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1. Introduction

Wireless sensor networks are typically comprised of inex-
pensive, small-sized, power-limited terminals. In a variety
of applications, these sensor nodes are collectively required
to maintain accurate time synchronization, for example,
moving object acquisition and tracking, habitat monitoring,
reconnaissance and surveillance, environmental monitoring,
traffic control, and so forth [1]. This necessitates network
algorithms that achieve and maintain global time synchro-
nization at all network nodes, that is, algorithms that align
all network nodes to a common notion of time.

Due to imperfections in low-cost hardware nodes and
the decentralized nature of wireless sensor networks, global
time synchronization has been recognized as a particularly
challenging task. Conventional synchronization protocols
such as time-synchronization protocol for sensor networks
(TPSNs) [2], reference broadcast synchronization (RBS) [3],
and flooding time synchronization protocol (FTSP) [4] aim
to perform centralized global synchronization for all nodes
in wireless sensor network [5]. These protocols achieve
synchronization via time-stamped packet exchanges with a

root node or a data fusion center and are thus vulnerable to
failure of these central nodes.

Recently, several distributed time synchronization algo-
rithms have been proposed. One important class of such
algorithms is referred to as distributed consensus time
synchronization (DCTS) [6]. In the DCTS approach, a
global time consensus can be sufficiently reached within
a connected network by averaging pair-wise local time
information at network nodes. In [7], Olfati-Saber et al,
established a theoretical framework for the analysis of con-
sensus synchronization algorithms. Later, a fully distributed,
asynchronous DCTS algorithm was proposed in [8]; this
scheme was designed to reach agreement on time offset
and skew offset between network nodes using media access
control (MAC) layer time-stamped packet exchanges. As
an alternative, a physical layer-based DCTS algorithm was
introduced in [9] by modeling sensor nodes as coupled
discrete-time oscillators. In particular, the algorithm adopts
instantaneous received powers as weighted coefficients when
updating local clocks.

To the best of our knowledge, existing literature on
DCTS methods assumes that local timing update at each
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node is done using only current timing information, that is,
via a first-order DCTS (FO-DCTS) approach. In contrast, a
second-order DCTS (SO-DCTS) algorithm would utilize not
only current timing information but also that available from
the previous iteration of the algorithm to update local clocks.
Such an extension to the basic consensus algorithm was first
reported for a continuous time approach in [10]. Subsequent
papers have analyzed this second-order continuous time
consensus method assuming fixed network topologies [11],
time delay [12], and switching topologies [13]. In this
paper, we apply the principles of the second-order consensus
approach to the distributed timing synchronization problem
in wireless sensor networks. Specifically, we propose a
novel discrete-time SO-DCTS algorithm for wireless sensor
networks and examine its convergence properties.

The major contribution of this paper is the theoreti-
cal analysis of the convergence characteristics of the SO-
DCTS algorithm for both directed and undirected networks.
Moreover, we investigate the convergence region and optimal
convergence rate of the SO-DCTS algorithm in undirected
networks and claim that the optimal convergence rate of
the SO-DCTS algorithm is superior to that of the FO-DCTS
algorithm under an appropriate algorithm design. Finally,
we present the asymptotic expectation and mean square
synchronization error of the SO-DCTS algorithm when the
timing offset between network nodes is Gaussian distributed.

This paper is outlined as follows. Section 2 describes the
system model and background for the proposed SO-DCTS
algorithm. Section 3 presents the convergence properties
of the SO-DCTS algorithm in directed and undirected
networks. Section 4 discusses the convergence region and
optimal convergence rate of the SO-DCTS algorithm in
undirected networks. In Section 5, we present some conver-
gence results for the SO-DCTS method when network nodes
have Gaussian delay between each other. Simulation results
are presented in Section 6, and we conclude our discussion
in Section 7.

2. Background and SystemModel

2.1. Proposed SO-DCTS Algorithm. Timing information
between network nodes can be exchanged either using time-
stamped packets at the MAC layer or by estimating arrival
times of neighboring nodes’ physical layer pulse signals. In
the following, we describe the SO-DCTS method regardless
of whether it is implemented at the MAC or physical layers.
In each iteration of the SO-DCTS algorithm, each node
processes and decodes the time-stamped message from its
neighbors or estimates the arrival time of its neighbors’ pulse
signals. Each node then updates its local clock using the
weighted average of the current time differences between
itself and its neighboring nodes as well as stored time
differences from the previous iteration of the algorithm. It
should be noted that in the SO-DCTS algorithm, each node
needs to store time information from its neighbor nodes for
both the previous and current iterations; this is in contrast
to the FO-DCTS approach where only the current time
information is processed in the current iteration.

The timing update rule of the SO-DCTS algorithm at
each node i is given as

ti(k) = ti(k − 1) + ε
∑

j∈Ni

[
t j(k − 1)− ti(k − 1)

]

− γε
∑

j∈Ni

[
t j(k − 2)− ti(k − 2)

]
,

(1)

where ti(k) is the local time at node i during iteration k; Ni is
the set of neighboring nodes that can communicate reliably
with node i; ε is a constant step size; γ is a constant for each
iteration. We assume that initial conditions of the SO-DCTS
algorithm are ti(−1) = ti(0) = zi, where zi is initial time
offset for node i. It is worth mentioning that when γ = 0, the
SO-DCTS algorithm reduces to the FO-DCTS algorithm.

