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Abstract We construct a Kerr–Newman-like spacetime
starting from higher dimensional (HD) Einstein–Yang–
Mills black holes via complex transformations suggested by
Newman–Janis. The new metrics are a HD generalization of
Kerr–Newman spacetimes which has a geometry that is pre-
cisely that of Kerr–Newman in 4D corresponding to a Yang–
Mills (YM) gauge charge, but the sign of the charge term gets
flipped in the HD spacetimes. It is interesting to note that the
gravitational contribution of the YM gauge charge, in HD,
is indeed opposite (attractive rather than repulsive) to that of
the Maxwell charge. The effect of the YM gauge charge on
the structure and location of static limit surface and appar-
ent horizon is discussed. We find that static limit surfaces
become less prolate with increase in dimensions and are also
sensitive to the YM gauge charge, thereby affecting the shape
of the ergosphere. We also analyze some thermodynamical
properties of these BHs.

1 Introduction

The Kerr metric [1] is an explicit exact solution of the Einstein
field equations describing a spinning black hole (BH) in four
dimensional (4D) spacetime. It is well known that a BH with
non-zero spinning parameter, i.e., a Kerr BH, enjoys many
interesting properties distinct from its non-spinning coun-
terpart, i.e., from a Schwarzschild BH [2]. However, there
is a surprising connection between the two BHs of Einstein
theory, and this is analyzed by Newman and Janis [3]. They
demonstrated that applying a complex coordinate transfor-
mation, it was possible to construct both the Kerr and Kerr–
Newman solutions starting from the Schwarzschild metric
and Reissner–Nordström metric, respectively, [3]. The Kerr–
Newman describes the exterior of a spinning massive charged
BH [4]. The Newman–Janis Algorithm (NJA) is successful
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in analyzing several spinning BH metrics starting from their
non-spinning counterparts [5–17]. For a review on the NJA
(see, e.g., [18]). However, the NJA has often be considered
that there is arbitrariness and physicists considered this as an
ad-hoc procedure [19]. But Schiffer et al. [20] gave a very
elegant mathematical proof as to why the Kerr metric can be
considered as a complex transformation of the Schwarzschild
metric.

It is rather well established that higher dimensions pro-
vide a natural playground for string theory and they are also
required for its consistency [21,22]. Even from the classical
standpoint, it is interesting to study the higher dimensional
(HD) extension of Einstein’s theory, and in particular its BH
solutions [23]. There seems to be a general belief that endow-
ing general relativity with a tunable parameter, namely the
spacetime dimension, should also lead to valuable insights
into the nature of the theory, in particular into its most basic
objects: BHs. For instance, 4D BHs are known to have a
number of remarkable features, such as uniqueness, spherical
topology, dynamical stability, and the laws of BH mechan-
ics. One would like to know which of these are peculiar to
4D, and which are true more generally. At the very least, such
probings into HD will lead to a deeper understanding of clas-
sical BHs and of what space-time can do at its most extreme.
There is a growing realization that the physics of HD BHs
can be markedly different, and much richer than their coun-
terparts in 4D [2,24–26], e.g., the event horizon may not be
spherical in HD and also may have no BH uniqueness [22].
It is of interest to consider models based on different inter-
acting fields including the Yang–Mills (YM). In general, it
is difficult to tackle Einstein–Yang–Mills (EYM) equations
because of the non-linearity both in the gauge fields and in the
gravitational field. The solutions of the classical YM fields
depend upon the particular ansatz one chooses. Wu and Yang
[27] found static spherically symmetric solutions of the YM
equations in flat space for the gauge group SO(3). A curved
spacetime generalization of these models has been investi-
gated by several authors (see, e.g., [28]). Indeed Yasskin [28]
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has presented an explicit procedure based on the Wu–Yang
ansatz [27] which gives the solution of EYM rather trivially.
Using this procedure, Mazharimousavi and Halilsoy [29–31]
have found a sequence of static spherically symmetric HD
EYM BH solutions. The remarkable feature of this ansatz is
that the field has no contribution from the gradient; instead,
it has a pure YM non-Abelian component. It, therefore, has
only the magnetic part.

