)δβ̇(σ

n)αγ̇ − (σn)δβ̇(σ
m)αγ̇)

Γmn
δ̇

= Πmα(σn)αδ̇ −Πnα(σm)αδ̇

Γmn
δ = ∆mα̇(σn)δα̇ −∆nα̇(σm)δα̇

Moreover, one also finds the form of [âm, ân] commutators

[âm, ân] =
1

2
Dα̇β̇

− (σm)γα̇(σ
n)δβ̇ [ξ̂

γ , ξ̂δ] (2.26)

+
1

2
Cαβ
− (σm)αγ̇(σ

n)βδ̇[
ˆ̄ξγ̇ , ˆ̄ξδ̇]

+
1

2
Eαβ̇

− ((σm)γβ̇(σ
n)αδ̇ − (σn)γβ̇(σ

m)αδ̇)[ξ̂
γ , ˆ̄ξδ̇]

+ (∆mα̇
+ (σn)σα̇ −∆nα̇

+ (σm)σα̇)ξ̂
σ

+ (Πmα
+ (σn)ασ̇ −Πnα

+ (σm)ασ̇)
ˆ̄ξσ̇ + iΘmn

−

where Θmn
− is given by

Θmn
− = (δmp δnq − (e−ω̂)mp(e

−ω̂)nq)Θ
pq (2.27)

So, finally, we conclude that the commutation rules defining deformed N = 1 Euclidean

superspace, given by eqs. (2.15), (2.19), (2.20), (2.24), (2.25), are covariant under the

global space-time transformations (2.12), with the parameters (ξ̂, ˆ̄ξ, â, ω̂) satisfying the

commutation rules described by eqs. (2.13), (2.16), (2.17), (2.21), (2.22), (2.26) and (2.27).

It is interesting to note that coordinates commutators and those of parameters are simi-

lar. Also we see that the choice of grassmannian superspace sector deformations determines

to much extent the remaining commutation rules, both for coordinates and parameters.

The discussion of superspace deformations and their symmetries would not be com-

plete without considering (super)-Jacobi identities and superalgebraic structure of these

symmetries.

It appears that, in general, without further constraints on C, D, E, Π and ∆ matri-

ces the commutation rules for coordinates as well as for parameters, found above, are not

consistent with Jacobi identities. In fact, the ones involving: two grassmannian and one
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bosonic, two bosonic and one grassmannian and finally, three bosonic space-time coordi-

nates are not satisfied automatically if C, D, E matrices are arbitrary (for details concerning

Jacobi identities see appendix). Imposing Jacobi identities leads to a very complicated sys-

tem of equations on the elements of these matrices. The simplest non-trivial solutions to

these equations read

1.

Cαβ 6= 0, Πmβ 6= 0, Θmn 6= 0 (2.28)

Dα̇β̇ = 0, Eβα̇ = 0, ∆mβ̇ = 0

with Cαβ , Θmn being arbitrary c-numbers or even grassmannian constants and Πmβ

— arbitrary odd grassmannian ones and

2.

Cαβ = 0, Πmβ = 0, Θmn 6= 0 (2.29)

Dα̇β̇ 6= 0, Eβα̇ = 0, ∆mβ̇ 6= 0,

with Dα̇β̇ , Θmn being arbitrary even grassmannian constants (in particular, c-numbers)

and ∆mβ̇ - arbitrary odd grassmannian ones.

The solutions (2.28) (resp. (2.29)) describe the deformation of undotted (resp. dotted)

grassmannian sectors.

Deformation with Cαβ 6= 0 defining the so called N = 1
2 supersymmetry and its

extensions have been analyzed intensively in literature [58–61] (in particular, also by Seiberg

in ref. [49]).

It can be shown that if the elements of C, D, E matrices are c-numbers the solutions

given by eqs. (2.28)/(2.29) are the only non-trivial ones which do not impose any further

constraints on constants C, Π/D,∆. (for the proof see appendix ). On the other hand,

allowing the matrix elements to be even elements of some Grassmann algebra enables one

to construct non-trivial matrices C, D, E defining commutation rules consistent with Jacobi

identities.

