
ORIGINAL ARTICLE

An improved SOM algorithm and its application to color feature
extraction

Li-Ping Chen • Yi-Guang Liu • Zeng-Xi Huang •

Yong-Tao Shi

Received: 30 April 2012 / Accepted: 26 February 2013 / Published online: 27 April 2013

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Reducing the redundancy of dominant color

features in an image and meanwhile preserving the diver-

sity and quality of extracted colors is of importance in

many applications such as image analysis and compression.

This paper presents an improved self-organization map

(SOM) algorithm namely MFD-SOM and its application to

color feature extraction from images. Different from the

winner-take-all competitive principle held by conventional

SOM algorithms, MFD-SOM prevents, to a certain degree,

features of non-principal components in the training data

from being weakened or lost in the learning process, which

is conductive to preserving the diversity of extracted fea-

tures. Besides, MFD-SOM adopts a new way to update

weight vectors of neurons, which helps to reduce the

redundancy in features extracted from the principal com-

ponents. In addition, we apply a linear neighborhood

function in the proposed algorithm aiming to improve its

performance on color feature extraction. Experimental

results of feature extraction on artificial datasets and

benchmark image datasets demonstrate the characteristics

of the MFD-SOM algorithm.

Keywords Self-organizing map � Color feature

extraction � Non-principal component � Competitive

mechanism

1 Introduction

Despite much progress in the field of feature extraction in

recent years, achieving robust and effective features

remains a challenging problem. The self-organizing map

(SOM) [1–3], which is known as an unsupervised learning

algorithm, has been widely and successfully applied to

many problem domains, such as speech recognition, image

and video processing [4–9]. In those applications, charac-

teristics of SOM algorithm, including feature extraction,

vector quantization, dimension reduction, and topology

preservation, play important roles. However, based on the

thought that an algorithm should extract as much and as

accurate description as possible to the training data, fea-

tures extracted by conventional SOM algorithm are usually

redundant, especially the features extracted from the prin-

cipal components in the training data. Moreover, some

heuristic or discriminative features could be represented

coarsely, or even lost, after learning just because of their

lower ratios in the training data. Therefore, it is of great

interest to improve conventional SOM to extract more

robust and diverse features.

To a certain degree, the quality of features extracted by the

SOM algorithm depends on the neighborhood function, which

determines the local distribution of weight vectors of neurons

in the lattice. Generally, four types of neighbor functions are

available, including ‘‘bubble’’, ‘‘Gaussian’’, ‘‘cut-gauss’’, and

‘‘ep’’ (or Epanechikov function) [10]. Different from those

symmetric neighborhood functions, Aoki and Aoyagi [11]

proposed an asymmetric neighborhood function to accelerate

the ordering process of SOM algorithm.

For the purpose of visual display, the rectangular or

hexagonal lattice is frequently used in practice. Due to the

well-known problem called boundary or edge effect for

such irregular network topologies as rectangular or

L.-P. Chen � Y.-G. Liu (&) � Z.-X. Huang � Y.-T. Shi

Lab of Vision and Image Processing, College of Computer

Science, Sichuan University, Chengdu 610065, China

e-mail: lygpapers@yahoo.com.cn

L.-P. Chen

College of Information and Engineering, Tarim University,

Alaer 843300, China

123

Neural Comput & Applic (2014) 24:1759–1770

DOI 10.1007/s00521-013-1416-9



hexagonal topologies, regular hyperbolic and spherical

topologies satisfying each neuron owns an equal number of

neighbors in the lattice have also been studied [12–15].

Additionally, to overcome the limitations of the static

network structure, dynamic and growing lattices have been

applied to fields like automatic organizing of documents

and knowledge discovery [16–18]. Inspired by the regular

hyperbolic and spherical topologies, a simplified regular

rectangular lattice is adopted in the proposed algorithm.

