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Abstract This paper undertakes the problem of quanti-

tative inspection of 3D vascular tree images. Through the

use of cluster analysis, it confirms the correspondence

between texture descriptors and various vessel system

parameters, such as blood viscosity and the number of tree

branches. Moreover, it is shown that unsupervised selection

of significant texture parameters, especially in the synthetic

data sets corresponding to noisy images, becomes feasible

if the search for relevant attributes is guided by the

clustering stability-based optimization criterion.
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1 Introduction

Image diagnosis of the vascular system provides funda-

mental information that facilitates detection of abnormal

alternations present in its geometrical architecture. These

may denote certain pathologies and thus the need for clinical

or even surgical treatment. Thus, much effort has been put on

developing novel imaging techniques which enhance visu-

alization of arteries and veins. The 3D raster images can be

acquired using susceptibility weighted imaging combined

with time-of-flight (SWI-TOF) sequences [2] under the

magnetic resonance (MR) control or by the help of a confocal

microscope. With the development of computational intel-

ligence methods, image-based diagnostic procedure can

overcome the restrictions of qualitative image analysis. It

arises that a method for automatic recognition of the

pathology type or its localization would provide significant

support to a diagnostician. Quantitative description of vari-

ous malformations or stenosis can aid in deciding on

appropriate therapy.

In a general setting, vascular system can be viewed at

three levels, depending on a vessel diameter size. The

width of the largest, first-order vessels reaches almost 3 cm

diameter of medium-sized veins and arteries is equal to

approximately 1–5 mm. At the bottom-most level, there

remain venules and arterioles, and capillaries, whose size

does not exceed 10 lm [3]. At each mentioned level,

vascularity images involve specific processing techniques.

Diverse approaches result from the relation between vessel

size and image resolution (see Fig. 1).

At the top-most level, arteries and veins can be effec-

tively tracked in MR images. As a result, geometrical

architecture of a visualized portion of vascular system can

be numerically described. This kind of analysis is restricted

to vessels whose diameter exceeds image resolution. On

the other extreme, the smallest vessels are too thin to be

captured by any of the realistic state-of-the-art 3D imaging

modality. Their quantification can be obtained indirectly,

e.g. by measuring perfusion in the dynamic contrast sus-

ceptibility examination [4].

Similarly, segmentation of medium vessels, whose

thickness is comparable to MR image resolution (0.5 mm

voxel size for a 7-T magnet), remains a relatively difficult

task. However, vasculature at this level still allows imaging

which conveys important structural patterns inherent in the
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vessel system. Through computer simulation and experi-

ments reported in this study, we argue for the usage of

texture analysis in order to encapsulate quantitative char-

acteristics of vascular tree images. It will be shown that

there exists direct correspondence between physical blood

parameters—determining a tree growth—and relevant

texture features. Exploiting this dependence, it is possible

to automatically classify vasculature images according to a

series of criteria.

The experimental results presented so far in this area

were derived with the use of supervised classification and

feature selection techniques [5]. However, it can be argued

that such an approach can artificially bias the constructed

classification rule toward a predetermined assumptions

inherent in a training data set. In this paper, the findings

grounded on supervised learning methods will be further

validated in the unsupervised manner.

2 Vascular tree image synthesis

Under regular clinical examination, image diagnosis is

performed qualitatively. For this reason, data acquisition

procedure not necessarily aids in quantitative inspection.

This refers to both image resolution and noise. Good-

quality scans, adequate for quantitative analysis, usually

require time-consuming measurement sequence and also

more computational power in the image reconstruction

phase. In the qualitative diagnosis, low or medium reso-

lution images often appear sufficient, what shortens

acquisition time but simultaneously degrades efficiency of

image processing methods.

The above-described circumstances disallow statisti-

cally credible verification of the proposed texture-based

approach using real images. Therefore, in the experimental

part of this study, a vessel tree algorithm is employed, and

a series of synthetic vascularity images is generated. Nat-

urally, the synthesized images will differ from the real

ones, which contain noise and various imaging artifacts.