The analysis of Jacobi identities for parameters of transformations can be performed

in a similar way as in the case of coordinates because the constants Cαβ
± , Dα̇β̇

± , Eβα̇
± , Πmβ

± ,

∆mβ̇
± appearing in commutators of parameters differ from those entering the coordinates

commutators by factors depending only on matrices AT , B† and e−ω̂ which commute

with all parameters. In particular, the constants given by eqs. (2.28) or((2.29) define

commutation rules for parameters which are consistent with Jacobi identities.

Finally, let us consider the coalgebraic structure of symmetry transformations. In

superspace SC(E) of functions on Euclidean supergroup the relevant mappings

co-product ∆ : SC(E) 7−→ SC(E)⊗ SC(E) (2.30)

co-unit ε : SC(E) 7−→ C

antipode S : SC(E) 7−→ SC(E)
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can be defined as follows

∆(e−ω)pq = (e−ω)pm ⊗ (e−ω)mq (2.31)

∆(ξγ) = ξγ ⊗ I + (AT )γδ ⊗ ξδ

∆(ξ̄γ̇) = ξ̄γ̇ ⊗ I + (B†)γ̇
δ̇
⊗ ξ̄δ̇

∆(ap) = (e−ω)pq ⊗ aq + ap ⊗ I − iξα(σp)αα̇(B
†)α̇

β̇
⊗ ξ̄β̇ − iξ̄α̇(σ̄m)α̇α(A

T )αγ ⊗ ξγ

∆((AT )αβ) = (AT )αγ ⊗ (AT )γβ

∆((B†)α̇
β̇
) = (B†)α̇γ̇ ⊗ (B†)γ̇

β̇

ε((e−ω)pq) = δpq (2.32)

ε(ap) = 0

ε((B†)α̇
β̇
) = δα̇

β̇

ε((AT )αβ) = δαβ

ε(ξα) =0

ε(ξ̄α̇) = 0

S((e−ω)pq) = (eω)pq (2.33)

S(am) = −(e−ω)mna
n

S(ξα) = −[(AT )−1]αβξ
β

S(ξ̄α̇) = −[(B†)−1]α̇
β̇
ξ̄β̇

S((AT )αβ) = [(AT )−1]αβ

S((B†)α̇
β̇
) = [(B†)−1]α̇

β̇

Direct check shows that the coproduct and counit maps are graded homomorphisms

of superalgebra while antipode map is its graded anti-homomorphism i.e.

∆(ab) = ∆(a)∆(b) (2.34)

ε(ab) = ε(a)ε(b)

S(ab) = (−1)|a||b|S(b)S(a),

(here |a|, |b| = 0, 1 denote the parities of a,b elements).

They satisfy the following identities:

(I ⊗∆)∆(a) = (∆⊗ I)∆(a) (2.35)

(I ⊗ ε)∆(a) = (ε⊗ I)∆(a) = a

m(I ⊗ S)∆(a) = m(S ⊗ I)∆(a) = ε(a)I

where m denotes the multiplication homeomorphism on the Hopf algebra. The multipli-

cation of elements with given parity in the superspace tensor product is given by equation

(a ⊗ b)(c ⊗ d) = (−1)|b||c|(ac ⊗ bd). This confirms that ∆, S and ε maps are well defined.
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What is more, one can verify that for the deformations considered above which obey Jacobi

identities (in particular those given by eqs. (2.28), (2.29)) both structures, superalgebraic

and supercoalgebraic ones, are consistent. This guarantees that the composition of two

generalized symmetry transformations depending on two commuting sets of parameters is

again generalized symmetry transformation with parameters satisfying the relevant commu-

tation rules. That, in turn, means that one deals with noncommutative Hopf superalgebras

i.e. Euclidean quantum supergroups which can be regarded as supersymmetric extensions

of θ — Euclidean group. This is the case for generalized transformations preserving the

N = 1
2 supersymmetry and its extensions given by eq. (2.28). The supersymmetric gener-

alizations of Θ-Euclidean group generated by these transformations can be considered as

global counterparts of appropriately twisted Euclidean superalgebra studied in [58–61].