2.2. NetworkModel and Some Preliminaries. In the following,
we model a wireless sensor network as a graph G = (V,E),
consisting of a set of n nodes V = {1, 2, . . . ,n} and a set
of edges E . Each edge is denoted as e = (i, j) ∈ E where
i ∈ V and j ∈ V are head and tail of the edge e, respectively.
In a wireless sensor network, the presence of an edge (i, j)
indicates that node i can communicate with node j reliably.
We assume here a connected graph; that is, there exists a
directed path connecting any pair of distinct nodes in the
network. Throughout our discussion, we assume a time-
invariant and connected network unless otherwise stated.

Given this network model, we denote A = [ai j] as the
adjacency matrix of G such that

ai j =
{

1, (i, j) ∈ E ,

0, otherwise.
(2)

Then, the in-degree and out-degree of a node i (denoted as
ci and di, resp.,) are given as ci =

∑n
j=1aji, and di =

∑n
j=1ai j .

Specifically, di is also equal to the number of neighbors of
node i from which it can receive information reliably, that is,
di = |Ni|.

Next, we let L be the graph Laplacian matrix of G which
is defined as L = D − A, where D = diag(d1,d2, . . . ,dn) is
the degree matrix of G. Given this matrix L, we can show
that L1 = 0, where 1 = [1, 1, . . . , 1]T, and 0 = [0, 0, . . . , 0]T.
In particular, for a connected graph, the rank of L is n − 1.
Furthermore, for a balanced directed network, the in-degree
and out-degree of a node are equal, that is, ci = di, thus we
see that 1TL= 0T.

For an undirected network, the presence of an edge
(i, j) indicates that nodes i and j can communicate with
each other reliably. Under this condition, we can also show
that 1TL= 0T. Additionally, in this case, L is a symmetric
positive semidefinite matrix (implying that its eigenvalues
are nonnegative), and its eigenvalues can be arranged in
increasing order as 0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L) [14].

Let us define �t(k) = [t1(k), t2(k), . . . , tn(k)]T. The
evolution of the SO-DCTS algorithm in (1) can be written
as

�t(k) = (In − εL
)�t(k − 1) + γεL�t(k − 2), (3)
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with the initial conditions �t(−1) = �t(0) = �z, where �z =
[z1, z2, . . . , zn]T. Here, In denotes the n× n identity matrix.

3. Convergence Properties of
the SO-DCTS Algorithm

In this section, we investigate the consensus properties of the
SO-DCTS algorithm in directed and undirected networks.
Additionally, we discuss the convergence rate of the SO-
DCTS algorithm in such networks.

3.1. Consensus Analysis of the SO-DCTS Algorithm. The
main result regarding the average consensus property of the
SO-DCTS algorithm in directed networks is stated in the
following theorem.

Theorem 1. For a time-invariant, connected, directed net-
work, consider the SO-DCTS algorithm,

�t(k) = (In − εL)�t(k − 1) + γεL�t(k − 2), (4)

with initial conditions�t(−1) =�t(0) =�z. Define

H =
[
In − εL γεL

In 0n×n

]
, J =

[
K 0n×n
K 0n×n

]
, (5)

where K = 1�βT/(�βT1) and �β is the left eigenvector of L
associated with λ1(L) = 0. When ρ(H − J) < 1, a global
consensus is achieved asymptotically, or equivalently,

lim
k→∞

ti(k) =
�βT�z
�βT1

, ∀i ∈ V, (6)

where ρ(·) denotes the spectral radius of a matrix.

Proof. The proof of this theorem is similar to [11, 15].
Here, we present a sketch proof. Let us define �ψ(k) =
[�t(k)T �t(k − 1)T]T. Then, the SO-DCTS algorithm in (4) can
be rewritten as

�ψ(k) = H�ψ(k − 1), (7)

which implies �ψ(k) = Hk�ψ(0). To calculate the eigenvalues
of H , we have [16]

det
(
H − λI2n

) = det
(
λ2In +

(
εL− In

)
λ− γεL

)

=
n∏

i=1

[
λ2 +

(
ελi(L)− 1

)
λ− γελi(L)

]

= 0.

(8)

Thus, the eigenvalues of H are

λk(H) = 1
2

[
1− ελi(L)±

√(
1− ελi(L)

)2
+ 4γελi(L)

]
. (9)

For a time-invariant, connected, directed network, L has
only one eigenvalue λ1(L) = 0. Then, we know that H has

two eigenvalues λ1(H) = 1 and λ2(H) = 0. Additionally,
the eigenvalues of H − J agree with those of H except that
λ1(H) = 1 is replaced by λ1(H−J) = 0 [16]. Since ρ(H−J) <
1, we see that the eigenvalues of H stay inside the unit circle
except for λ1(H) = 1. Thus, we have

lim
k→∞

Hk = V lim
k→∞

[
1 01×(2n−1)

0(2n−1)×1 Λk

]
V−1

= V

[
1 01×(2n−1)

0(2n−1)×1 0(2n−1)×(2n−1)

]
V−1

= �wr �w T
l ,

(10)

where Λ is the Jordan form matrix corresponding to
eigenvalues λi(H) /= 1 [16], �wl and �wr are left and right
eigenvectors of H corresponding to λ1(H) = 1, respectively,

and �wT
r �wl = 1. In particular, �wl = (1/�βT1)[�βT 0T]T and

�wr = [1T 1T]T. Plugging �wl and �wr into (10) and considering
the SO-DCTS algorithm in (7), we have

lim
k→∞

�ψ(k) = 1
�βT1

⎡
⎣1
�βT 0n×n

1�βT 0n×n

⎤
⎦
⎡
⎣
�t(0)

�t(−1)

⎤
⎦ , (11)

which indicates that

lim
k→∞

ti(k) =
�βT�z
�βT1

. (12)

This completes the proof.