However, several studies reported in the literature [6, 7]

utilize vessel tree models and their raster representations to

develop image processing methods capable of extracting

quantitative information also from the real CT or MRI

scans.

2.1 Vascularity model

The adopted approach to vascular tree growth follows the

scheme proposed in [6]. It assumes cylindrical shape of a

vessel with fixed radius along its entire length. Further-

more, construction of a tree model is based on the rules

described below.

1. Tree growth is parameterized by:

• number of output branches,

• blood viscosity,

• input and output blood flow,

• input and output blood pressure,

• perfusion volume.

By varying one of the above arguments with the other

kept unchanged or modified accordingly, it is possible

to obtain a series of vascularity classes differing with

respect to a chosen parameter.

2. In a single step of a tree construction one new branch

is added. This action starts with random selection of a

new vessel endpoint (within a predefined organ shape;

in this study sphere was used). Then the algorithm

searches for the nearest branch. At the center point of

that branch, a temporary bifurcation is made. The

parameters for all branches are adjusted so that the

following laws hold:

• matter preservation law,

Qp ¼ Ql þ Qr; ð1Þ

which couples flows (Q) of parent and child vessel

segments of a single bifurcation (cf. Fig. 2),

• Poiseuille’s law,

DP ¼ 8Qgl

pR4
; ð2Þ

where DP denotes pressure drop on a vessel segment, g
is the blood viscosity, R vessel radius, and l vessel

length,

Fig. 2 The adopted bifurcation model

Fig. 1 Relation between image resolution and a vessel size
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• bifurcation law

Rc
p ¼ Rc

l þ Rc
r ; ð3Þ

where c is a bifurcation ratio—a factor that relates

parent and child vessel radii.

3. The algorithm requires that a new bifurcation is opti-

mized. For that purpose, a bifurcation point is moved so

that the volume of affected vessels is minimized. This is

performed through a constrained constructive optimiza-

tion algorithm.

4. The output of the generation procedure is a vector

description of a vascular tree. Such a description can be

viewed as a list of (1) start and end points (expressed in

3D Cartesian coordinates) which define length and

direction of a vessel axis and (2) vessel radius.

2.2 Imaging simulation

Vector description of a vascular tree is convenient for

visualization purposes. Figure 3 illustrates example of such

a tree model. However, when it comes to development of

image processing methods, raster representation of this

vector model is needed. In order to convert real-valued data

into 3D discrete coordinates, the following imaging simu-

lation procedure is involved.

Each voxel in the scene is assigned some intensity value

which is proportional to a vessel volume present in it. In

the two extreme cases, when a voxel is either totally filled

with a vessel or it does not belong to vascular tree at all the

intensity becomes maximal or zero, respectively. To deal

with the intermediate cases, it is assumed that a voxel can

be divided into a number of subvoxels. In this research, we

use 27 equal-sized subvoxels forming a 3 � 3 � 3 ele-

ment cube. Then, if a voxel is occupied only partially, its

intensity is adjusted to the value proportional to the number

of subvoxels whose middle points belong to a vessel. This

concept is visualized for the two-dimensional case in

Fig. 4. An example of a raster tree image (maximum

intensity projection) generated using the above-outlined

procedure is depicted in Fig. 5.

The last issue that should be taken into account during

vascularity image generation is noise introduced by any

real-world image acquisition technique. In this research, in

order to make the imaging procedure comparable—at least

to some extent—to MR acquisition technique, the noise

signal is modeled using the Rice distribution [4]. It is given

by the following probability density function

f ðxjm; rÞ ¼ x

r2
exp

�ðx2 þ m2Þ
2r2

� �
I0

xm
r2

� �
; ð4Þ

where x denotes a given voxel intensity, m and r are the

distribution parameters, while I0 is the modified Bessel

Fig. 3 Visualization of a vascular tree vector model

Fig. 4 Subpixel analysis in calculation of pixel intensities

Fig. 5 Example of a generated vascular tree raster image (MIP)
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function of the first kind and order 0. Other imaging arti-

facts (such as chemical shift or intra-voxel dephasing in the

case of MRI) are not handled in the current version of the

algorithm.