Early evaluations of the performance of the SOM

algorithm mainly focus on comparisons with other tech-

niques, such as principal component analysis and k-means

clustering [19]. However, recently, Kohonen et al. [20]

figured out that this kind of comparison was usually taken

as self-evident. After careful and systematic examination,

they found that results of comparisons depend most

strongly on the ratio of the number of training vectors and

the number of model vectors. Their conclusion reveals

important factors acting on the competitive learning.

In order to improve the computational performance of the

SOM algorithm, several variants, such as the conscience and

the batch-update algorithms, have been proposed [1, 2, 21].

Although much progress have been made, the expensive time

consumed by the SOM algorithm still hinders its application

to such fields as data mining and image processing, where the

training data are huge, and the improvement achieved by

common methods are usually not obvious.

Self-organizing map networks have been used for image

processing in some previous studies. To reduce the number

of colors of an image with minimum distortion, color

reduction has been studied [6, 22, 23]. Due to not providing

extra protection for non-dominant colors of an image, color

reduction may lead to weakening or missing some non-

dominant but necessary colors in the process. Recent

researches in [7, 24, 25] show the popularity of SOM in

various image processing problems.

This paper focuses on improving the SOM algorithm to

efficiently extract more robust color features from images.

The rest of this paper is organized as follows. In Sect. 2, we

introduce the conventional SOM algorithm and then

explain the proposed algorithm. In Sect. 3, details of the

proposed algorithm and its optimization on color feature

extraction are presented. Experimental results are intro-

duced in Sect. 4. Main conclusions and discussions are

made in the last section.

2 Methods

2.1 Self-organization map

The network of conventional SOM usually consists of

n 9 m neurons located at a two-dimensional rectangular or

hexagonal grid. Each neuron i has a d-dimensional weight

vector wi = (wi1, wi2, …, wid) (i = 1, 2, …, nm). The initial

values of all the weight vectors are given over the input

space at random. The range of the elements of d-dimen-

sional input data xj = (wj1, wj2, …, wjd) (j = 1, 2, …,

N) are assumed to be from 0 to 1.

When a training vector xj is fed to a network, a winner c,

is the neuron with the weight vector closest to the training

vector xj, which can be denoted as

c ¼ arg min
i

wi � xj

�
�

�
�

� �

; ð1Þ

where ||�|| is the Euclidean distance.Then, the weight

vectors of the winner and its neighbors can be updated as

wi t þ 1ð Þ ¼ wi tð Þ þ hc;i xj � wi tð Þ
� �

; ð2Þ

where t is the learning step. hc,i(t) is called the

neighborhood function and is described as

hc;i ¼ a tð Þ exp � ri � rck k2

2r2 tð Þ

 !

; ð3Þ

where ||ri - rc|| is the distance between the map nodes c

and i on the map grid, a(t) is the learning rate, and r(t)

corresponds to the width of the neighborhood function.

Both a(t) and r(t) decrease with time. In this study, we use

the following equations, respectively

a tð Þ ¼ a0 tð Þ exp �t=Tmaxð Þ ð4Þ

and

r tð Þ ¼ r0 tð Þ 1� t=Tmaxð Þ: ð5Þ

From Eqs. (3)–(5), it can be seen that the hc,i is a

decreasing function, which is mainly dependent on the

iteration time t but not the training error kWi - xjk. That

fact decides that same learning rate and same neighborhood

radius in each training epoch are indiscriminately used to

achieve features of different components in the training

data, which is not conductive to obtain better quality of

features of non-principal components due to their

competitive disadvantages.

Additionally, competition or learning directed by the

conventional SOM, which uses the winner-take-all com-

petitive principle, is of benefit to principal components due

to their greater ratios in the training data. Thus, more

neurons will learn features of the principal components,

and consequently, those features are commonly redundant,

which could deteriorate the performance of the algorithm

and result in the over-fitting problem. Sensitivity tests of

tunable SOM parameters including map size (number of

neurons) can be seen in Liu et al. [19].