According to Theorem 1, we see that in general, although
average consensus is not achieved for directed networks, all
nodes in the network can still reach a global agreement.
By “average consensus” we mean that all nodes converge
to the same timing which is determined by the average of
the initial timing differences between the nodes. However,
when the SO-DCTS algorithm is employed in either an
undirected network or a balanced directed network, average
consensus can be achieved asymptotically. We show this via
the following theorem.

Theorem 2. Consider the SO-DCTS algorithm in (4) in a
time-invariant, connected, directed balanced network or a
time-invariant, connected, undirected network, with initial
conditions�t(−1) =�t(0) = �z. When ρ(H − J) < 1, an average
consensus is achieved asymptotically, or equivalently,

lim
k→∞

ti(k) = 1
n
1T�z, ∀i ∈ V. (13)

We know that in a time-invariant, connected, directed
balanced or undirected network, �β = 1 and K = (1/n)11T.
The rest of proof is similar to that of Theorem 1 and thus
omitted here.

3.2. Convergence Rate for SO-DCTS Algorithm. One of
the most important measures of any distributed iterative
algorithm is its convergence speed. As we show next, the
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convergence speed of the SO-DCTS algorithm is determined
by the spectral radius of H − J , which is similar to the FO-
DCTS algorithm [17].

Let us define the global consensus value in each iteration

as m(k) = (1/�βT1)�βT�t(k). In the SO-DCTS algorithm, this
value remains invariant during each iteration since

m(k) = (1/�βT1
)�βT[(In − εL

)�t(k − 1) + γεL�t(k − 2)
]

= m(k − 1) = · · · = m(0).
(14)

We now define the disagreement vector as �δ(k) =�t(k) −
m(k)1, which indicates the difference between the updated
times and the global consensus times of the network nodes.
Then, the evolution of the disagreement vector is obtained as

�δ(k) = (In − εL
)�δ(k − 1) + γεL�δ(k − 2). (15)

Given this dynamic of the disagreement vector, we note
the following Lemma.

Lemma 1. For the SO-DCTS algorithm in (4) in a time-
invariant, connected network with initial conditions�t(−1) =
�t(0) = �z and α = ρ(H − J) < 1, a global consensus is expo-
nentially reached in the following form:

‖�δ(k)‖2 + ‖�δ(k − 1)‖2

‖�δ(0)‖2
≤ 2α2k , (16)

where ‖·‖ denotes the 
2 norm of a vector.

Proof. Let us define the error vector as �e(k) = [�δT(k) �δT(k −
1)]T which can be obtained from�e(k) = �ψ(k)−J1�ψ(k), where

J1 =
[

K 0n×n
0n×n K

]
. (17)

Based on this definition, we see that the error vector results
in the following evolution:

�e(k) = (H − J1H)�ψ(k − 1)

= (H − J)
[
�ψ(k − 1)− J1�ψ(k − 1)

]

= (H − J)�e(k − 1).

(18)

The above equation is valid because (H − J)J1= 02n×2n and
J1H = J . Then, we have

‖�e(k)‖2 = ‖(H − J)�e(k − 1)‖2 ≤ α2‖�e(k − 1)‖2

≤ · · · ≤ α2k‖�e(0)‖2,
(19)

which is equivalent to (16). This completes the proof.

Therefore, we see that the convergence rate for the SO-
DCTS algorithm in both directed and undirected networks
is determined by the spectral radius of H − J .
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Figure 1: Convergence region for the SO-DCTS algorithm in
undirected networks: three-dimensional view.

4. Convergence Region and Optimal
Convergence Rate for SO-DCTS Algorithm
in Undirected Networks

In this section, we investigate more specific convergence
results (i.e., the convergence region and optimal convergence
rate) for the SO-DCTS algorithm in undirected networks.
Without loss of generality, we assume that ε and γ are real
values, and ε > 0.

4.1. Convergence Region for SO-DCTS Algorithm in Undi-
rected Networks. From Theorem 2, we know that when
ρ(H − J) < 1, the SO-DCTS algorithm in an undirected
network can achieve average consensus asymptotically. Let
us define the convergence region R to satisfy ρ(H − J) < 1.
After some algebraic derivations (outlined in Appendix A),
the convergence region for the SO-DCTS algorithm in
undirected networks is

R =R† ∪R‡, (20)

where R† = {−1/(ελn(L)) < γ < 1, 0 < ε < 1/λn(L)}, and
R‡ = {−1/(ελn(L)) < γ < 2/(ελn(L)) − 1, 1/λn(L) ≤ ε <
3/λn(L)}.

The convergence region of the SO-DCTS algorithm in
undirected networks is shown in Figures 1 and 2 using a
three-dimensional and two-dimensional perspective, respec-
tively. We see that compared to the FO-DCTS algorithm
where the range of the step size ε is (0, 2/λn(L)), the range
of ε in the SO-DCTS approach increases to (0, 3/λn(L)).