The strategy of obtaining the familiar Kerr–Newman solu-
tion, both in 4D and HD, in general relativity is based on
either using the metric ansatz in the Kerr–Schild form or
applying the method of complex coordinate transformation
to a non-rotating charged black hole. Surprisingly, it has been
demonstrated that when employing HD dimensional space-
time the two approaches lead to the same result [32,33] The
main purpose of this work is to apply NJA to the HD EYM
BH metric previously discovered in [29–31] and the spin-
ning HD EYM BH metric is obtained. This result shows that
NJA works well also in HD spacetime. We further discuss
the properties of the spinning HD EYM BH such as horizons
and ergosphere. Spinning BH solutions in higher dimensions
are known as Myers–Perry BHs [26]. The thermodynamical
quantities associated with the spinning HD EYM BH are
also calculated. Further we demonstrate that the thermody-
namical quantities of this BH go over to the corresponding
quantities of Myers–Perry BH and Kerr BH.

2 Static BH in HD EYM theory

We consider a (N + 1)(N + 2)/2 parameter Lie group with
structure constants C (α)

(β)(γ ). The gauge potentials A(α)
a and

the YM fields F (α)
ab are related through the equation

F (α)
ab = ∂a A(α)

b − ∂b A(α)
a + 1

2σ
C (α)

(β)(γ ) A(β)
a A(γ )

b . (1)

Then one can choose the gravity and gauge field action
(EYM), which in (N + 3)-dimensions reads [29,30,34]

IG = 1

2

∫
M

dx N+3√−g

⎡
⎣R −

(N+1)(N+2)/2∑
α=1

F (α)
ab F (α)ab

⎤
⎦ .

(2)

Here, g = det(gab) is the determinant of the metric tensor, R
is the Ricci Scalar and A(α)

a are the gauge potentials. We note
that the internal indices {α, β, γ, ...} do not differ whether
in covariant or in contravariant form. We introduce the Wu–
Yang ansatz in (N + 3) dimensions [29–31] as

A(α) = Q

r2 (xi dx j − x j dxi )

2 ≤ i ≤ N + 2,

1 ≤ j ≤ i − 1,

1 ≤ (α) ≤ (N + 1) (N + 2)/2,

(3)

where the super index α is chosen according to the values of i
and j in order and we choose σ = Q [29–31]. The Wu–Yang
solution appears to be highly non-linear because of mixing
between spacetime indices and gauge group indices. How-
ever, it is linear as expressed in the non-linear gauge fields
because a purely magnetic gauge charge is chosen along with
a position-dependent gauge field transformation [28]. The
YM field 2 form is defined by the expression

F (α) = dA(α) + 1

2Q
C (α)

(β)(γ ) A(β) ∧ A(γ ). (4)

The integrability conditions

dF (α) + 1

Q
C (α)

(β)(c) A(β) ∧ F (γ ) = 0, (5)

as well as the YM equations

d ∗ F (α) + 1

Q
C (α)

(β)(γ ) A(β) ∧ ∗F (γ ) = 0, (6)

are all satisfied. Here d is the exterior derivative, ∧ stands for
the wedge product and ∗ represents Hodge duality. All these
are in the usual exterior differential forms notation.

Variation of the action with respect to the space-time met-
ric gab yields the EYM equations

Gab = Tab, (7)

where the gauge stress-energy tensor is

Tab =
(N+1)(N+2)/2∑

α=1

[
2F (α)λ

a F (α)
bλ − 1

2
F (α)

λσ F (α)λσ gab

]
. (8)

In general, it is difficult to solve the EYM (7). However, the
Wu–Yang ansatz [27] facilitates obtaining the solution.