It is believed that by adding more neurons to the

network, the quality of features extracted from non-

principal components in training data will be improved
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significantly. However, such approach not only reduces

the effectiveness of features due to achieving many more

redundant features, but also further deteriorates the per-

formance of conventional SOM algorithm because more

iterations are required.

2.2 Dynamic neighborhood radius and learning rate

Within the t-th training epoch in the conventional SOM,

both values of a(t) and r(t) are fixed for different winners

in competition, namely all winners are treated equally

within a training epoch. While in our algorithm, the

learning rate and neighborhood size for a winner of com-

petition are dynamic, which can be calculated by

ac tð Þ ¼ a tð Þ 1� e exp �Kcdc;j

� �� �

ð6Þ

and

rc tð Þ ¼ r tð Þ 1� e exp �Kcdc;j

� �� �

; ð7Þ

where a(t) and r(t) can be calculated by Eqs. (4) and (5),

respectively, e ðe 2 ½0; 1�Þ and Kc are user-defined constant

values used to tune the learning rate and neighborhood

radius for a winner. dc,j is the distance between xj and wc,

which can be represented as

dc;j ¼
wi � xj

�
�

�
�

2

d
: ð8Þ

It can be seen from Eqs. (6) and (7) that the learning

rates [ac(t)] and neighborhood radiuses [rc(t)] for winners

of competition are dynamic within each training epoch,

which partly depends on the value of dc,j. If dc,j ? 0,

then rc(t) & r(t)(1 - e) and ac(t) & a(t)(1 - e), a

weakened learning for the input xj occurs. On the

contrary, if dc ? 1 and Kc is a big constant, then

rc(t) & r(t) and ac(t) & a(t), a learning for xj will be

normal. Compared with the weakened learning, within a

training epoch, if a normal learning occurs, the winner of

competition can be given a larger neighborhood radius

and a greater learning rate.

Being of greater ratios in the training data, features of

the principal components in the training data will be ahead

of non-principal components to be trained well. Thus, the

normal learning is mainly triggered by non-principal

components in the training data. Compared with the con-

ventional SOM, features of non-principal components are

given more chance to compete, and thereby better repre-

sentations of their features can be achieved by the proposed

algorithm. What is more, with the decrease of training

error, the number of neurons needed to update will also

decrease, which is benefit to improve the performance of

the proposed algorithm.

Figure 1 demonstrates the different competitive behav-

iors of both algorithms. In Fig. 1a, coordinates (xi, yi) of

the eleven red points are used to train both networks.

Figure 1b presents a possible distribution of points (xi, yi)

trained by the conventional SOM. It can be seen that there

exists a large distance between the sixth sample point

(marked with a red circle in Fig. 1b) and the closest trained

point (the sixth blue point in Fig. 1b). As to our algorithm,

when it learns the position vector of the sixth sample point

(red circle in Fig. 1b), due to the large training error, the

learning will be normal. Thus, a possible intermediate

result trained by our algorithm is demonstrated in Fig. 1c.

When the training finishes, a possible distribution of points

can be demonstrated by Fig. 1d. From Fig. 1d, it can be

seen that the maximum distance or training error is greatly

less than that achieved by the conventional SOM.

2.3 New way to update weight vectors of neurons

To reduce redundancy of features extracted from the

principal components and to avoid the problem of over-

fitting, we present a new way to update weight vectors of

neurons.

As shown in Fig. 2a, in the traditional way, not only the

winner (marked with red ball) but also its neighbors

(marked with blue balls) will be directly affected by the

training vector (marked with purple triangle). As to the

new way, as illustrated in Fig. 2b, each neighbor of a

winner will only be directly affected by the neuron closest

to both the winner and itself (not including itself) in the

lattice.

