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Abstract

Background: The three-dimensional (3D) configuration of chromosomes within the eukaryote nucleus is an
important factor for several cellular functions, including gene expression regulation, and has also been linked with

cancer-causing translocation events. While visualization of such architecture remains limited to low resolutions, the
ability to infer structures at increasing resolutions has been enabled by recently-devised chromosome conformation
capture techniques. In particular, when coupled with next generation sequencing, such methods yield an inventory of
genome-wide chromatin contacts or interactions. Various algorithms have been advanced to operate on such contact
data to produce reconstructed 3D configurations. Studies have shown that these reconstructions can provide added
value over raw interaction data with respect to downstream biological insights. However, only limited, low-resolution
reconstructions have been realized for mammals due to computational bottlenecks.

Results: Here we propose a two-stage algorithm to partially overcome these computational barriers. The central idea
is to initially utilize existing reconstruction techniques on an individual chromosome basis, using intra-chromosomal
contacts, and then to relatively position these chromosome-level reconstructions using inter-chromosomal contacts.
This two-stage strategy represents a natural approach in view of the within- versus between- chromosome distribution
of contacts. It can increase resolution 220 fold for mouse and human. After describing the algorithm we present 3D
architectures for mouse embryonic stem cells and human lymphoblastoid cells. We evaluate the impact of several
factors on reconstruction reproducibility and explore a variety of sampling schemes. We further analyze replicate data
at differing resolutions obtained from recently devised in situ Hi-C assays. In all instances we demonstrate insensitivity

contact (rather than 3D) level.

of the whole-genome 3D reconstruction obtained by the two-stage algorithm to the sampling strategy used.

Conclusions: Our two-stage algorithm has the potential to significantly increase the resolution of 3D genome
reconstructions. The improvements are such that we can progress from 1 Mb resolution to 100 kb resolution, notable
since this latter value has been identified as critical to inferring topological domains in analyses performed on the
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Background

The three-dimensional (3D) configuration of chromo-
somes within the eukaryote nucleus is important for
several cellular functions, including gene expression reg-
ulation and epigenetic patterning [1], and has also been
linked to translocation events and cancer driving gene
fusions [2, 3]. While visualization of such architecture
remains limited to low resolutions (due to compaction,
dynamics and scale), the ability to infer structures at high
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resolution has been enabled by recently-devised assays
derived from chromosome conformation capture (3C)
techniques [4]. In particular, when coupled with next gen-
eration sequencing, such methods (hereafter termed Hi-C
[5, 6]) yield an inventory of genome-wide chromatin inter-
actions which, in turn, form the basis for reconstructing
3D configurations [7, 8].

There have been ongoing improvements in assay design
[9, 10]. These include use of greater sequencing depths
that enable higher resolution analyses [11], notable
for supporting the elicitation of mammalian topolog-
ical domains — highly self-interacting regions — when
between-loci interactions (contact counts) are binned at
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sizes less than 100 kilobases (kb), in contrast to ear-
lier analyses conducted at the megabase (Mb) level [5].
More recently, use of in situ Hi-C [12] has facilitated
analyses at 1 kb resolution, refining topological domains
into smaller contact domains of median length 185 kb
that were previously undetectable. Similarly, compan-
ion preprocessing and normalization tools for Hi-C data
have emphasized handling higher resolutions [13]. How-
ever, the suite of 3D reconstruction algorithms has not
kept pace with these resolution improvements. In fact,
computational bottlenecks have largely precluded high-
resolution, whole-genome mammalian reconstructions.
This is consequential beyond the abovementioned intra-
chromosomal identification of topological domains. It
has been shown for simpler organisms that such 3D
reconstructions provide added-value over raw interac-
tion data with respect to downstream identification of
co-localization (both intra- and inter- chromosomal)
of genomic landmarks and functional groups, with the
human malaria parasite P falciparum [14] and the yeast
S. cerevisiae [15] being examples. Moreover, superpos-
ing functional outcomes, such as gene expression [14]
or ChIP-Seq peaks (Capurso D, Bengtsson H, Segal MR:
Identifying hotspots in functional genomic data super-
posed on 3D chromatin configuration reconstructions.
Submitted.), on 3D reconstructions have facilitated bio-
logical insights unobtainable from contact maps.