2.3 Specification of synthesized data sets

Classification of synthetic vascularity images shall reveal

the correspondence between vessels trees architecture and

their textural description. Therefore, we formulate three

groups of classification tasks corresponding to the follow-

ing tree growth parameters:

1. Nqinp: number of terminal branches at constant input

flow,

2. Nqout: number of terminal branches at constant output

flow,

3. g: blood viscosity.

For groups 1 and 2, the number of branches varied

between 3,000 and 5,000 with a 500-branch step

(5 classes), whereas blood viscosity (measured in the

poise units, P1) was equal to either 1, 3.6, 5 or 10 cP

(4 classes). Within each group, the images were divided

into further categories related to the quantization level of

introduced noise signal. The Rice distribution parameter

m [cf. (4)], primarily responsible for the noise level, took

five optional values 0 (no noise), 1, 3, 5, 10. For each

single class and noise level, 32 tree images were

synthesized. Texture feature vectors calculated for these

images were then combined into data sets corresponding

to one quantized value of noise distribution parameter

and one vascularity parameter (15 data sets altogether).

Table 1 summarizes data sets constructed for the need of

the experiments.

3 Texture analysis in 3D

Submitting an image to a classification procedure requires

formulating its appropriate description tractable by a

computer-implemented algorithm. Image characteristics

must reflect significant patterns of the visualized objects.

Thus, it has been proposed to represent a vessel tree using

texture parameters [8].

The literature describes several texture characterization

models [9]. Choosing arbitrarily the proper one for a par-

ticular image type and application remains a difficult task.

The common strategy is thus calculation of many texture

parameters derived from various concepts. Such an

approach based on the assumption that at least some of the

computed features will reflect important regularities

inherent in image. Within this study, three texture models

are taken into consideration:

• Co-occurrence matrix (260 features),

• Run-length matrix (25 features), and

• Image gradient (5 features).

Thus, every vascular tree image was assigned a vector of

290 numerical attributes plus a class label. This obviously

breeds the problem of feature space dimensionality reduc-

tion. It should increase classification accuracy as well as

enable identification of attributes which are mostly corre-

lated with the investigated tree growth parameters.

Texture features computation can be performed using one

of the freely available software packages [10–12]. Among

these, the MaZda suite (see Fig. 6), developed with the

authors contribution, seems to offer the most versatile func-

tionality [10], especially when 3D analysis is involved. It

allows defining volumes of interest (VOI) for an image, cal-

culating texture features within a VOI and classifying feature

vectors using either supervised or unsupervised methods

4 Dimensionality reduction

As noted above, texture analysis leads to multidimensional

data sets, which constitute—as it has been thoroughly

described elsewhere (e.g. in [13])—a remarkable challenge

for classification algorithms. In this case, dimensionality

reduction needs to be involved. Since the goal of this study

was to objectively confirm validity of the texture model

applied to vascularity image classification, dimensionality

reduction (as well as classification itself) should be

approached in the unsupervised manner.

Table 1 Summary of the experimental data sets (further explanation in the text)

Vascularity

parameter

Range Number of classes Total number

of classes

Number of instances

per class
Per noise

level

Per vascularity

parameter

Nqinp 3,000–5,000 5 5 25 32

Nqout 3,000–5,000 5 5 25 32

g 1–10 cP 5 4 20 32

1 1 P = 0.1 Pa. s, 1 cP = 1 mPa. s.
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Principally, there remain two alternative solutions to the

problem—feature transformation (projection of original

data space into the new space of feature aggregates) and

feature selection (identifying the most discriminative

attributes in the original feature space). In the following, it

will be shown that feature space transformation exhibits

poor effectiveness regarding the aforementioned research

goal. It also disallows direct identification of texture fea-

tures mostly correlated with the vascular tree growth

parameters. Therefore, in Sect. 4.2, it will be postulated to

use the strategy of feature selection.