The weight vector (wc) of the current winner c can be

directly updated by

wc t þ 1ð Þ ¼ wc tð Þ þ ac tð Þ xj � wc tð Þ
� �

: ð9Þ

For each neighbor of the winner c, its learning rate

[ai(t)] is determined by

ai tð Þ ¼ a tð Þ 1� e exp �Kcdi;t

� �� �

; ð10Þ

where di,t is the Euclidean distance between both weight

vectors of the neighbor and the training data.

Then, new weight vector for each neighbor of the win-

ner can be represented as

wi t þ 1ð Þ ¼ wi tð Þ þ ai tð Þ wt tð Þ � wc tð Þð Þ; ð11Þ

where wt(t) is the weight vector of the training data, and it

should be updated before its output. By tuning the learning

rate ai(t), the distance between weight vectors of the

training data and its output will be neither too close nor too

far. Thus, features extracted from the principal components

in the training data by our algorithm will be of lower

redundancy.
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3 Algorithm and optimization for color feature

extraction

3.1 Algorithm

The implementation of the proposed algorithm is outlined

in Fig. 3, where seven input parameters are required and

the output is the trained net.

3.2 Optimization on color feature extraction

Although the SOM algorithm has achieved many suc-

cessful stories [19], its application may still become

infeasible when computation time is taken into account,

especially when dealing with large volumes of data. The

same occurs when we applied the algorithm to extract color

features from images.

The performance of the SOM can be improved signifi-

cantly by applying such measures, including fewer training

epochs and samples. However, these measures are likely to

degrade the quality of extracted features. In fact, both the

performance of the algorithm and the quality of features

depend on the competitive or selective mechanism of the

algorithm, which decides the efficiency and effectiveness of

learning and decides the preference for what kinds of features.

Due to the new competitive mechanism of the proposed

algorithm, even using the linear neighborhood function

(see Eq. 5) and given few training epochs, the quality of

color features extracted by our algorithm is comparable or

much better than those achieved by the conventional SOM

(see Tables 1, 2).

4 Experiments and applications

In this section, we conduct experiments to demonstrate the

efficiency and effectiveness of our algorithm, which has

been implemented in C and Matlab languages. For doing

comparison, as a reference implementation of the con-

ventional SOM algorithm, the SOM toolbox integrated into

the Matlab product (Version 2011A) is selected as a rival to

our algorithm.
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Fig. 1 Demonstrations of two

kinds of competitions. a Virtual

training samples. b A possible

result trained by the

conventional SOM. c A possible

intermediate result trained by

MFD-SOM. d A possible final

result trained by MFD-SOM

(color figure online)

Fig. 2 Two ways of updating

weight vectors of neurons.

a Traditional way. b Proposed

way (color figure online)
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4.1 Feature extraction from two artificial datasets

Two artificial datasets were generated, and each dataset

has 3,000 sample points. The distributions of those points

are presented in Fig. 4a, b. The Gaussian neighborhood

function (see Eq. 3) was used in this experiment for our

algorithm. The map sizes are 11 9 11 neurons for both

algorithms. Parameters used in our algorithm, including

maximum training epochs, initial radius, initial learning

rate, epsilon and deltaK, are set to 300, 6, 0.3, 0.5 and 5,

respectively. For the conventional SOM, the maximum

training epochs, topology function, distance function,

initial neighborhood size are set to 300, ‘‘hextop’’,

‘‘linkdist’’ and 3, respectively. Figure 3c–f present fea-

tures (marked with red points) extracted by both

algorithms.

Comparison of distributions of red points shown in

Fig. 4c–f, we can see that the conventional SOM extracted

more features from those components with higher densities

in training data, while our algorithm yielded more evenly

distributed patterns. It can be said that our algorithm pro-

vides non-principal components in training data with pro-

tections to a certain degree. Besides, from Fig. 4c, we can

see that distances between adjacent features are almost

equal, and no adjacent features are too close, which dem-

onstrate the effect of the new way to update weights of the

MFD-SOM.