4.2. Optimal Convergence Rate for SO-DCTS Algorithm
in Undirected Networks. Next, we investigate the fastest
convergence rate of the SO-DCTS algorithm based on ε and
γ. Recall that in the FO-DCTS algorithm, the constant step
size εopt,FO which minimizes convergence time is given as [15]

εopt,FO = 2
λn(L) + λ2(L)

. (21)
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Additionally, the convergence rate for εopt,FO is determined by
the second largest absolute eigenvalue of the Perron matrix
[18], that is,

αopt,FO = λn(L)− λ2(L)
λn(L) + λ2(L)

. (22)

As we show next, the convergence rate of the SO-DCTS
algorithm can be superior to that of the FO-DCTS algorithm
by choosing suitable ε and γ. However, as stated in the
following lemma, the convergence rate of the FO-DCTS
algorithm is faster under some circumstances.

Lemma 2. For the SO-DCTS algorithm in (4) in a time-
invariant, connected, undirected network with initial condi-
tions�t(−1) = �t(0) = �z and (ε, γ) ∈ R in (20), if γ > 0, the
convergence rate of the SO-DCTS algorithm is less than that of
the FO-DCTS algorithm with the optimal constant step size in
(21).

The proof of this lemma is omitted here since it can
be readily extended from the following result. Consider
two real values a and b with b > 0, then max{(1/2)|a +√
a2 + b|, (1/2)|a −

√
a2 + b|} > a. Thus, we have |λk(H)| >

1− ελi(L), which implies |λk(H)| > αopt,FO.
Based on the above lemma, we see that there may exist

possible choices of ε and γ (e.g., when γ < 0) such that the
convergence rate of the SO-DCTS method is faster than the
FO-DCTS algorithm. To see this, we formulate the following
spectral radius minimization problem to find the optimal ε
and γ for the SO-DCTS algorithm:

minimize ρ(H − J)

subject to (ε, γ) ∈R, γ < 0.
(23)

Using the steps outlined in Appendix B, the optimal ε and
γ to minimize (23) can be obtained as

εopt,SO = 3λn(L) + λ2(L)
λn(L)

[
λn(L) + 3λ2(L)

] ,

γopt,SO = −
[
λn(L)− λ2(L)

]2

[
λn(L) + 3λ2(L)

][
3λn(L) + λ2(L)

] .

(24)

It is worth noting that (εopt,SO, γopt,SO) ∈ R‡. Recall
that the convergence rate for the SO-DCTS algorithm in
undirected networks is determined by the spectral radius of
H − J , that is,

αopt,SO = λn(L)− λ2(L)
λn(L) + 3λ2(L)

. (25)

We see that αopt,SO ≤ αopt,FO and αopt,SO = αopt,FO only when
λ2(L) = λn(L). Thus, we have the following theorem for the
convergence rate of the SO-DCTS algorithm.

Theorem 3. For the SO-DCTS algorithm in (4) in a time-
invariant, connected, undirected network with initial condi-
tions �t(−1) = �t(0) = �z and (ε, γ) ∈ R in (20), there exists
a pair of ε and γ such that the convergence rate of the SO-
DCTS algorithm is greater than or equal to that of the FO-
DCTS algorithm with the optimal constant step size in (21).
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Figure 2: Convergence region for the SO-DCTS algorithm in
undirected networks: two-dimensional view.

5. SO-DCTS Algorithmwith Gaussian
Delay in Undirected Networks

In this section, we investigate the convergence properties of
the SO-DCTS algorithm in undirected networks when there
is both deterministic and random (Gaussian) delay between
network nodes during local time information exchange.
In [19], we motivate why the Gaussian assumption is
appropriate to model the undeterministic timing differences
between nodes exchanging either MAC layer or physical layer
timing information. We do not reiterate those arguments
here but rather present convergence results for the SO-
DCTS algorithm when such timing differences exist. We
have separately examined the performance of the SO-
DCTS algorithm considering alternate delay distributions,
for example, exponential delay distribution [20]. Results
show similar performance bounds as those presented in
this paper for the Gaussian assumption. For this reason, we
constrain our discussion here to the more common Gaussian
delay model.

With Gaussian delay, the timing update rule of the SO-
DCTS algorithm at each node i is given as

ti(k) = ti(k − 1) + ε
∑

j∈Ni

[
t̂ j(k − 1)− ti(k − 1)

]

− γε
∑

j∈Ni

[
t̂ j(k − 2)− ti(k − 2)

]
,

(26)

where t̂ j(k) = t j(k) + Tdelay = t j(k) + Tc + Li j /c + vj(k); Tc is
a constant (deterministic) delay; Li j is the distance between
node i and j; c is light speed (thus, Li j /c is the propagation
delay between nodes i and j); vj(k) are independent identical
distributed (i.i.d) Gaussian random variables, with zero
mean and variance σ2. Local time information exchange
between node i and j under this delay model is shown in
Figure 3.
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Node i
t̂i(k) ti(k + 1)

Node j
t j(k) t̂i(k + 1)

Tc + Li j /c + vj(k) Tc + Li j /c + vi(k + 1)

Figure 3: SO-DCTS algorithm with Gaussian delay during local
time information exchange.

The SO-DCTS algorithm in (26) can be rearranged as

ti(k) = ti(k − 1) + ε
∑

j∈Ni

[
t j(k − 1)− ti(k − 1)

]

− γε
∑

j∈Ni

[
t j(k − 2)− ti(k − 2)

]
+ ni(k − 1),

(27)

where ni(k− 1) = (1− γ)ε
∑

j∈Ni
(Tc +Li j /c) + ε

∑
j∈Ni

[vj(k−
1)− γvj(k − 2)].