2.2 N=1 deformed Minkowski Superspace

N=1 deformed Minkowski superspaces and their symmetries can be introduced and ana-

lyzed in a similar way as Euclidean ones. However, in the case of Poincare supergroup,

supertranslation generators Qα and Q̄α̇ transform according to two fundamental repre-

sentations of SL(2,C) group (universal covering of Lorentz group ) which are related by

hermitian conjugation transformation. Hence, in Poincare supergroup (Qα)
† = Q̄α̇. Such

condition does not have to hold for supertranslation generators in Euclidean case where two

fundamental representations of SU(2) × SU(2) group (universal covering of 4D rotation

group ) are independent. It appears that this apparently minor difference has significant

consequences making the Minkowski superspace much more deformation-resist then Eu-

clidean one.

Taking this difference into account one can write out a generic element g(ξ, ξ̄, a, ω)

of N = 1 Poincare supergroup in a similar way as in the Euclidean case. To this end

let Pm, resp Mmn, m = 0, 1, 2, 3 be the generators of translations ( am ), resp. Lorentz

transformations ( ωmn = −ωnm ) in Minkowski space, while Qα, Q̄α̇, α = 1, 2, α̇ = 1̇, 2̇

-odd generators of supertranslations (ξα, ξ̄α̇). Then

g(ξ, ξ̄, a, ω) = exp
{

i(ξαQα + Q̄α̇ξ̄
α̇)
}

exp{iamPm}exp{
i

2
ωmnMmn} (2.36)

The commuting am, ωmn and anticommuting ξα, ξ̄α̇ group parameters should verify

the following relations

(ξα)∗ = ξ̄α̇ (2.37)

(am)∗ = am

(ωmn)∗ = ωmn

(ξαξβ)∗ = ξ̄β̇ ξ̄α̇

(amξα)∗ = ξ̄α̇am

(aman)∗ = (anam)
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The counterparts of definitions (2.5), (2.6) read ( gmn = diag(1,−1,−1,−1))

σm = (I, σi) (2.38)

σ̄m = (I,−σi),

σmn =
i

4
(σmσ̄n − σnσ̄m) (2.39)

σ̄mn =
i

4
(σ̄mσn − σ̄nσm).

σmn, (resp. σ̄mn) are the generators of D
( 1
2
,0) (resp.D(0, 1

2
)) representations of sl(2,C). The

generators Qα, Q̄α̇, Mmn, Pm satisfy the following commutation rules

[Mab,Mcd] = −i(gacMbd + gbdMac − gadMbc − gbcMad) (2.40)

[Pm,Mab] = i(gmaPb − gmbPa)

[Pa, Pb] = 0

[Qα,Mmn] = (σmn)
β
α Qβ

[Q̄α̇,Mmn] = (σ̄mn)
α̇
β̇
Q̄β̇

{Qα, Qβ} = 0

{Q̄α̇, Q̄β̇} = 0

{Qα, Q̄β̇} = 2(σm)αβ̇Pm

[Qα, Pm] = 0

[Q̄α̇, Pm] = 0,

Let

A(ω) = e−
1

2
ωmnσmn A†(ω) = e

1

2
ωmnσ̄mn (2.41)

be the elements of D( 1
2
,0) resp. D(0, 1

2
) representations of SL(2,C) group. They obey

A(ω)σmA†(ω) = (e−ω)mnσ
n.