The scattered points between the inner and outer circles

(Fig. 4b, c) are artifacts of the SOM algorithms, because

they are not seen in the input data (Fig. 4a) at all. These

artifacts are usually transitional features between two dis-

tinct extremes [19]. Their frequencies of occurrence are

zeros, according to an experiment by Liu et al. [19] (See

their Fig. 11). It is interesting that the number of the

Fig. 3 Framework of the MFD-

SOM algorithm (color figure

online)

Table 1 PSNR data of images reconstructed by the conventional

SOM

Map size PSNR (dB)

River Flower Bird Cloth Girl Penguin

11 9 11 32.2447 37.2195 44.2525 48.0592 44.0169 34.8381

12 9 12 31.9429 37.7923 44.3713 48.6486 44.6506 34.9522

13 9 13 32.4071 38.4297 44.7146 49.5391 45.3980 34.9712

14 9 14 32.4495 38.9489 45.1581 50.1424 45.4908 34.9976

15 9 15 32.4819 39.8768 45.3802 50.1898 46.6564 35.0142

16 9 16 32.5203 40.2076 45.7293 50.8497 47.1776 35.0424

17 9 17 32.5526 40.8931 45.7260 51.2752 47.7313 35.0670

Table 2 PSNR data of images reconstructed by the MFD-SOM

Map size PSNR (dB)

River Flower Bird Cloth Girl Penguin

11 9 11 39.6985 38.0360 44.1833 46.6237 41.4816 44.0358

12 9 12 40.2204 38.6639 44.7157 47.0018 42.0940 44.5453

13 9 13 40.7778 39.0684 44.8387 47.5230 42.5389 44.9878

14 9 14 41.2790 39.5883 45.1811 47.2669 43.0675 45.6241

15 9 15 41.7602 40.0835 45.4762 47.7132 43.4795 45.9781

16 9 16 42.1252 40.4612 45.4444 47.7711 43.9299 46.4039

17 9 17 42.5293 40.7527 45.2668 48.3080 44.3671 46.5178
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artifacts is largely reduced in the MFD-SOM results

(Fig. 4c) than in the conventional SOM results (Fig. 4b).

This demonstrates the improvement of the MFD-SOM over

the conventional SOM in feature extraction.

4.2 Color feature extraction from images

Experiments on color feature extraction from six images

from [26, 27], as shown in Fig. 5, were carried out. The

map sizes are 11 9 11 neurons for both algorithms. For the

conventional SOM, the maximum training epochs, topol-

ogy function, distance function, initial neighborhood size

are set to 200, ‘‘hextop’’, ‘‘linkdist’’ and 3, respectively.

The linear neighborhood function (see Eq. 5) is used in our

algorithm to shorten the learning time for color feature

extraction. Parameters used in our algorithm, including

maximum training epochs, initial radius, initial learning

rate, epsilon and deltaK, are set to 20, 6, 0.3, 0.5, and 100,

respectively. The self-organization maps of color features,

which are achieved by both algorithms and magnified by

10 times, are shown in Fig. 6.

Compared with the conventional SOM, it is apparent

that our algorithm can better represent non-principal colors

and reduce the redundancy of principal colors in training

images. To demonstrate the difference between colors

extracted by both algorithms, 3D visualizations of the two

color maps of the ‘‘river’’ image are presented in Fig. 7.

From Fig. 7a, it can be seen that green color is of greater

ratio in extracted colors, and the distances between them

are very close. While Fig. 7b shows that the distances

between same kinds of colors are mean or approximately

equal. Thus, the goal of reducing the redundancy of fea-

tures of the principal components in the training data is

reached by our algorithm.
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Fig. 4 Two artificial datasets

and features extracted from

them by both algorithms. a Two

artificial datasets. b Features

extracted by the conventional

SOM. c Features extracted by

our algorithm
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By using color features extracted by both algorithms,

reconstructed images with reference to the ‘‘river’’ image

are presented in Fig. 8. Figure 8b presents the recon-

structed image by the conventional SOM algorithm after

200 training epochs. Figure 8c shows the result image

reconstructed by the MFD-SOM algorithm, and it is note-

worthy that only twenty training epochs are used. Twenty

training epochs are also set for the conventional SOM

algorithm, and the corresponding result is shown in

Fig. 8d.