Here we advance a two-stage algorithm that seeks
to reduce these computational barriers. For mouse and
human, resolution improvements on the order of 20 fold
are attainable. We note that many of the previously pro-
posed methods can serve as primitives for our approach.
Much of the effort surrounding these previously devel-
oped reconstruction methods is comparative — so as to
differentiate between approaches and establish superior-
ity of the technique under consideration. This has given
rise to simulations of selective scope and/or use of —
often out of necessity — sub-optimal real-data compar-
isons. Accordingly, we view this emphasis as misplaced
and expand on these issues in the ‘Discussion’ Our objec-
tive here is to simply offer proof-of-principle for a strategy
whereby existing algorithms can be deployed to greater
effect and, in particular, to enable reconstruction of 3D
genome structures at improved resolutions.

Methods

The result of a Hi-C experiment, following important
preprocessing and normalization steps [13, 16—19], is
the contact map, a symmetric n x n matrix F =[Fj]
of contact counts between #n (generally binned) genomic
loci i,j on a genome-wide basis. This matrix can be
exceedingly sparse with many zero entries even after bin-
ning. The 3D genome reconstruction problem is then
to obtain a 3D point configuration, with a one-to-one
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correspondence between points and genomic loci, such
that the resulting pairwise inter-point distances best reca-
pitulate the corresponding frequencies. We operationalize
“best recapitulate” below. Many approaches have been
proposed to tackle this problem, with broad distinction
[8, 20] between optimization/consensus and probabilis-
tic/ensemble methods, although these can overlap. Our
focus here is on the former. A common first step in these
reconstruction algorithms (e.g. [6, 8, 9, 14, 24—27]) is con-
version of the frequency matrix into a distance matrix D =
[ Dj]. This is often followed by a second step which solves
the graph realization [28] or multi-dimensional scaling
(MDS, [29]) problem: position points (corresponding to
genomic loci) in 3D so that the resultant interpoint dis-
tances best conform to the distance matrix. We briefly
describe aspects of each of these components in order to
position our two-stage algorithm.

Converting contact frequencies to distances

A range of methods have been used for transforming
frequencies into distances. At one extreme, in terms of
invoking and imposing biological assumptions, are meth-
ods that proceed by relating observed intra-chromosomal
contacts to genomic distances and then ascribing phys-
ical distances based on organism specific findings on
chromatin packing [6] or ostensibly well-defined [21, 22]
relationships between genomic and physical distances for
crumpled polymers [14]. Such distances inform the sub-
sequent optimization step as they allow for incorporation
of known biological constraints that can be expressed in
terms of physical separation. However, obtaining physical
distances requires strong assumptions with the conver-
sion being dependent on organism [23], resolution [7] and
cell cycle [30]; see also [8].

At the other extreme are methods devoid of biology-
based inputs. Lesne et al. [24] assign a weighted link
of 1/F; between loci i and j and then arrive at a dis-
tance matrix by computing the shortest (weighted) path
between all loci pairs. The shortest path is obtained using
the O (%) Floyd-Warshall algorithm. The associated algo-
rithm “shortest-path reconstruction in 3D (ShRec3D)"
then uses MDS to obtain a reconstruction. ShRec3D is
purportedly insensitive to link weighting and enjoys good
overall performance speed as further described in the
‘Discussion’

An intermediary strategy is represented by the method-
ology of Zhang et al. [7]. This approach, ChromSDE, (i)
invokes a power law relationship between spatial dis-
tances and contact frequencies: Dy = (Fj;)™ if Fjj > 0;
D = oo if F; = 0, (ii) uses weighted, penalized MDS
to obtain points in 3D conforming to D, and (iii) alter-
nates between (i) and (ii) using golden section search to
optimize for o. The power law prescription derives from
empiric and theoretic work on biopolymers in general
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and DNA in particular [5, 23]. Our subsequent analy-
ses use ChromSDE as a building block toward obtaining
whole genome architecture for mouse and human. How-
ever this choice, while motivated by the good properties
of ChromSDE, is not critical — alternate techniques can be
readily used.