4.1 Feature space transformation

Two popular methods of unsupervised feature space

transformation are principal component analysis (PCA) and

random projection (RP). Both algorithms map input feature

space onto the new space of feature aggregates, which has

lower dimension than the original one and preserves its

statistical properties—total data variance or distance rela-

tionships in the case of PCA or RP, respectively. Com-

paring to feature selection, the extraction strategy appears

less computationally complex. On the other hand, feature

space transformation not necessarily improves separation

between different classes.

To show this effect, performance of PCA and RP in

application to vascular tree image classification was veri-

fied experimentally. First, prior to employing any feature

transformation, each generated data set (cf. Table 1) was

clustered using simple k-means method. Then data sets

were transformed by both PCA and RP algorithms. PCA

was set to preserve 98% of the total data variance. The

projection matrix in the RP transformation was drawn with

the sparse distribution function, defined as

rij ¼
ffiffiffi
3
p �1 if u\1

6

þ1 if u [ 5
6

0 otherwise

8><
>: ; ð5Þ

where u [ (0,1) denotes a random number drawn according

to the uniform distribution. After feature space transfor-

mation, data were submitted to a clustering procedure,

where again k-means algorithm was used.

Due to intrinsic tendency of k-means to get stuck in a

local minimum of the optimization criterion (sum of squared

distances between feature vectors and their corresponding

cluster centers), every call to clustering procedure involved

ten executions with different initializations. Then the result

with the best score was chosen for calculating clustering

error. The latter was assessed using classes to clusters

evaluation method [14]. The whole procedure (feature space

transformation followed by clustering) was repeated ten

times, and the obtained results were averaged (see Table 2).

Note that several invocations are particularly needed for

random projection because of its inherently undeterministic

behavior. Thus, averaging clustering errors gives more sta-

tistically reliable estimates of RP performance.

It is worth noticing, that in the case of two vascularity

parameters (Nqinp and Nqout), RP transformation performs

better than PCA. The latter, by exploiting information about

data variance, leads to obtaining the so-called most expressive

features [15]. Their discriminative power is not optimized

during transformation. If the original data space contains

many insignificant attributes, PCA can even enlarge cluster-

ing error. On the other hand, texture-based descriptors

occurred remarkably significant for blood viscosity (g). Here,

it is random projection that degrades classification scores.

However, generally good results of clustering viscosity

classes motivates further effort in finding significant texture

features also for the other two parameters. This can be

accomplished through feature selection.

4.2 Feature selection

One of the possible approaches to feature selection, the

so-called wrapper-approach [16, 17], consists of four main

steps:

Fig. 6 3D editor window of the MaZda software used in the research.

The picture presents three orthogonal cross-sections of a synthesized

3D vascularity image and a spherical VOI covering all vessels

Pattern Anal Applic (2011) 14:415–424 419

123



1. Constructing feature subsets Nl—candidates for selec-

tion—according to a chosen feature space exploration

strategy.

2. Clustering vectors composed of attributes taken only

from Nl using a chosen clustering algorithm. Each

investigated feature subset is assigned some partition-

ing pðNlÞ:
3. Evaluating correctness of pðNlÞ according to a crite-

rion function J. The value JðpðNlÞÞ or simply JðNlÞ
suggests in turn relevance of a subset Nl:

4. After the feature space exploration terminates, select-

ing the best feature subset N̂ which satisfies

N̂ ¼ arg max
Nl�X

JðNlÞ: ð6Þ

In (6), X denotes a subset of all original features, whereas

Nl 2 MN ¼ MX n fX; ;g; with MX being the collection of

all subsets of X; and l ¼ 1; . . .; jMNj: The reason for

choosing the above selection scheme is that features are

evaluated in subsets (and not individually, as in the filter

approach, cf. e.g. [16]). It is often observed that feature

significance reveals only when it is accompanied by other

discriminative attributes. Moreover, the wrapper approach

is flexible—the same search strategy can be applied to

various clustering algorithms and evaluation criteria.