The commutation rules (2.40) imply the following composition law for N = 1 Poincare

supergroup:

g(ξ, ξ̄, a, ω)g(η, η̄, b, ω′) = g(Λ, Λ̄, c, ω′′) (2.42)

where:

Λα =ξα + (AT (ω))αβη
β (2.43)

Λ̄α̇ =ξ̄α̇ + (A†)(ω)α̇
β̇
η̄β̇

cm =(e−ω)mnb
n + am − iξα(σm)αα̇(A

†)(ω)α̇
β̇
η̄β̇

− iξ̄α̇(σm)αα̇(A
T )(ω)αβη

β

e
i

2
ω′′mnMmn =e

i

2
ωmnMmne

i

2
ω′mnMmn
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Now, dividing the N = 1 Poincare supergroup by the Lorentz group one obtains

N = 1 Minkowski superspace. It is parametrized by four commuting real coordinates xm,

m = 0, 1, 2, 3 and four anticommuting grassmannian ones ηα, η̄α̇, α = 1, 2, α̇=1̇, 2̇ which

obey the following condition:

(ηα)∗ = η̄α̇. (2.44)

The metric structure of bosonic sector is given by metric tensor gmn; in the fermionic sector

the role of metric tensor is played by completely antisymmetric symbols (2.1) and (2.2).

The action of N = 1 Poincare supergroup on Minkowski superspace implied by the

above definitions of the superspace and the composition rule reads:

g(ξ, ξ̄, a, ω) : (xm, ηα, η̄α̇) 7−→ (x′m, η′α, η̄′
α̇
) (2.45)

η′α =ξα + (AT (ω))αβη
β

η̄′
α̇
=ξ̄α̇ + (A†(ω))α̇

β̇
η̄β̇

x′m =(e−ω)mnx
n + am − iξα(σm)αα̇(A

†(ω))α̇
β̇
η̄β̇

− iξ̄α̇(σm)αα̇(A
T (ω))αβη

β

In order to obtain deformed N = 1 Minkowski superspace the commuting coordinates

xm, ηα, η̄α̇ are replaced by noncommuting quantities x̂m, η̂α, ˆ̄ηα̇ which satisfy some con-

sistent commutation rules as well as relations given by eqs. (2.37), (2.44). If covariance

of these rules is required the usual Poincare supertransformations have to be generalized

somehow. This can be done starting with the assumptions (a-d) formulated above in the

context of Euclidean case. Obviously, in the assumption c) the equation describing the

action of generalized Euclidean transformations on deformed Euclidean superspace should

be replaced by the following one:

g(ξ̂, ˆ̄ξ, â, ω̂) :(x̂m, η̂α ,̂̄ ηα̇) 7−→ (x̂′m, η̂′α ,̂̄ η′
α̇
) (2.46)

η̂′α =ξ̂α + (AT (ω̂))αβ η̂
β

ˆ̄η′α̇ =ˆ̄ξα̇ + (A†(ω̂))α̇
β̇
ˆ̄ηβ̇

x̂′m =(e−ω̂)mnx̂
n + âm − iξ̂α(σm)αα̇(A

†(ω̂)α̇
β̇
ˆ̄ηβ̇

− i ˆ̄ξα̇(σm)αα̇(A
T (ω̂))αβ η̂

β .

It gives the action of generalized Poincare transformations on deformed Minkowski

superspace.

Now, let us assume the simplest deformation of grassmannian sector of Minkowski

superspace:

{η̂α, η̂β} =Cαβ (2.47)

{η̂α, ˆ̄ηβ̇} =Eαβ̇

{ˆ̄ηα̇, ˆ̄ηβ̇} =C̄α̇β̇,
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The constants Cαβ , C̄α̇β̇ Eαβ̇ must satisfy the constraints implied by the counterpart

of eq. (2.44) for coordinates:

(Cαβ)∗ = C̄α̇β̇

(Eαβ̇)∗ = Eβα̇

Then, proceeding as in the Euclidean case we get the remaining commutation rules

which define Minkowski superspace deformations depending on two additional quantities

(Πmα)∗ = Π̄mα̇ and Θmn

[x̂m, η̂α] =iEαρ̇(σm)ρρ̇η̂
ρ + iCαρ(σm)ρρ̇ ˆ̄η

ρ̇ + iΠmα (2.48)