The metric for the HD EYM BH [31] obtained using the
Wu–Yang ansatz [27] is given by

ds2 = f (r) dt2 − f (r)−1 dr2 − r2d�2
N+1, (9)

with

f (r) = 1 − μ

r N
− N

(N − 2)

Q2

r2 , N �= 2,

where

d�2
N+1 = dθ2

1 + sin2 θ1dθ2
2 + sin2 θ1 sin2 θ2dθ2

3 + · · ·

+
⎡
⎣
⎛
⎝ N∏

j=1

sin2 θ j

⎞
⎠ dθ2

N+1

⎤
⎦ ,

where μ is the integration constant, which can be related
to mass M and D = N + 3 is the number of spacetime
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dimensions. Since Tab go as r−4 (the same as for Maxwell
field in 4D), interestingly for all D ≥ 6. That is why its
contribution in f (r) is the same for all D ≥ 6 as in Reissner–
Nordström. There is, however, an important difference in the
sign before Q2/r2 term. In the 4D case, it is exactly like a
Reissner–Nordström BH, i.e., positive. In contrast to 4D, the
sign before Q2/r2 is negative for D ≥ 6. On the other hand, if
the YM gauge charge is switched off (Q = 0), the metric (9)
reduces to the well-known Schwarzschild–Tanghelini metric
[2]. In addition if N = 1, one may note that it reduces to the
Schwarzschild metric. When N = 1, the metric (9) is exactly
that of a Reissner–Nordström BH with Q as the YM gauge
charge.

3 Spinning HD EYM BH via NJA

We want to derive the axially symmetric spinning ana-
log of the static spherically symmetric EYM BH adapting
Newman–Janis [3] complex transformation. Newman et al.
[3] discovered curious derivations of stationary, spinning
metric solutions from static, spherically symmetric solutions
in 4D Einstein theory. In order to derive spinning HD EYM
BH, we start with the non-spinning version of the HD EYM
BH metric (9), with f (r) given by

f (r) = 1 − μ

r N
− Q2

0

r2 , Q2
0 = N

(N − 2)
Q2,

as a seed solution to construct its spinning counterpart. Fol-
lowing Newman and Janis [3] the first step is to write the
metric (9) in advanced Eddington–Finkelstein coordinates
by the following coordinate transformation:

du = dt − f (r)−1dr, (10)

we obtain

ds2 = f (r)du2 + 2dudr − r2d�2
N+1. (11)

The metric (11) can be written in terms of a null veiltrad Za =
(la, na, ma

1, m̄1
a, ma

2, m̄2
a, . . . , ma

(N+1)/2, m̄b
(N+1)/2),

[3,14] as

gab = lanb + lbna − ma
1m̄b

1 − ma
2m̄b

2, . . . ,

−ma
(N+1)/2m̄b

(N+1)/2, (12)

where the null vieltrad are

la = δa
r ,

na =
[
δa

u − 1

2

(
1 − μ

r N
− Q2

0

r2

)
δa

r

]
,

ma
k = 1√

2r sin θ1 sin θ2, . . . , sin θ(k−1)

×
(

δa
θk

+ i

sin θk
δa
θ(k+1)

)
,

where D = N + 3, is spacetime dimension and k is
used to denote the number of vectors which take values
1, 2, 3, . . . , (N +1)/2, e.g., in 6D k is 2, which corresponds
to the following vector:

ma
1 = 1√

2r

(
δa
θ1

+ i

sin θ1
δa
θ2

)
,

ma
2 = 1√

2r sin θ1

(
δa
θ2

+ i

sin θ2
δa
θ3

)
.

Here we assume N is odd, i.e., the spacetime dimension D is
even. However, the final result is independent of this assump-
tion. Note that la and na are real, ma

k , m̄k
a are mutually com-

plex conjugate. This vieltrad is orthonormal and obeys metric
conditions. We have

lala = nana = (mk)a(mk)
a = (m̄k)a(m̄k)

a = 0,

la(mi )
a = la(m̄k)

a = na(mk)
a = na(m̄k)

a = 0,

lana = 1, (mk)a(m̄k)
a = 1.