Let us define the noise vector �n(k) = [n1(k),n2(k),
. . . ,nn(k)]T. Based on this definition, the evolution of SO-
DCTS algorithm in (27) can be written as

�t(k) = (In − εL
)�t(k − 1) + γεL�t(k − 2) + �n(k − 1). (28)

We now define �v(k) = [v1(k), v2(k), . . . , vn(k)]T and �u =
[u1,u2, . . . ,un]T, where ui =

∑
j∈Ni

(Tc + Li j /c). Then, the

noise vector in (28) is given as�n(k−1) = ε[(1−γ)�u+A(�v(k−
1)− γ�v(k − 2))].

Let us additionally define �ζ(k) = [�n(k)T 0T]T. Then,
(28) can be rewritten as

�ψ(k) = H�ψ(k − 1) + �ζ(k − 1). (29)

Recall that for undirected networks, the average value in
each iteration is m(k) = (1/n)1T�t(k). Thus, the mean and
variance of the average value m(k) are given in the following
lemma.

Lemma 3. For the SO-DCTS algorithm in (28), the mean and
variance of the average valuem(k) are given as

E[m(k)] = m(0) +
k

n

n∑

i=1

ui,

var [m(k)] = kε2σ2
(
1 + γ2

)

n2

n∑

i=1

d2
i .

(30)

The proof of this lemma is straightforward and thus
omitted from this paper. It can be seen that as iteration time
increases, both mean and variance in (30) increase linearly
with the time index k, that is, as the algorithm evolves.

Furthermore, the variance of m(k) increases linearly with the
variance of the random Gaussian delay, σ2. As we will see in
our numerical results, although the average value m(k) grows
linearly with iteration time when there is Gaussian delay in
the network, an average consensus may still be achievable
under certain network topologies.

5.1. Expectation and Second Central Moment of Error Vector.
In order to understand the convergence property of SO-
DCTS algorithm with Gaussian delay, we first quantify the
overall impact of uncertainty by computing the first two
moments of the disagreement vector.

With Gaussian delay, we see that the error vector �e(k)
results in the following evolution:

�e(k) = P�e(k − 1) + Q�ζ(k − 1), (31)

where P = H−J andQ = I2n−J1. Then, we have the following
lemma.

Lemma 4. For the SO-DCTS algorithm in (28), the expecta-
tion of the error vector �e(k) is given by

�e(k) = Pk�e(0) + (1− γ)ε
k−1∑

l=0

PlQ�u1, (k ≥ 1), (32)

where �u1 = [�uT
0T]T.

The proof of this lemma is straightforward and thus
omitted from this paper.

Let us define the second central moment of the error
vector as κe(k) = E{(�e(k) − E[�e(k)])T(�e(k) − E[�e(k)])}
and the covariance matrix of the error vector as Σe(k) =
E{(�e(k)−E[�e(k)])(�e(k)−E[�e(k)])T}. It is worth mentioning
that κe(k) = tr(Σe(k)), where tr(·) denotes the trace of a
matrix. Additionally, let us denote the covariance matrix of
�ζ(k) as Σζ = E{(�ζ(k) − E[�ζ(k)])(�ζ(k) − E[�ζ(k)])T} which is
given as

Σζ = ε2(1 + γ2)σ2

[
A2 0n×n
0n×n 0n×n

]
. (33)

Given these definitions, we next note Lemma 5.

Lemma 5. For the SO-DCTS algorithm in (28), the covariance
matrix of the error vector �e(k) is given as

Σe(k) = Pk�e(0)�e(0)T(PT)k +
k−1∑

l=0

PlQΣζQ
(
PT)l, (k ≥ 1),

(34)

and the second central moment of the error vector �e(k) is given
as

κe(k) = �e(0)T(PT)kPk�e(0)+tr

(
Q

k−1∑

l=0

(PT)
l
PlQΣζ

)
, (k ≥ 1).

(35)

The proof of this lemma is similar to [19] and thus omit-
ted from the paper.
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5.2. Asymptotic Expectation of Global Synchronization Error.
Using Lemma 4, we see that the steady state of expectation of
the error vector �e(k) is

lim
k→∞

�e(k) = (1− γ)ε
(
I2n − P

)−1
Q�u1. (36)

The above equation holds because limk→∞Pk = limk→∞(Hk

− J) = 0. Before we investigate the convergence property
of SO-DCTS algorithm with Gaussian delay, we give the
following lemma for block matrix inversion.

Lemma 6. Consider n× n matrices A1, A2, A3, and A4, when
A4 and C = A1 − A2A

−1
4 A3 are nonsingular, then [16]

[
A1 A2

A3 A4

]−1

=
[

C−1 −C−1A2A
−1
4

−A−1
4 A3C−1 A−1

4 + A−1
4 A3C−1A2A

−1
4

]
.

(37)

Based on this lemma, the steady state of error vector �e(k)
is

lim
k→∞

�e(k) = (1− γ)ε

[
W1 γεW1L

GW1 In + γεGW1L

][
G�u
0

]

= (1− γ)ε

[
W1G�u
W1G�u

]
,

(38)

where G = In − K and W1 = [(1− γ)εL + K]−1. The
above equation is valid because KW1 = K , which implies
KW1G= 0n×n, which in turn implies GW1G = W1G.
Specifically, we see that the eigenvalues of W1 are λ1(W1) = 1
and λi(W1) = 1/[(1−γ)ελi(L)], i = 2, . . . ,n. Additionally, the

steady state of the disagreement vector �δ(k) is upper half of
the vector limk→∞�e(k), that is,

�μ(∞) � lim
k→∞

�δ(k) = (1− γ)εW1G�u. (39)

For this �μ(∞), we can show the following theorem.