Apart from the strategy of constructing subsets Nl;

performance of a selection procedure depends mainly on a

feature evaluation function. However, choosing appropri-

ate evaluation measure constitutes the major problem in

unsupervised feature selection. Unlabeled data sets lack

unambiguous clues which would facilitate direct identifi-

cation of attributes most valuable for classification.

Common solutions to this problem employ various—

though conceptually similar—measures of clustering

quality, assuming that correctly classified data form high-

quality clusters (i.e. well separated and internally com-

pact) [18–20]. As it has already been shown by the

authors in [21], this concept happens to fail since true data

vector classes often exhibit opposite properties. Remain-

ing in the context of texture classification, this situation

takes place if analyzed images convey insufficient infor-

mation about visualized structures—either because of low

image resolution or the presence of noise. This leads to

conclusion that some other criterion is needed to detect

significant features when objectively different classes do

not form high-quality clusters. Such a criterion can be

defined using the notion of clustering stability.

4.2.1 Clustering stability

Clustering stability assumes that good clusters occupy

regions in the feature space which are consistent for more

than one data samples constructed in the same classifica-

tion task. Formally, it can be defined as [22]

bbðP;N;AÞ ¼ EPðdbbðp1ðS1Þ; p2ðS2ÞÞÞ; ð7Þ

where EP denotes the expected value taken with respect to

the (unknown) probability distribution P, p1 and p2 are

partitionings obtained with an algorithmA for two data sets

S1 and S2, both generated from P;N ¼ jS1j ¼ jS2j; and dbb is

some measure of distance between clustering results. It must

be noticed that bb; being proportional to dissimilarity

between different groupings, actually measures the insta-

bility of clustering. Thus, in order to infer the ratio of sta-

bility b, an inverse or negative value of dbb should be taken.

Although conceptually simple, the notion of clustering

stability constitutes a challenge when attempting to

Table 2 Clustering errors and

their corresponding standard

deviations (in brackets) before

and after feature transformation

(%)

Vascularity parameter Rice distribution parameter m

0 1 3 5 10

Original feature space

Nqinp 36.9 (4.0) 39.4 (3.5) 54.3 (10.9) 47.5 (8.3) 53.8 (13.0)

Nqout 24.4 (3.0) 27.5 (3.0) 28.1 (6.1) 29.4 (4.1) 33.1 (9.3)

g 0.0 (0.0) 0.0 (0.0) 0.8 (1.1) 0.2 (0.3) 0.3 (0.6)

Principal component analysis

Nqinp 50.6 (4.5) 51.9 (2.7) 54.3 (3.5) 57.4 (4.8) 58.9 (5.6)

Nqout 23.8 (9.5) 29.4 (6.7) 28.8 (10.1) 28.8 (12.6) 29.4 (13.0)

g 0.0 (0.0) 0.0 (0.0) 0.8 (1.1) 0.2 (0.4) 0.3 (0.6)

Random projection

Nqinp 31.3 (6.9) 38.1 (6.0) 40.0 (7.2) 49.4 (4.3) 51.3 (6.5)

Nqout 21.8 (9.1) 24.4 (3.6) 25.9 (11.5) 20.1 (9.8) 30.6 (14.1)

g 6.5 (1.4) 7.4 (1.8) 9.7 (3.1) 2.9 (1.1) 8.4 (2.8)
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formulate some measure of dbb : This is due to the fact that

data vectors representing the same class in sets S1 and S2

may be assigned different labels by A: Hence, there is no

direct way for comparing independent cluster structures

induced by p1ðS1Þ and p2ðS2Þ:
Ben-Hur et al. [23] approach the outlined problem by

making the two sets S1 and S2 share some portion of feature

vectors. These non-disjoint sets are then clustered sepa-

rately and only their intersection Sc ¼ S1 \ S2 is taken into

account in calculation of the Jaccard coefficient

dJbbðp1ðS1Þ; p2ðS2ÞÞ ¼ 1� N11

N01 þ N10 þ N11
; ð8Þ

where N11;N01;N10 denote numbers of data vectors xi; xj 2
Sc; i 6¼ j; assigned to:

– the same cluster both in p1ðS1Þ and p2ðS2Þ;
– the same cluster in p1ðS1Þ but to different clusters in

p2ðS2Þ;
– different clusters in p1ðS1Þ but in the same cluster in

p2ðS2Þ:

The alternative measure is presented in [24]. First, the

set S1 is clustered giving the partitioning p1. Next, S1

together with its cluster labels are considered as a training

sample and used to construct a classifier C (in the super-

vised manner). Eventually, A and C are invoked on the set

S2 to produce partitioning p2 and the vector of class labels

k2. Estimation of (7) is performed through calculating the

Hamming distance

dHbb ðp1ðS1Þ; p2ðS2ÞÞ ¼
2

NðN � 1Þ½L
10 þ L01�; ð9Þ

where L10 denotes the number of data vector pairs xi; xj 2
S2 which belong to the same class in accordance with k2

but are differently clustered in p2. L01 symbolizes the

opposite condition.

Yet, another approach to stability estimation can be

devised in terms of clusterings comparison measures, such

as Mallows distance-based metric [25]. However, stability

in principle refers to similarity between clusterings

obtained for two at least partially different feature vector

collections. On the contrary, Mallows distance presumes

partitionings of the same data set. Hence, in order to adopt

Mallows metric for stability assessment, we propose the

following mechanism.

As in the case of Jaccard coefficient, let the intersection

of samples S1 and S2 be a non-empty set Sc. For partiti-

onings pðS1Þ; pðS2Þ find the optimal clusters correspon-

dence, such that the sum of distances between matched

clusters is minimal. Then the contribution of a single data

vector xi 2 Sc to the overall difference between cluster

structures is given by [26]

di ¼
XK

k¼i

XK

j¼1

pi;kqi;jLðk; jÞð1� IðqðjÞ ¼ kÞÞ; ð10Þ

where pi,k and qi,j specify whether xi is a member (when

equal to one, zero otherwise) of a kth cluster in p(S1) and a

jth cluster in p(S2), respectively. L(k, j) denotes distance

between the corresponding cluster centroids, I is the

indicator function equaling one if the argument is true

(zero otherwise) and q(j) gives an index of a cluster in

partitioning p(S1) that is matched to a jth cluster in p(S2).

Then the total instability ratio can be defined as

dMbb ðp1ðS1Þ; p2ðS2ÞÞ ¼
X
xi2Sc

di: ð11Þ

Naturally, the notion of stability can be encapsulated by

a number of different methods. Among those, which are

not included in this study, consensus-driven clustering (or

meta-clustering in general) presents an attractive option.

Similarity between clusterings can be evaluated using a

measure of distance between the so-called proximity

matrices (for a comprehensive description refer to [27]).

Moreover, it is interesting to see that semi-supervised

learning leads to more stable clustering results as they are

forced to fit some a priori inferred pattern that is known to

be correct. However, providing a detailed survey of all

possible stability metrics would exceed the scope of this

research. The primary goal was to demonstrate general

need for reflecting clustering stability in the unsupervised

feature selection problem. Thus, only the three above-

described measures are included in the conducted

experiments. In order to identify the optimal solution for

(7) another in-depth study should be undertaken.

4.2.2 Clustering stability-based feature selection

Following concepts introduced in the previous works of the

authors [21], it is assumed that these are insignificant

features which constitute one of the potential sources of

clustering instability. Hence, it can be postulated to use

clustering stability as a measure of feature relevance.

However, the proposed approach avoids neglecting the

importance of properties reflected in clustering quality

measures. Therefore, in the experiments reported in

Sect. 5, the combined quality/stability-based criterion was

used to estimate features significance. It is defined as

!ðNÞ ¼ uðNÞbðNÞ; ð12Þ

where bðNÞ is a stability measure assessed by either (7), (8)

or (11), while uðNÞ denotes a clustering quality function.