Now we allow for some r factor in the null vectors to take on
complex values. Following [5,11], we rewrite the null vectors
in the form

la = δa
r ,

na =
[
δa

u − 1

2

(
1 − μ

2r N−1

[
1

r
+ 1

r̄

]
− Q2

0

rr̄

)
δa

r

]
,

ma
k = 1√

2r̄ sin θ1 sin θ2 . . . sin θ(k−1)

(
δa
θk

+ i

sin θk
δa
θ(k+1)

)
,

with r̄ being the complex conjugate of r . In 4D there is only
one possible spinning axisymmetric spacetime, and there
is therefore only one angular momentum parameter. In HD
there are several choices of the spinning axis and there is a
multitude of angular momentum parameters, each referring
to a particular spinning plane. We concentrate on the simplest
case for which there is only one angular momentum param-
eter, which we shall denote by a. Next we perform a similar
complex coordinate transformation, in the HD, as used by
Newman and Janis [3] by defining a new set of coordinates
(u′, r ′, θ ′

i ), where i = 1, . . . , (N + 1)/2 by the relations

x ′a = xa + ia(δa
r − δa

u ) cos θ1

→
⎧⎨
⎩

u′ = u − ia cos θ1,

r ′ = r + ia cos θ1,

θ ′
i = θi

(13)

Simultaneously let the null vieltrad vectors Za undergo a
transformation Za = Z ′a∂x ′a/∂xb in the usual way; we
obtain
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la = δa
r ,

na =
[
δa

u − 1

2

(
1 − μ

r N−2�
− Q2

0

�

)
δa

r

]
,

ma
k = 1√

2(r + ia cos θ1) sin θ1 sin θ2, . . . , sin θ(k−1)

×
(

ia(δa
u − δa

r ) sin θ1 + δa
θk

+ i

sin θk
δa
θ(k+1)

)
,

where we have dropped the primes. From the new null viel-
trad, a new metric is discovered using (12), which can be
written as

ds2 =
(

1 − μ

r N−2�
− Q2

0
�

)
du2 + 2dudr − 2a sin2 θ1drdθ2

−�dθ2
1 −

[
(r2 + a2) +

(
μ

r N−2�
+ Q2

0
�

)
a2 sin2 θ1

]

× sin2 θ1dθ2
2 − 2a

(
μ

r N−2�
+ Q2

0
�

)
sin θ2

1 dudθ2

−r2d�2
N−1, (14)

where � = r2 + a2 cos θ2
1 . Thus, we have obtained a spin-

ning BH corresponding to HD EYM BH. Also note that the
derived HD metric (14) via NJA is in Kerr-like coordinates
[6]. A further simplification is made on taking a coordinate
transformation as in Ref. [6]. This transformation leaves only
one off-diagonal element and we arrive at the following:

ds2 =
(

� − a2 sin2 θ1

�

)
dt2 − �

�
dr2 + 2a

×
[

1 −
(

� − a2 sin2 θ1

�

)]
dtdθ2 − �dθ2

1

−
[
� + a2 sin2 θ1

(
2 − � − a2 sin2 θ1

�

)]

× sin2 θ1dθ2
2 − r2 cos2 θ1d�2

N−1, (15)

where on substituting back the value of Q0 in terms of Q, �
reads

� = r2 + a2 − μ

r N−2 − N

(N − 2)
Q2. (16)

Equation (15) is in Boyer–Lindquist coordinates. Here, we
have also introduced

� = a2 sin2 θ1 + �G(r, θ1),

G(r, θ1) = � − a2 sin2 θ1

�
.

Thus, we are able to generate a HD axisymmetric solution
starting with HD static spherically symmetric EYM BH solu-
tions using the approach originally proposed by Newman–
Janis [3], i.e., we have an explicit YM gauge charged HD
spinning BH solution. One can see that HD metric (15) shows
the behavior of a metric produced by a spinning charged