Graph realization / multi-dimensional scaling formulation
We seek a 3D configuration X = {X1,...,%,;% € R
that best fits the distance matrix D according to weighted,
penalized graph realization or MDS criteria as framed by
Zhang et al. [7]:
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The purpose of the weights, w;, in each criterion, is
to mitigate the influence of large D;; values which corre-
spond to small F;; — it is for such small contact counts that
experimental data is least reliable. Common choices for
wj; include Dl;l [7] and D;Z [8]. Similarly, the common
penalty (second) term maximizes pairwise distances for
the many loci without any contacts for which the weight-
ing approach is undefined without introducing fudge fac-
tors or filtering schemes [24]. Each criterion corresponds
to a nonconvex nonlinear optimization problem that is NP
hard. By relaxing the solution space for each ¥; from R> to
R", Zhang et al. [7] demonstrate how criteria (2) and (3)
can be recast as convex semidefinite programming (SDP)
problems via the kernel K for X (Kj; = X; - X;) for which
it is possible to obtain global optima in polynomial time.
Given a solution kernel, coordinates in 3D can be recov-
ered by projection based on the first three eigenvalues and
eigenvectors of its spectral decomposition. Importantly,
they detail the unique localizability condition [28] which
ensures that, in noise-free settings, the SDP solution is
exact. This property is not shared by other approaches to
3D reconstruction.

Their resulting algorithm, ChromSDE, provides a com-
pelling approach to 3D structure elicitation problems,
possessing several desirable attributes including: (i) fast
(polynomial time) solutions; (ii) guaranteed recovery of
the correct structure in the noise-free case; (iii) adaptive
estimation of the power law index «; and (iv) provision
of a consensus index that indicates whether the Hi-C
data derives from a single structure versus a mixture of
structures.
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The main limitation of ChromSDE, which impacts other
reconstruction approaches, is simply computational: since
distance matrices scale as the square of the number of
loci, problem size becomes an issue before informative
resolutions (< 100 kb for mouse, human [11]) can be tack-
led. While ChromSDE employs a sophisticated, recently
developed algorithm [31] for convex quadratic SDPs (as
result from relaxation of (3)) that supports much larger
problems (n ~ 3000 loci) than general SDP solvers (n ~
200 loci), this resolution is still an order of magnitude less
than the desired target resolutions for human and mouse.
Such resolution bottlenecks are computational and not
assay related, with contemporary sequencing capacity
producing reliable Hi-C data at high resolution. Accord-
ingly, as has been noted [8], ChromSDE only provides
solutions for individual chromosomes. As we describe
next, these can serve as the first step toward a whole-
genome reconstruction.

Whole genome solution via a two-stage algorithm

Our two-stage approach is based on the above compu-
tational considerations coupled with properties of inter-
action frequencies Fj;. By virtue of chromatin contiguity,
and the tendency for interphase chromosomes to occupy
distinct territories within at least the human nucleus
[32], there is a preponderance (15 — 20 fold) of intra-
chromosomal contacts compared to inter-chromosomal
contacts. So, at stage one, we exploit the bulk of the
frequency signal by obtaining individual chromosomal
configurations using ChromSDE or an alternate recon-
struction procedure. We are now faced with the problem
of determining the relative positioning of these individ-
ual chromosomes in order to obtain a whole-genome
reconstruction. For this we turn to the inter-chromosomal
contacts, but due to the above mentioned computa-
tional considerations, we can only combine these with
a selection of intra-chromosomal points. While intra-
chromosomal contacts provide the bulk of the counts,
inter-chromosomal contacts provide the bulk of the inter-
acting pairs: ~10 fold more for mouse and human. By
using these to stitch together the individual chromosome
solutions, we arrive at a whole-genome reconstruction
that effectively uses all the data. Details for this program
are as follows.

Let X* = {%;};i = 1,..., n; be the ChromSDE solution
(i.e. 3D coordinates) for chromosome k (k = 1,...,K).
We sample 1 points without replacement from X* and
discuss strategies for effecting the sampling and pre-
scribing my or m = ) ; my in both the ‘Results’ and
‘Discussion’ Designate the sampled points as XX, Let D
be the distance matrix obtained by computing all pairwise
Euclidean distances among the X* sampled points; these
DX capture intra-chromosomal distances based on the
ChromSDE reconstruction. To obtain inter-chromosomal
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distances with respect to the sampled ¥; € XX, %; € X*
we compute Dij = (Fi/)_«/"‘k'“k’ where oy, are the
power law indices obtained for chromosomes k, k' from
the ChromSDE solutions and I:",-j is the interaction fre-
quency between the loci corresponding to X; and %;. If

Fjj = 0, we can either replace with a small pseudo count
[25] or employ penalization as per (1)—(3).