[x̂m, ˆ̄ηα̇] =iEρα̇(σm)ρρ̇ ˆ̄η
ρ̇ + iC̄α̇ρ̇(σm)ρρ̇η̂

ρ + iΠ̄mα̇,

[x̂m, x̂n] =
1

2
C̄α̇β̇(σm)γα̇(σ

n)δβ̇ [η̂
γ , η̂δ] (2.49)

+
1

2
Cαβ(σm)αγ̇(σ

n)βδ̇[ˆ̄η
γ̇ , ˆ̄ηδ̇]

+
1

2
Eαβ̇((σm)δβ̇(σ

n)αγ̇ − (σn)δβ̇(σ
m)αγ̇)[η̂

δ, ˆ̄ηγ̇ ]

+ (Π̄mα̇(σn)σα̇ − Π̄nα̇(σm)σα̇)η̂
σ

+ (Πmα(σn)ασ̇ −Πnα(σm)ασ̇)ˆ̄η
σ̇ + iΘmn,

The superalgebraic sector of corresponding generalized Poincare transformations reads

[AT (ω̂), •] =0 (2.50)

[A†(ω̂), •] =0

[e−ω̂, •] =0

{ξ̂α, ξ̂β} =Cαβ
−

{ ˆ̄ξα, ˆ̄ξβ} =C̄α̇β̇
−

{ξ̂α, ˆ̄ξβ̇} =Eαβ̇
−

[âm, ξ̂α] =iEαρ̇
+ (σm)ρρ̇ξ̂

ρ + iCαβ
+ (σm)ρρ̇

ˆ̄ξρ̇ + iΠmα
−

[âm, ˆ̄ξα̇] =iEρα̇
+ (σm)ρρ̇

ˆ̄ξρ̇ + iC̄α̇ρ̇
+ (σm)ρρ̇ξ̂

ρ + iΠ̄mα̇
−

[âm, ân] =
1

2
C̄α̇β̇
− (σm)γα̇(σ

n)δβ̇ [ξ̂
γ , ξ̂δ]

+
1

2
Cαβ
− (σm)αγ̇(σ

n)βδ̇[
ˆ̄ξγ̇ , ˆ̄ξδ̇]

+
1

2
Eαβ̇

− ((σm)γβ̇(σ
n)αδ̇ − (σn)γβ̇(σ

m)αδ̇)[ξ̂
γ , ˆ̄ξδ̇]

+ (Π̄mα̇
+ (σn)σα̇ − Π̄nα̇

+ (σm)σα̇)ξ̂
σ

+ (Πmα
+ (σn)ασ̇ −Πnα

+ (σm)ασ̇)
ˆ̄ξσ̇ + iΘmn

−
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where we have defined

Cαβ
± = [δαγ δ

β
δ ± (AT )αγ(A

T )βδ]C
γδ (2.51)

C̄α̇β̇
± = [δα̇γ̇ δ

β̇

δ̇
± (A†)α̇γ̇(A

†)β̇
δ̇
]C̄ γ̇δ̇

Eαβ̇
± = [δαγ δ

β̇

δ̇
± ((AT )αγA

†)β̇
δ̇
]Eγδ̇

Π̄mα̇
± = (δmp δα̇

β̇
± (e−ω̂)mp (A†)α̇

β̇
)Π̄pβ̇

Πmα
± = (δmp δαβ ± (e−ω̂)mp(A

T )αβ)Π
pβ

Θmn
− = (δmp δnq − (e−ω̂)mp(e

−ω̂)nq)Θ
pq.

As already mentioned above, in the Minkowski superspace case, dotted and undotted

grassmannian quantities are required to be related by conjugation transformation. This

is additional, as compared to Euclidean case, condition determining the structure of both

coordinates and parameters commutation rules. Due to it, in Minkowski superspace it is

not possible to deform only commutation rules containing dotted quantities (for instance)

leaving the rules containing undotted ones unchanged.