source. In the limit N = 1, the geometry of solution (15) is
precisely of the Kerr–Newman form [6] and the charge that
determines the geometry is the YM gauge charge. Thus we
have an exact HD Kerr–Newman-like solution, but Q cor-
responds to the magnetic charge. Hereafter, we refer to the
solutions (15) as spinning HD EYM BH solutions. For a van-
ishing YM gauge charge Q = 0, one recovers Myers–Perry
BH solution discussed in [26]. The Reissner–Nordström BH
are recovered in the limit a = 0 and N = 1. The HD EYM
BH [31] are discovered for the vanishing spinning parameter
a = 0. It is nice to see that the HD metric (15) gives an all-
correct limit. We still have to ensure that the HD metric (15)
indeed solves the EYM equations (7). The NJA is widely
used in general relativity and is correct for 4D. If D �= 4,
the trace of the EMT (8) tensor is not equal to zero, then
R �= 0. This makes the problem of rotation in the HD-EYM
case more complicated. It is well known that there is also
a dispute over the existence of Kerr–Newman solutions in
higher dimensions [32]. The Kerr–Newman solution in gen-
eral relativity is obtained either using the metric ansatz in
the Kerr–Schild form or applying the method of a complex-
coordinate transformation to a non-rotating charged black
hole. However, it turns out that the two procedures lead to
the same metric [33]. We have presented a HD version of a
rotating EYM BH solution using the complex transformation
and we demonstrated that it has all properties of a rotating
BH. We have justified that the properties of metric (15) are
very similar to Kerr/Kerr–Newman. In particular, we have
also calculated an event horizon and time-like limit surface
and they are also similar to a Myers–Perry BH.

Equation (15) has parameters μ and a, which are, respec-
tively, related to the mass (M) and the angular momentum
(J ) via the relations

M = (N + 1)

16π
AN+1μ, J = 1

8π
AN+1μa

and

M

J
= (N + 1)

2
a. (17)

The determinant g of the metric (15) gives

√−g = √
γ�r N−1 sin θ cosN−1 θ, (18)

and AN+1 is the area of a unit (N +1) sphere, which is given
by

AN+1 =
∫ 2π

0
dθ2

∫ π

0
sin θ1 cosN−1 θ1dθ1

×
N−1∏
i=3

∫ π

0
sin(N−1)−i θi dθi = 2π(N+2)/2

�(N + 2)/2
. (19)
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Fig. 1 The temperature profile shown as function of r+ for different dimensions D with three different values of the YM gauge charge parameter
Q
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Fig. 2 The behavior of entropy as a function of horizon radius r+ for different dimensions D with three different values of rotation parameter a

The angular velocity at the horizon is given by

�H = a

r+2 + a2 . (20)

The area of the event horizon (EH) for the metric (15) can be
given by the standard definition of the horizon area [35] as:

AH =
∫

ρ(r=r+)

√
ηdθ1dθ2d N−1ρ,

which trivially solves to

AH = r+N−1(r+2 + a2)AN+1.

The entropy of the BH typically satisfies the area law of
the entropy, which states that the entropy of the BH is one
fourth of the area of EH [36]. The horizon area and the sur-
face gravity of the solution are related to the entropy and
the temperature, respectively, S = AH /4 and T = κ/2π .
Thus the expression for the entropy and the temperature of
the spinning HD EYM BH on the horizon are

S = r+N−1(r+2 + a2)AN+1

4
,

T = (N − 2)(r+2 + a2) + 2r+2 − N Q2

4πr+(r+2 + a2)
.

In the appropriate limit the physical quantities derived above
reproduce the corresponding qualities of a Myers–Perry BH
when Q = 0, of a Kerr–Newman BH if N = 1 and when
both Q = 0 and N = 1, we get these quantities associated
with Kerr BH. In Figs. 1 and 2, we plot the temperature and
the entropy of the spinning HD EYM BH, respectively. It
is interesting to note from Fig. 1 that at a low value of the
YM gauge charge the temperature is at maximum in HD but
as Q is increased the temperature starts to increase from a
minimum value and on reaching a maximum value, it starts
to decay. We note that the rate of decrease in temperature
slows down with the increase in Q. The entropy for the 4D
case, N = 1, is always positive even for vanishing horizon
radius, r+ = 0, but it is zero in the HD case for r+ = 0.
The dependence of the entropy on the horizon radius, r+, is
shown in Fig. 2, which also confirms the area law for our
solution, i.e., the entropy is increasing with the radius of the
horizon.