Since this study focuses on the stability notion, quality

measure was chosen arbitrarily—it was decided to employ

the average silhouette value [28, 29]
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uSV ¼ 1

N

XN

i¼1

uSV
i ; ð13Þ

uSV
i ¼

min#j
Dðxi; #j 6¼kÞ � Aðxi 2 #kÞ

max½min#j
Dðxi; #j 6¼kÞ;Aðxi 2 #kÞ�

; ð14Þ

where

Aðxi 2 #kÞ ¼
1

NðkÞ
X
x2#k

dðxi; xÞ2 ð15Þ

denotes average distance of a data vector xi belonging to

kth cluster from other data vectors included in #k; while

Dðxi 2 #k; #j6¼kÞ ¼
1

NðjÞ
X
x2#j

dðxi; xÞ2 ð16Þ

is the average distance between xi and data vectors

belonging to jth cluster which is not the cluster of xi. The

dð�; �Þ operator stands for any desired distance metric (e.g.

Euclidean measure), N is the total number of feature vec-

tors, while N(j) denotes cardinality of a jth cluster. High

scores on (13) indicate good quality of associated

groupings.

The list below presents the subsequent steps involved in

determining the value of ! (see also Fig. 7):

1. Find clustering of data vectors in a feature subspace

Nl:

2. Evaluate quality of clusters obtained in step 1 using

(13) ! uðNlÞ:
3. Randomly split data vectors into two groups S1; S2;

either disjoint or non-disjoint, depending on the

stability measure (given in (8), (9) or (11),

respectively).

4. Estimate stability associated with Nl basing on the two

samples formed in step 3 ! bðNlÞ:
5. Calculate ! according to (12).

5 Experiments

5.1 The experimental framework

In order to confirm the relevance of texture description

applied to quantitative inspection of vascular tree images,

and simultaneously evaluate the proposed approach to

unsupervised feature selection, each data set mentioned in

Table 1 was submitted to the following procedure:

1. Unsupervised feature selection using the average

silhouette value only ! J ¼ uSV :
2. Clustering data vectors in feature space determined in

step 1.

3. Calculation of the error rate eu:
4. Unsupervised feature selection using the stability-

based feature evaluation criterion defined in (8)

! J ¼ uSVð1� dJbbÞ:
5. Clustering data vectors in feature space determined in

step 4.

6. Calculation of the error rate eJ
!:

7. Unsupervised feature selection using the stability-

based feature evaluation criterion defined in (9)

! J ¼ uSVð1� dHbb Þ:
8. Clustering data vectors in feature space determined in

step 7.

9. Calculation of the error rate eH
! :

10. Unsupervised feature selection using the stability-

based feature evaluation criterion defined in (11)

! J ¼ uSV 1
1þdMbb
 !

:

11. Clustering data vectors in feature space determined in

step 10.

12. Calculation of the error rate eM
! :

Again, as in the experiments with feature transforma-

tion, error rates were assessed using classes to clusters

evaluation technique. Feature space exploration was

performed using hybrid genetic algorithm [30], k-means

clustering algorithm, and 1-NN classifier [for clustering

stability estimation in (9)]. It must be noted that in the

general case of unsupervised classification task, along

with data set partitioning, the number of clusters K needs

to be determined. However, in order to simplify the

problem, it was assumed that the correct value of K is

known a priori. Such a simplification does not undermine

the conclusions derived from the experiments. This

research focuses on comparison of two approaches to

estimation of features significance (based on clustering

quality and stability concepts) whose efficiency in

relation to each other is tested for exactly the same

conditions and shall remain unchanged whether value of

K is available or not.