Consistency of Jacobi identities and commutation rules of space-time coordinates (

as well as those of parameters ) implies some complicated constraints on Cαβ , Eαβ̇ and

Πmβ constants, similarly as in Euclidean case. However, contrary to the latter case there

exist no matrices C and E with c-number elements which satisfy these constraints (see

appendix). In particular, there are no counterparts of ”obvious” Euclidean solutions given

by eqs. (2.28), (2.29). The elements of nontrivial C and E matrices have to be even elements

of some Grassmann algebras. What is more Πmβ constants can not be arbitrary but they

have to fulfill some additional constraint given by eqs:

(σn)ρρ̇(Π̄
mρ̇Πpρ +ΠmρΠ̄pρ̇)− (σm)ρρ̇(Π̄

nρ̇Πpρ +ΠnρΠ̄pρ̇) + cykl(p,m, n) = 0. (2.52)

The superalgebraic sector of deformed Minkowski superspaces can be introduced in a similar

way as in Euclidean case. It is described by eqs. (2.31), (2.32) and (2.33) where the matrices

B† and AT are replaced by A† and AT , defined by eqs. (2.41).

3 Summary

In general, commutation rules describing superspace deformations (quantizations) are not

compatible with the usual spacetime symmetries. In the present paper, starting from the

assumptions which are both simple and natural from ”physical” point of view we presented

a direct construction of generalized Euclidean/Poincare transformations which preserve a

wide class of commutation rules defining deformations of the relevant superspaces (includ-

ing most of those discussed in the literature). These generalized transformations act on

deformed superspaces in the standard way. However, they depend on noncommutative

parameters which satisfy some consistent commutation relations. If the algebraic sector

of transformations defined by these relations is consistent with coalgebraic structure one

deals with quantum symmetry supergroup. It is the case for Euclidean superspace defor-

mation given by eqs. (2.15), (2.19), (2.20) and (2.24), (2.25) with structure constants given
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by eqs. (2.28) or (2.29). The algebraic sector of the corresponding quantum symmetry

supergroup is given by eqs. (2.13), (2.16), (2.17), (2.21), (2.22) and (2.26), (2.27) (with the

same constants given by eqs. (2.28) or (2.29)) while the coalgebraic one is described by

eqs. (2.31), (2.32), (2.33), (2.34). This supersymmetric extension of θ — Euclidean group

can be considered as global counterpart of appropriately twisted Euclidean superalgebra

(which has been identified as nonanticommutative Hopf algebra preserving superspace de-

formation given by eqs. (2.28) or (2.29) (see refs. [58–61])). The intensively studied par-

ticular case of this deformation, the so called N = 1
2 supersymmetry (see for instance

ref. [45, 49]) corresponds to the solution C 6= 0 and Π = 0 = Θ.

It is worth noting that there is no Minkowski counterpart of this Euclidean superspace

deformation as long as elements of C, E matrices are assumed to be c-numbers. This is

basically due to the fact that in Minkowski superspace, unlike in Euclidean one, dotted

and undotted grassmannian quantities are related by conjugation transformation. One can

avoid this sort of no-go result by allowing the elements of C, E matrices to belong to some

Grassmann algebra.
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Note added. Recently there appeared the paper [74] dealing with the superextensions

of some twist deformations of Minkowski space-time.

A Jacobi identities

A.1 Euclidean superspace

It is straightforward to check that the Jacobi identities are not satisfied automatically if

C, D, E matrices entering coordinates or parameters commutation relations are arbitrary.

In fact, assuming the elements of these matrices to be c-numbers and imposing Jacobi

identities results in the following equations

(EXC)T = −EXC

(DXE)T = −DXE

EXE = −CXD (A.1)

with symmetric C and D

C = CT (T - denotes transposition) (A.2)

D = DT .
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These equations should be satisfied by an arbitrary 2× 2 matrix X ≡ Xnσ
n , Xn ∈ C.