Theorem 4. In an undirected network with fixed connected
topology, �μ(∞) in (39) is a constant vector independent of the
constant values of ε and γ.

Proof. Let us denote the eigenvectors of W1 as wi. It is easy
to check that the eigenvector corresponding to λ1(W1) = 1 is
w1 = 1. �μ(∞) in (39) can thus be rewritten as

�μ(∞) = (1− γ)ε11TG�u + (1− γ)ε

[ n∑

i=2

λi
(
W1
)
wiw

T
i

]
G�u

= (L + K)−1G�u.
(40)

Therefore, �μ(∞) does not depend on ε and γ. This completes
the proof.

Thus, for constants ε and γ, the steady state of the
expectation of the disagreement vector is a constant vector

regardless of ε and γ. In other words, in an undirected
network with fixed topology, the expectation of global
synchronization error is the same regardless of the speed
of synchronization. We observed the same phenomena in
the FO-DCTS algorithm with Gaussian delay [19]. Let
us now define the asymptotic expectation of pair-wise
synchronization error as

Δti, j = lim
k→∞

E
[
ti(k)− t j(k)

] = μi(∞)− μj(∞), ∀i, j ∈ V.

(41)

Hence, the maximum asymptotic expectation of the
global synchronization error between any two nodes is
Δtmax = max{|Δti, j|}. Then, we have the following defini-
tion.

Definition 1. A connected network is called “average con-
sensus achievable with tolerable synchronization error” if
the maximum asymptotic expectation of the global time
synchronization error is less than a predefined threshold ΔtTh

when applying the SO-DCTS algorithm in (28), that is, when
Δtmax < ΔtTh.

Similar to [19], we have Definition 2.

Definition 2. A network is called “time delay balanced
network” if the delay
∑

j∈Ni

(
Tc+Li j /c

) =
∑

m∈Nk

(
Tc+Lkm/c

)
, (i, j) ∈ E , (k,m) ∈ E ,

(42)

or equivalently, Δtmax = 0.

5.3. Asymptotic Mean Square Time Synchronization Error.
Using Lemma 5, the steady state of the second central
moment of the error vector is

κe(∞) � lim
k→∞

κe(k) = tr
(
QW2QΣζ

)
, (43)

where W2 =
∑∞

l=0(PT)
l
Pl. Note that W2 satisfies the follow-

ing condition:

I + PTW2P =W2. (44)

Let us denote the covariance matrix and second central
moment of the disagreement vector as Σδ(k) and κδ(k),
respectively. We see that

tr
(
Σe(k)

) = tr
(
Σδ(k)

)
+ tr

(
Σδ(k − 1)

)
. (45)

Therefore, as k→∞, the steady state of second central
moment of disagreement vector is

κδ(∞) � lim
k→∞

κδ(k) = κe(∞)
2

= tr
(
QW2QΣζ

)

2
. (46)

We now define the asymptotic mean square time syn-
chronization error as

σ2
Δt = lim

k→∞

n∑

i=1

E
[|ti(k)−m(k)|2], (47)
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which indicates the amount of error by which the updated
time at each node differs from the average value over all n
nodes. We see that

σ2
Δt = �u

T
Q(L + K)−2Q�u +

tr
(
QW2QΣζ

)

2
. (48)

6. Simulation Results

In the following simulation results, we assume that the initial
time offset of node i is (i − 1/2)T/n, i = 1, . . . ,n, where T =
1000 microseconds unless otherwise stated (trends similar
to the ones noted below were observed when initial time
offsets between nodes were arbitrary (e.g., when they were
uniformly distributed over [0,T]). We use this fixed offset
assumption here for comparison purposes).

6.1. Structured Networks. In our simulations, we examine the
convergence performance of the FO-DCTS and SO-DCTS
algorithms for several structured, undirected networks.
Specifically, we study the following network topologies.

Definition 3. “A Ring Network with Equal Distance (Rn)”: A
ring network is a network that consists of a single cycle. The
ring network with equal distance is a ring network that has
n nodes, n edges, and Lc = Li j = Lkm for (i, j) ∈ E and
(k,m) ∈ E .

Definition 4. “A Path Network with Equal Distance (Pn)”: A
path network is a network that consists of edge set {(i, i +
1), 1 ≤ i < n}. The path network with equal distance is a path
network that has n nodes, n− 1 edges and Lc = Li j = Lkm for
(i, j) ∈ E and (k,m) ∈ E .

Definition 5. “A Star Network with Equal Distance (Sn)”: A
star network is a network that consists of edge set{(i,n), 1 ≤
i < n}. The star network with equal distance is a star network
that has n nodes, n−1 edges, and Lc = Li j = Lkm for (i, j) ∈
E and (k,m) ∈ E .

Figure 4 shows examples of these networks: a ring
network R8, a path network P5, and a star network S8. Based
on Definition 2, we see that Rn is a “time delay balanced
network” and Δtmax = 0. We now explore the convergence
properties of the SO-DCTS algorithm for these structured
networks via simulation.