4 Horizon properties

It is natural to discuss not only spinning BH solutions but
their various properties. It is known that the structure of a
spinning BH is very different from that of a stationary BH.
The EH of a spinning BH is smaller than the EH of an other-
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wise identical but non-spinning one. Similar to Kerr solutions
in asymptotically flat spacetimes the above metric has two
types of horizon-like hypersurface: a stationary limit surface
(SLS) and an EH. Within the stationary limit, no particles
can remain at rest, even though they are outside the EH. We
shall explore the two horizons SLS and EH of spinning HD
EYM BH, and also we shall discuss the effects which come
from the YM gauge charge and also the effects due to the
spacetime dimension.

4.1 SLS and EH

Let us now address the horizon properties of the solution,
beginning with SLS. The SLS is the boundary of the region
in which an observer traveling along a time-like curve can
follow the orbits of the asymptotic time translation Killing
vector ∂/∂t and so remain stationary with respect to infinity.
Physical observers cannot follow the orbit of ∂/∂t beyond the
EH surface since in that region they are space-like orbits. On
this surface the Killing vector ∂/∂t is null. They are surfaces
of infinite redshift, and for the spinning HD EYM BH one
requires that the prefactor gtt of the dt2 term in the metric
vanish. It follows that the SLS will satisfy

r N +
[

a2 cos2 θ − N

(N − 2)
Q2
]

r N−2 − μ = 0. (21)

On the other hand, surfaces at which a particle traveling on
a time-like curve from a point on or inside the surface cannot
get outside the surface and so cannot get out to infinity is an
EH. An EH is a solution of � = 0 and thus it must satisfy

r N +
[

a2 − N

(N − 2)
Q2
]

r N−2 − μ = 0. (22)

4.1.1 4D case

When N = 1, i.e., in 4D, recalling that μ = 2M , we recover
the well-known results for the Kerr–Newman metric:

ds2 =
(

1 − 2Mr

�
+ Q2

�

)
dt2 − �

�
dr2 − �dθ2

−
[
(r2 + a2) +

(
2Mr

�
− Q2

�

)
a2 sin2 θ

]
sin2 θdφ2

+2a

(
2Mr

�
− Q2

�

)
sin2 θdtdφ, (23)

with θ1 = θ , θ2 = φ and in (15) μ = 2M . Equation (22), for
N = 1, is simplified to

� = r2 + a2 − 2Mr + Q2, (24)

which admits a solution r±, identified as outer and inner EH.
The EH of (23) are

r±
EH = M ±

√
(M2 − Q2) − a2. (25)

If a2 < (M2 − Q2), there exist two horizons, when a2 →
(M2 − Q2), the two horizons coincide, i.e., the extremal case
and if a2 > (M2 − Q2), then there exists no horizon, i.e., one
has a naked singularity. For SLS, N = 1 in (21), it reduces
to

r2 − 2 Mr + a2 cos2 θ + Q2 = 0, (26)

which trivially solves to

r±
SLS = M ±

√
(M2 − Q2) − a2 cos2 θ. (27)

These are regular outer and inner SLSs for a Kerr–Newman
BH when a2 cos2 θ < (M2 − Q2), and further in the non-
spinning limit a → 0, SLS and EH coincide with

r± = M ±
√

M2 − Q2, (28)

which are outer and inner EH of Reissner–Nordström BH.
Thus the Kerr–Newman BH, in the limit a → 0, degenerates
to a Reissner–Nordström BH.

4.1.2 6D case

Equation (22) for the N = 3 or 6D case reduces to

r3 + (a2 − 3Q2)r − μ = 0, (29)

which gives EH as

r+
E H = (27μ +√

729μ2 + δ)1/3

3 × 21/3

− 21/3(a2 − 3Q2)

(27μ +√
729μ2 + δ)1/3

,

with δ = 4(3a2 − 9Q2)3.
Equation (21) reduces to

r3 + (a2 cos2 θ − 3Q2)r − μ = 0, (30)

which can be solved to

r+
SL S = (27μ +√

729μ2 + δ)1/3

3 × 21/3

− 21/3(a2 cos2 θ − 3Q2)

(27μ +√
729μ2 + δ)1/3

,

with δ = 4(3a2 cos2 θ − 9Q2).