Now, combining eqs. (A.1) written for X = E and for X = Id one arrives at contradic-

tion if C, D, E matrices are assumed to be nonzero ones. So, at least one of these matrices

should be zero. Putting C = 0 or D = 0 one finds detE = 0. Taking then the eigenvectors

of matrix E (at least one of them is the zero eigenvector) as columns of matrix X implies

that E = 0.

On the other hand if E = 0 than detC = 0 or detD = 0. Proceeding as in the previous

case one finds that C = 0 or D = 0.

It can be directly checked that if C 6= 0 , D = 0 = E or D 6= 0 , C = 0 = E then the

remaining Jacobi identities are satisfied without imposing any further constraints.

Finally, let us note that there exist Euclidean superspace deformations consistent with

Jacobi identities and given by nonzero C, D, E, Π, ∆ matrices provided the elements of

these matrices belong to some Grassmann algebra. (It follows from the relevant comutation

rules that Cαβ , Dα̇β̇ , Eαβ̇ should be even elements of this algebra while Πmα and ∆mα̇ the

odd ones. An example of such matrices is given below:

Cαβ =

[

ξ1ξ2c1 ξ1ξ3c2

ξ1ξ3c2 ξ1ξ4c3

]

ci ∈ C, Cαβ = Cβα

Dα̇β̇ =

[

ξ1ξ5d1 ξ1ξ6d2

ξ1ξ6d2 ξ1ξ7d3

]

di ∈ C, Dα̇β̇ = Dβ̇α̇

Eαβ̇ =

[

ξ1ξ8e1 ξ1ξ9e2
ξ1ξ10e3 ξ1ξ11e4

]

ei ∈ C

Πmα = ξ1Π̃mα, Π̃mα ∈ C

∆mα̇ = ξ1∆̃mα̇, ∆̃mα̇ ∈ C

where:

{ξA; {ξA, ξB} = 0, A,B = 1 . . . 11},

are generators of some Grassmann algebra.

A.2 Minkowski superspace

In Minkowski superspace case the counterpart of eqs. (A.1) reads:

(EXC)T = −EXC

(CXE)T = −C̄XE

EXE = −CXC̄ (A.3)

Inserting X = E into these equations leads to the conclusion that there are no nonzero

E, C matrices satisfying eqs. (A.3) if the elements of these matrices are assumed to be

c-numbers. However, if these elements are allowed to belong to some Grassmann algebra
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then there exist nonzero E, C matrices defining Minkowski superspace deformation. For

instance, such matrices can be taken in the form:

Cαβ =

[

c1ξ
1(ξ1)∗ξ2ξ3 c2ξ

1(ξ1)∗ξ4ξ5

c3ξ
1(ξ1)∗ξ6ξ7 c4ξ

1(ξ1)∗ξ8ξ9

]

C̄α̇β̇ =

[

(c1)
∗(ξ3)∗(ξ2)∗ξ1(ξ1)∗ (c2)

∗(ξ5)∗(ξ4)∗ξ1(ξ1)∗

(c3)
∗(ξ7)∗(ξ6)∗ξ1(ξ1)∗ (c4)

∗(ξ7)∗(ξ8)∗ξ1(ξ1)∗

]

Eαβ̇ =

[

e1ξ
1(ξ1)∗ξ10(ξ10)∗ e2ξ

1(ξ1)∗ξ11(ξ11)∗

e3ξ
1(ξ1)∗ξ11(ξ11)∗ e4ξ

1(ξ1)∗ξ12(ξ12)∗

]

Πmα̇ = (ξ1)∗(Πmα)∗

where:

C̄α̇β̇ = (Cαβ)∗ (Eαβ̇)∗ = Eβα̇

Πmα = ξ1Π̃mα Π̃mα ∈ C

and:

ξA, (ξA)∗ : A = 1 . . . 12, {ξA, ξB} = 0 = {ξA, (ξB)∗} = 0 = {(ξA)∗, (ξB)∗}

((ξA)∗)∗ = ξA (ξAξB)∗ = (ξB)∗(ξA)∗ = −(ξA)∗(ξB)∗

are generators of some Grassmann algebra.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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