Fig. 7 Evaluating features relevance based on the clustering stability

notion
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5.2 Discussion of the results

The analysis of the experimental results (see Table 3)

reveals the following observations. First of all, texture

description of vessel tree images indeed encapsulates

intrinsic vascularity patterns. Small errors of unsupervised

classification achieved for the less noisy or noise-free

images (independently from a criterion employed for fea-

ture selection procedure) objectively confirms the corre-

spondence between texture features and tree growth

parameters. As it is depicted in Fig. 8, linear relationship

can be observed between selected most significant features

and each of the tested vascularity classes.

Second, it has been demonstrated that using solely

clustering quality measure as a feature selection criterion

may occur insufficient to find good attribute subspace

ensuring proper class separation. In the reported experi-

ments, this took place when images were corrupted by

noise. Objectively different clusters are then neither com-

pact nor isolated. Taking into account the notion of clus-

tering stability helps resolving the problem. In that case,

the classification error remains small until the impact of

noise becomes dominant.

Eventually, it is worth noticing that that effectiveness of

the stability-based selection depends on the measure used

to estimate consistency between two clustering results.

According to Table 3, the Hamming distance defined in (9)

allows obtaining better results than the Jaccard coefficient

and the Mallows distance-based metric used in this

research. Recalling arguments raised by Lange et al. [24],

the common part of data samples S1 and S2 affects struc-

tures of both partitionings obtained for them. This in turn

makes clustering results apparently stable even for extre-

mely noisy data. More reliable stability estimation can be

achieved for two disjoint samples.

6 Conclusion

In this paper, we have confirmed applicability of the tex-

ture model in quantitative description of computer-simu-

lated vascular tree images. A series of experiments with

synthesized vascularity images was performed to show

correspondence between selected texture features and tree

growth parameters such as number of branches or blood

viscosity. In these experiments, different vascularity clas-

ses were successfully clustered by k-means algorithm. This

demonstrates that texture has great potential application in

detecting structural abnormalities in the vessel system. It is

worth noticing that preliminary studies on real data sets

containing rat brain vascularity images from a confocal

Table 3 Clustering error after feature selection (%)

Evaluation criterion Rice distribution parameter r

0 1 3 5 10

Constant input flow

u 0.0 26.3 34.4 46.3 53.1

uð1� dJ
bÞ 2.5 3.1 9.4 39.4 40.0

uð1� dH
b Þ 0.0 3.1 6.9 31.3 45.0

u 1
1þdM

b

� �
0.0 1.9 8.8 34.3 47.5

Constant output flow

u 0.0 0.6 10.0 18.5 26.3

uð1� dJ
bÞ 0.0 0.0 6.9 5.6 26.3

uð1� dH
b Þ 0.0 0.0 0.6 4.4 26.3

u 1
1þdM

b

� �
0.0 1.8 5.6 6.9 28.1

Viscosity

u 0.0 0.0 0.8 0.0 0.0

uð1� dJ
bÞ 0.0 0.0 0.8 0.0 0.0

uð1� dH
b Þ 0.0 0.0 0.8 0.0 0.0

u 1
1þdM

b

� �
0.0 0.0 0.8 0.0 0.0

(a) (c)(b)

Fig. 8 Relation between texture and tree growth parameters for a number of branches at constant input flow, b number of branches at constant

output flow, and c blood viscosity. Depicted results refer to images corrupted by Rician noise with parameter m = 1
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microscope have been described in [5]. The most

important aspect of this study is the validation of that

approach using relatively large sample of images and also

objectivism of the analysis achieved by employing unsu-

pervised learning methods—both for classification and

feature selection.

We have also introduced a novel measure of features

relevance suited to unlabeled data. The motivation for its

development emerges from the fact that state-of-the-art

feature selection algorithms promote features which ensure

high-quality clusters, i.e. compact and mutually dispersed.

Although noiseless vascularity images do possess such

properties, the noisy ones cause these quality-based meth-

ods to fail. The proposed criterion is based on the notion of

clustering stability. It thus facilitates unsupervised feature

selection when true clusters are not necessarily well sepa-

rated but retain their structure independently from random

data samples.
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