4.1.3 7D Case

Equation (22), for 7D, reduces to

r4 + (a2 − 2Q2)r2 − μ = 0. (31)
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Fig. 3 Plot of �(r) to show the behavior of horizon of spinning HD EYM BH for different dimensions D with three different values of YM gauge
charge parameter Q. Here we choose M = 1

So, we get the EH as

r+
E H =

√
1

2

√
4μ + δ1 + 1

2
(2Q2 − a2),

with δ1 = a4 + 4Q2 − 4a2 Q2.
Equation (21) can be written as

r4 + (a2 cos2 θ − 2Q2)r2 − μ = 0, (32)

which admits the solution

r+
SLS =

√
1

2

√
4μ + δ2 + 1

2
(2Q2 − a2 cos2 θ),

with δ2 = a4 cos4 θ − 4a2 cos2 θ + 4Q2.
Thus, the SLS and EH depends on the spacetime dimen-

sion. For HD we note that

lim
r→0

�(r) = −μ < 0, lim
r→+∞ �(r) = ∞, �′(r) ≥ 0.

(33)

It is seen that �′(r) ≥ 0 for D ≥ 6. However, it is seen
that Eqs. (21) and (22) have just one positive root for HD
(D ≥ 6), i.e., just one EH and SLS in HD. This means
that there is no extremal spinning BH when D ≥ 6. The
effect of the YM gauge charge on the horizon is shown in
Fig. 3. It turns out that the radius of EH is decreasing with
the spacetime dimension. On the other hand, it increases with
the value of the YM gauge charge. One gets the same result
for SLS and we do not present them here.

4.2 Ergosphere

For the Schwarzschild and Reissner–Nordström BH, it is pos-
sible that a traveler can approach arbitrarily close to the EH
while remaining stationary with respect to infinity. This is
not the case for the Kerr/Kerr–Newman BH. The spinning
BH drags the surrounding region of spacetime, causing the
traveler to spin regardless of any arbitrarily large thrust that
he can provide. The ergoregion is the region in which this

happens and is bounded by the ergosphere. On plotting the
SLS and EH for a spinning HD EYM BH, it can be verified
that the SLS always lies outside the EH for all dimensions
D. The ergosphere is plotted in Figs. 4 and 5. The ergosphere
is defined to be the place where the vectors ∂t parallel to the
time-axis are not time-like but space-like. An ergosphere,
thus, is a region of spacetime where no observer can remain
still with respect to the coordinate system in question. Thus
the ergosphere of a spinning HD EYM BH, as in Kerr/Kerr–
Newman BH, is bounded by the EH on the inside and an
oblate spheroid SLS, which coincides with the EH at the poles
and is noticeably wider around the equator. It is the region of
spacetime where time-like geodesics remain stationary and
time-like particles can have negative energy relative to infin-
ity. It is theoretically possible to extract energy and matter
from the BH from the ergosphere [37]. In Fig. 4 we show the
dependence of the shape of the ergosphere on the YM gauge
charge. It is noticed that for D = 4 the shape of the ergo-
sphere is increasing with the increase in the YM gauge charge
while decreasing for D ≥ 6. This shows that the shape of the
ergosphere is sensitive to the YM gauge charge. In Fig. 5
the variation of the shape of ergosphere with a is shown. We
note that the relative shape of the ergosphere becomes more
prolate, thereby increasing the area of the ergosphere with
rotation parameter a, i.e., the faster the BH rotates, the more
the ergosphere grows. This may have direct consequences on
the Penrose energy extraction process [37].