Optimal Convergence Rate. First we compare the conver-
gence speeds of the SO-DCTS and FO-DCTS algorithms
for the above structured networks assuming that the con-
vergence rate is defined as ν = − log(α), and there is no
Gaussian delay between nodes. Table 1 gives the numerical
values of the optimal convergence rate for the SO-DCTS and
FO-DCTS algorithms under the R16, P16, and S16 topologies.
As expected, the SO-DCTS algorithm converges faster than
the FO-DCTS algorithm in all three cases. Specifically, we see
that the optimal convergence rate of the SO-DCTS algorithm
is nearly twice as that of the FO-DCTS algorithm for all three
types of networks.

Table 1: Numerical results comparing convergence rates of FO-
DCTS and SO-DCTS algorithms in R16, P16, S16.

R16 P16 S16

αopt νopt αopt νopt αopt νopt

FO-DCTS Alg. 0.9267 0.0762 0.9808 0.0194 0.8824 0.1252

SO-DCTS Alg. 0.8634 0.1469 0.9623 0.0384 0.7895 0.2364

Table 2: Asymptotic results for the SO-DCTS algorithm in struc-
tured networks with Gaussian delay.

R16 P16 S16

Δtmax (μs) 0 35 8.75

σ2
Δt 305.8075 13329 84.2996

Convergence Properties of SO-DCTS Algorithm with Gaussian
Delay. In our simulations of the SO-DCTS algorithm with
Gaussian delay, we assume Tc + Lc /c = 10 microseconds and
the optimal values of εopt,SO and γopt,SO from (24). The simu-
lation results and the asymptotic mean square time synchro-
nization errors for the R16, P16, and S16 networks are shown
in Figure 5. For each network topology, the asymptotic mean
square time synchronization error σ2

Δt is calculated from (48).
It can be seen that as time index increases, mean square
time synchronization error approaches the steady-state value
when utilizing SO-DCTS algorithm with Gaussian delay.
Additionally, we see that the SO-DCTS algorithm performs
poorest in a path network where it has the largest value of
σ2
Δt and the slowest convergence speed. This is not surprising

since in such networks information flow from node 1 to node
n requires n− 1 hops.

Table 2 summarizes the asymptotic results of the SO-
DCTS algorithm for structured networks. As expected, the
maximum asymptotic expectation of global time synchro-
nization error for Rn is 0 since Rn is a time delay balanced
network. Furthermore, the SO-DCTS algorithm in Pn has
the largest Δtmax because of its highly unbalanced time
delay structure. It is worth mentioning that the SO-DCTS
algorithm in star networks Sn has relatively small values
of Δtmax and σ2

Δt. In fact, the SO-DCTS algorithm for a
star network can be seen as a type of centralized time
synchronization algorithm in which a root node determines
and propagates the average of local time information of all
other nodes in the network.

In Figure 6, we show the asymptotic value of σ2
Δt as a

function of the number of nodes in these structured net-
works. It can be seen that when using the optimal εopt,SO and
γopt,SO, the asymptotic mean square time synchronization
error for a star network is nearly constant as the number of
nodes increases. However, σ2

Δt is an increasing function of the
number of nodes for both path and ring networks.

6.2. Random Networks. We also present here simulation
results for a random network comprised of n nodes that
were randomly generated with uniform distribution over a
unit square kilometer; two nodes were assumed connected
if the distance between them was less than η, a predefined
threshold. One realization of such a network with 16 nodes
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(a) (b) (c)

Figure 4: Structured networks: (a) R8, (b) P5, (c) S8.
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Figure 5: σ2
Δt as a function of the iteration time index for the

SO-DCTS algorithm in structured networks (R16, P16, S16) with
Gaussian delay.

is shown in Figure 7. We assume that the average distance
between two nodes is 0.5 km.

Figure 8 shows the simulation results for the convergence
rates of the FO-DCTS and SO-DCTS algorithms in random
networks with 256 nodes when η = 0.25 without Gaussian
delay between network nodes. Specifically, we plot the mean

square time synchronization error (defined as (1/n)‖�δ(k)‖2).
In simulating random networks, we average results over
5000 network realizations. To obtain these results, we chose
εopt,FO for the FO-DCTS algorithm and εopt,SO and γopt,SO

for the SO-DCTS algorithm. In Figure 8, we observe that
the optimal convergence rate of the SO-DCTS algorithm is
faster than that of the FO-DCTS algorithm. In addition to the
results shown here, we ran this simulation setup for various
realizations of random networks, assuming both n = 256 and
a smaller network with n = 16. Overall, the results show a
similar trend, that is, the convergence rate of the SO-DCTS
algorithm exceeds the FO-DCTS algorithm.

Figure 9 shows the simulation results when the SO-
DCTS algorithm is implemented in a random network
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Figure 6: σ2
Δt as a function of the number of nodes for the SO-DCTS

algorithm in structured networks with Gaussian delay.
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Figure 7: Random network with 16 nodes used to obtain simula-
tion results in Figure 9.

of Figure 7 assuming Gaussian delay between network
nodes. As expected, we see here that an asymptotic global
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Figure 9: Evolution of the average disagreement of the SO-DCTS
algorithm in random network (see Figure 7) with Gaussian delay
between network nodes.

synchronization error persists between some pairs of nodes,
that is, Δtmax = 26.4130 microseconds for this random
network. If we specify a threshold ΔtTh to be greater than or
equal to this Δtmax, we call this network as “average consensus
achievable with tolerable synchronization error” as described
in Definition 1.