From Fig. 8d, we can see that conventional SOM

achieved poor representations of yellow and red colors.

Due to strictly complying with the winner-take-all com-

petitive principle, the conventional SOM always gives

priority to learning features of principal components. Thus,

given shorter training time, the conventional SOM may

achieve unsatisfactory representations of those features of

non-principal components in the training data. In contrast,

even given shorter training time, MFD-SOM can still

extract features with satisfactory quality, due to its learning

being driven by training error.

4.3 Learning behaviors of both algorithms

Map sizes ranging from 11 9 11 to 17 9 17 are set for

both algorithms in order to extract color features from

images in Fig. 5. As an example, color feature maps of the

‘‘river’’ image achieved by both algorithms are presented in

Fig. 9, and they are ordered according to their map sizes.

From Fig. 9a, it can be seen that given more neurons,

the conventional SOM gets more but redundant features.

While Fig. 9b shows that numbers of all kinds of colors

increase in a balanced way. Thus, theoretically, given more

neurons, our algorithm can achieve features with higher

quality because more candidate neurons can be utilized to

store features of non-principal components in the training

data.

Using above color features extracted by both algorithms,

we got 14 reconstructed images with reference to the

‘‘river’’ image. The peak signal to noise ratio (PSNR) is

applied to measure the quality of reconstructed images, and

data are shown in Tables 1 and 2.

Comparison of PSNR data presented in Tables 1 and 2,

it appears that both algorithms have their own advantages.

In fact, as to the quality of a reconstructed image, which

algorithm can get better score depends on the ratios of the

non-principal components in the training data. If the ratios

of the non-principal components in the training data are

small, the conventional SOM will perform better in the

evaluation. On the contrary, due to distortions of the

reconstructed image to the original image are mainly

caused by non-principal components, then our algorithm

will win.

However, the PSNR data of the ‘‘river’’ and ‘‘penguin’’

images show that the scores of MFD-SOM far exceed the

conventional SOM’s, while similar cases do not happen to

the conventional SOM. It is worth noting that when the

conventional SOM algorithm encounter similar cases, it

Fig. 5 Training images. a River (140055.jpg). b Flower (118_0081.jpg). c Bird (049_0097.jpg). d Cloth (257_0178.jpg). e Girl (253_0354.jpg).

f Penguin (158_0135.jpg)
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Fig. 6 Demonstrations of

extracted color features.

Thumbnails of training images

(in the left column), color

features maps achieved by the

conventional SOM algorithm

(in the middle column) and

achieved by our algorithm (in

the right column)

1766 Neural Comput & Applic (2014) 24:1759–1770

123



will get bad scores because of the proportion of the non-

dominant colors in images are considerable. In contrast, we

can say that our algorithm is more robust in color feature

extraction.

4.4 Color extraction from image dataset

Total 436 images contained in the ‘‘Faces_easy’’ cat-

egory of the Caltech-101 dataset [27] have been used

in this experiment to extract colors from them. First,

colors of each image were extracted by the MFD-SOM,

where 11 9 11 neurons are used. Second, we sampled

40,000 colors with replacement from extracted colors,

and they are shown in Fig. 10a. Finally, both algo-

rithms using 25 9 25 neurons are employed to purify

those 40,000 samples, and the results are presented in

Fig. 10b, c.

Results shown in Fig. 10b, c are somewhat surprising

because of a considerable number of colors are not

directly relevant to human faces, such as blue and green

colors. By reviewing of original images in the dataset, we

can find out those colors have a large proportion in the

image dataset.

4.5 Computational performance of the proposed

algorithm

We also implemented the conventional SOM algorithm in

C language by using the same framework of MFD-SOM.