5 Conclusion

In this paper, we have extended NJA in order to construct
a spinning BH from HD EYM BH. The method does not
use a field equation but works on the HD spherical solution
to generate spinning solutions. The algorithm is very use-
ful since it directly allows us to construct a spinning BH
in HD, which otherwise could be extremely cumbersome.
Originally, the NJA was applied to the Reissner–Nordström
solution to obtain a Kerr–Newman solution [5]. The metric
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Fig. 4 Plots showing a cross section of SLS and EH and the variation of the ergosphere for different dimensions D with three different values of
the YM gauge charge parameter Q

(15) is stationary, axisymmetric, and asymptotically flat. It
depends on the mass, the YM gauge charge, and the spinning
parameter, which reduces to the Kerr BH [1] (N = 1, Q = 0)

and the Myers–Perry BH [26] (Q = 0). The solution in 4D
(N = 1) has precisely the geometry of Kerr–Newman [5],
but the charge that determines the geometry is the YM gauge
charge. Also, it is easy to check that the metric (15) in 4D
(N = 1) is a solution of the EYM (7). Thus, we can say that
a spinning BH solution of the Einstein–Maxwell equations
is also solution of EYM, but the charge Q is the YM gauge
charge and not the electric charge. However, this is not true
in HD. Our spinning HD EYM BH solution deviates from
the HD Kerr–Newman case [32] because �(r) for the latter
is given by

�K N (r) = r2 + a2 − μ

r N−2 + Q2

r2(N−1)
. (34)

The corresponding �(r) in a spinning HD EYM BH is given
by (16). The difference in the last term of (16) and (34)

is because of the fact that the charge term Q2/r2 in the
solution (9) is dimension independent, while it would go
as Q2/r2(N−1) in HD Reissner–Nordström. It may be noted
that HD Reissner–Nordström can be used to obtain HD Kerr–
Newman using NJA [6]. The two kinds of horizon-like sur-
faces viz. SLS and EH are studied. In 4D, it turns out that
there exist two horizon-like surfaces corresponding to two
positive roots, which are identified as inner and outer hori-
zons. However, in HD there exists only one positive root and
thereby only one SLS and EH. It is interesting to see that the
structure of the SLS, EH, and ergosphere are sensitive to the
YM gauge charge parameter Q.

The physical properties of the solutions have not yet been
fully investigated, this being a very severe job. However, we
are currently working on this project. We have also shown
that the presence of a YM gauge charge decreases the tem-
perature with increase in gauge charge parameter Q. Such a
change could have a significant effect in the thermodynamics
of a BH. Hence, it will be of interest to see how the YM gauge

123



Eur. Phys. J. C (2014) 74:3016 Page 9 of 10 3016

D 4 ; Q 0.2 ; a 0.3

r

2 1 1 2

2

1

1

2

D 4 ; Q 0.2 ; a 0.4

r

2 1 1 2

1.5

1.0

0.5

0.5

1.0

1.5
D 4 ; Q 0.2 ; a 0.5

r

2 1 1 2

1.5

1.0

0.5

0.5

1.0

1.5

D 6 ; Q 0.2 ; a 0.6

r

0.5 0.5

0.6

0.4

0.2

0.2

0.4

0.6

D 6 ; Q 0.2 ; a 0.8

r

0.5 0.5

0.4

0.2

0.2

0.4

D 6 ; Q 0.2 ; a 1

r

0.5 0.5

0.4

0.2

0.2

0.4

D 7 Q 0.2 ; a 0.75

r

0.5 0.5

0.6

0.4

0.2

0.2

0.4

0.6

D 7 Q 0.2 ; a 1

r

0.5 0.5

0.4

0.2

0.2

0.4

D 7 Q 0.2 ; a 1.25

r

0.5 0.5

0.4

0.2

0.2

0.4

Fig. 5 Plots showing the cross sections of SLS and EH and the dependence of the shape of the ergosphere for different dimensions D with three
different values of the rotation parameter a

charge affects the thermodynamics by deriving a Smarr-like
relation and the first law, and also analyzing stability. Fur-
ther analysis of these solutions and the role of the YM gauge
charge and spacetime dimension in an energy extraction pro-
cess remains an interesting issue to explore in the future.
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