7. Conclusions

In this paper, we propose a novel discrete-time SO-DCTS
algorithm to address the global timing synchronization
problem in wireless sensor networks. We analyze several

important convergence characteristics of the SO-DCTS
algorithm for directed and undirected networks. Addition-
ally, we investigate the convergence region and optimal
convergence rate of the SO-DCTS algorithm in undirected
networks and claim that the optimal convergence rate of
the SO-DCTS algorithm is superior to that of the FO-
DCTS algorithm under an appropriate algorithm design.
Furthermore, we investigate the asymptotic expectation
and mean square synchronization error of the SO-DCTS
algorithm when there is Gaussian delay between network
nodes. In the future, we intend to investigate the effects
of skew, link failure, and other practical conditions when
utilizing the SO-DCTS algorithm in wireless sensor net-
works.

Appendices

A. Convergence Region for SO-DCTS Algorithm
in Undirected Networks

Let us denote the pairs of eigenvalues of H corresponding to
λi(L) as λi′(H) and λi′′(H), that is,

λi′(H) = 1
2

[
1− ελi(L) +

√(
1− ελi(L)

)2
+ 4γελi(L)

]
,

λi′′(H) = 1
2

[
1− ελi(L)−

√(
1− ελi(L)

)2
+ 4γελi(L)

]
.

(A.1)

Now, we examine the convergence region for the SO-
DCTS algorithm based on conditions |λi′(H)| < 1, 1 < i′ ≤
n, and |λi′′(H)| < 1, 1 < i′′ ≤ n.
Case 1. When λi′(H) and λi′′(H) are real values: in this case,
we have (1− ελi(L))2 + 4γελi(L) ≥ 0, that is,

γ ≥ −
[
1− ελi(L)

]2

4ελi(L)
, 1 < i ≤ n. (A.2)

In the following, we assume that 1 < i, i′, i′′ ≤ n unless
otherwise stated.

(1) First, we consider the convergence region for λi′(H).
After some manipulations, we can show that the
convergence region is

{
γ < 1, 0 < ε <

3
λi(L)

}

∪
{

2− ελi(L)
ελi(L)

< γ < 1, ε >
3

λi(L)

}
.

(A.3)

(2) Then, we consider the convergence region for
|λi′′(H)| < 1 which is given as

{
γ <

2− ελi(L)
ελi(L)

, 0 < ε <
3

λi(L)

}
. (A.4)
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Combining the convergence region for λi′(H) and λi′′(H)
with (A.2), the convergence region R1 for this case is

R1 =
{
−
[
1− ελi(L)

]2

4ελi(L)
≤ γ < 1, 0 < ε <

1
λi(L)

}

∪
{
−
[
1−ελi(L)

]2

4ελi(L)
≤γ<

2−ελi(L)
ελi(L)

,
1

λi(L)
≤ε<

3
λi(L)

}

(A.5)

Case 2. When λi′(H) and λi′′(H) are complex values: In this
case, we have (1− ελi(L))2 + 4γελi(L) < 0, that is,

γ < −
[
1− ελi(L)

]2

4ελi(L)
. (A.6)

Here, R{λi′(H)}=R{λi′′(H)} and I{λi′(H)}=−I{λi′′(H)}.
Thus, we only need to examine the convergence region for
|λi′(H)|. In order to satisfy the conditions, we have

(1) the real part of λi′(H) should be less than 1, that is,
|R{λi′(H)}| < 1, then we have

0 < ε <
3

λi(L)
; (A.7)

(2) the imaginary part of λi′(H) should be less than 1,
that is, |I{λi′(H)}| < 1, then we have

−4 +
[
1− ελi(L)

]2

4ελi(L)
< γ < −

[
1− ελi(L)

]2

4ελi(L)
; (A.8)

(3) the absolute value of λi′(H) should be less than 1, that
is, R2{λi′(H)} + I2{λi′(H)} < 1, then we have

γ > − 1
ελi(L)

. (A.9)

Combining the above results, the convergence region R2 for
this case is

R2 =
{
− 1

ελi(L)
< γ < −

[
1− ελi(L)

]2

4ελi(L)
, 0 < ε <

3
λi(L)

}
.

(A.10)

By taking the union of R1 in (A.5) and R2 in (A.10) and
considering the increasing order of λi(L), the convergence
region for the SO-DCTS algorithm in (20) is obtained.

B. Solution for Minimization Problem

Here, we give a sketch solution to the spectral radius
minimization problem in (23). Since λ2(L) ≤ · · · ≤ λn(L),
the optimization problem is equivalent to minimize

max{|λ2′(H)|, |λ2′′(H)|, |λn′(H)|, |λn′′(H)|}. (B.1)

(1) First, we find the optimal γ given ε to minimize (B.1).
Here, we consider four different cases depending
on whether λ2′(H), λ2′′(H), λn′(H), λn′′(H) are real
values or complex values. After algebraic derivations,
we can show that the minimum of (B.1) given
ε can be achieved when λ2′(H) and λ2′′(H) are
real values and λn′(H) and λn′′(H) are complex
values. Additionally, the following equation should
be satisfied:

|λ2′(H)| = |λn′(H)| = |λn′′(H)|. (B.2)

Thus, we have

γ = −λn(L)
[
1− ελ2(L)

]2

ε
[
λ2(L) + λn(L)

]2 . (B.3)

(2) Next, we find the optimal ε given γ to minimize (B.1).
Again, this can be achieved by taking I{λn′(H)} = 0.
Then, we have the following relationship between ε
and γ:

γ = −
[
1− ελn(L)

]2

4ελn(L)
. (B.4)

Combining (B.3) with (B.4), we get (24).
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