Both algorithms with 11 9 11 neurons were used to extract

colors from images in Fig. 5. Same values of initial train-

ing parameters used by MFD-SOM in Sect. 4.2 were used

for both algorithms. Experiments were performed on a PC

workstation (Intel Pentium Dual-Core CPU E5800

Fig. 7 3D visualizations of

colors achieved by both

algorithms from the ‘‘river’’

image. a Colors extracted by the

conventional SOM. b Colors

achieved by the proposed SOM

(color figure online)

Fig. 8 Reconstructed images with reference to the ‘‘river’’ image.

a Original image. b Using colors achieved by the conventional SOM

after 200 training epochs. c Using colors achieved by MFD-SOM

after 20 training epochs. d Using colors achieved by the conventional

SOM after 20 training epochs (color figure online)
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3.2 GHz and 2 GB RAM), and each image was processed

15 times by both algorithms, respectively. The perfor-

mance data of both algorithms were calculated and pre-

sented in Table 3.

Table 3 presents the number of updating weights, com-

putational time, and PSNR data of images processed by

both algorithms. As expected, MFD-SOM is always faster

than the conventional SOM. It can be seen that the number

Fig. 9 Sets of color feature maps of the ‘‘river’’ image achieved by both algorithms. a Maps achieved by the conventional SOM. b Maps

achieved by the MFD-SOM (color figure online)

Fig. 10 Demonstration of colors extracted from image dataset. a 40,000 color samples. b Color feature map purified by the conventional SOM

for (a). c Color feature map purified by our algorithm for (a) (color figure online)

Table 3 Performance data of both algorithms

Image Size of

image

The conventional SOM The MFD-SOM

Average number of

updating weights

Average

training time (s)

Average

PSNR (dB)

Average number of

updating weights

Average

training time (s)

Average

PSNR (dB)

River 481 9 321 3.642E?07 11.315 39.0595 7.440E?06 7.699 39.2094

Flower 283 9 213 1.737E?07 4.511 36.9017 3.340E?06 3.224 37.5074

Bird 267 9 400 2.518E?07 6.895 43.1459 4.951E?06 5.023 43.8589

Cloth 251 9 168 1.019E?07 2.707 43.1753 1.965E?06 1.766 46.4798

Girl 270 9 285 1.760E?07 4.909 40.6361 3.543E?06 3.388 41.4868

Penguin 238 9 300 1.737E?07 4.511 41.5407 3.340E?06 3.224 44.3566
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of update operations of the MFD-SOM is about half of the

conventional SOM used. Due to such operations as vector

finding or matching are common to both algorithms, time

saved by our algorithm reflects its learning efficiency. The

PSNR data in Table 3 show that the quality of features

extracted by the MDF-SOM is always better than the con-

ventional SOM achieved, which demonstrates the necessity

to improve the conventional SOM.

5 Conclusions and discussions

In this paper, we present an improved SOM algorithm and

its applications to color feature extraction. Compared with

the conventional SOM algorithm, due to adoption of such

strategies as dynamic neighborhood radius, dynamic

learning rate, and a new way to update weights, the

proposed algorithm can extract features with lower

redundancy from dominant colors and achieve better rep-

resentations of non-dominant colors in training images.

Experimental results of color feature extraction from arti-

ficial datasets and benchmark image datasets demonstrate

the characteristics of our algorithm. Besides those things,

the proposed algorithm improves the performance on color

feature extraction.

Quality of features extracted or data reduced by the

conventional SOM algorithm heavily depends on the dis-

tribution of training data. However, for various reasons or

purposes, sometimes, we are more concerned about how

many features relevant to our application can be extracted

from the training data and their quality. In this paper, a

good attempt has been made by adopting new competitive

rules in the proposed SOM algorithm to achieve robust

color features from images. More rules involving filtering

or selection of features can be introduced into the algorithm

to extend its application.
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