The DX serve as block diagonal matrices of an over-
all m x m distance matrix D* for which the above Dij
provide off block diagonal elements. Now we can re-
apply MDS/graph realization algorithms to D* to find
points in 3D that best recapitulate the hybrid distance
matrix that combines actual Euclidean distances from the
within chromosome ChromSDE solutions with power-law
inferred between chromosome distances. Let the result-
ing solution (3D coordinates) be X*. This represents a
whole-genome (all K chromosomes) reconstruction, but
only for the m sampled loci. To obtain a configuration
for all loci we use Procrustes transformation [29, 33], on
a per chromosome basis, to rigidly map the original X*
to the corresponding points in X*. The Procrustes anal-
ysis, here implemented using the R package vegan [34],
provides the rotation matrix and translation vector for
effecting the mapping; these are then applied to each orig-
inal ChromSDE solution, XX, to obtain a full-resolution,
whole-genome solution. Procrustes analysis also provides
an optional scaling factor for resizing mapped solutions.
We have utilized such rescaling throughout. While such
rescaling may be less critical for methods that, unlike
ChromSDE, estimate a scale factor as part of the con-
version of counts to distances, it ought nonetheless be
applied in view of the lack of scale invariance of mea-
sures (like RMSD) used to assess agreement between
reconstructions as described next in ‘Results!

Results
Mouse and human data at 1 Mb resolution
We initially applied the two-stage strategy described
above to public Hi-C data from two differing cell lines:
mouse embryonic stem cells (mESC) [11] and human lym-
phoblastoid cells (GM06990) [5]. For each of these cell
lines two datasets were available at 1 Mb resolution corre-
sponding to two restriction enzyme (RE) digests (HindIII
and Ncol). In all instances, interaction frequencies were
normalized using hicpipe [16]. Reconstructions for mESC
and GM06990 cell lines for HindIII digestion using the
two stage algorithm are depicted in Figs. 1 and 2, respec-
tively. In these reconstructions, the stage two sampling
scheme consisted of taking 10 equi-spaced points for each
chromosome. The weights used for MDS in both stage one
and stage two were w;; = 1/Dj;.

Evaluating accuracy of 3D genome reconstructions is
challenging. Fluorescence in situ hybridization (FISH)
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Fig. 1 3D reconstruction for mouse embryonic stem cells. Whole
genome architecture, at 1 Mb resolution, from applying the
two-stage reconstruction algorithm with 10 % equi-spaced sampling
to mESC cell line data [11]

techniques have served as a “gold standard” for 3D recon-
structions [5, 9, 10, 14]. However, the number of FISH
landmarks available is small and so this approach is lim-
ited with respect to arbitrating between reconstructions at
the target resolutions. More importantly, a crucial feature
of FISH data generated to date is that the landmarks all
derive from individual chromosomes. This pertains even
for 3D genome reconstruction methods that integrate
FISH-based calibration into their algorithms [25]. Since
our two-stage approach starts with obtaining 3D recon-
structions of individual chromosomes using any existing
method, and then determines their relative positioning,
this data can only be used for evaluating the (existing)
algorithms on an individual chromosome basis.
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Fig. 2 3D reconstruction for human lymphoblastoid cells. Whole
genome architecture, at 1 Mb resolution, from applying the
two-stage reconstruction algorithm with 10 % equi-spaced sampling
to human GM06990 cell line data [5]
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So, we turn to widely-used assessments of reproducibil-
ity [7, 8, 14, 36, 37] to examine the impact of sampling
schemes, and other facets of the two-stage algorithm, by
measuring agreement (“closeness”) between reconstruc-
tions obtained under a variety of conditions. Let X, X;
be n x 3 matrices with rows being the 3D coordinates
for the n (common) loci resulting from two such recon-
structions. Two (implicitly correlated) measures of agree-
ment between X; and X; are commonly used: root mean
squared deviation (RMSD) and distance error. Configura-
tions that only differ by a reflection, rotation, translation
and scaling (reflection similarity shape, [35]) are deemed
equivalent. The RMSD closeness of X; and X; is then mea-
sured by how far apart corresponding points are, after
optimizing for these allowed transformations. Such opti-
mization is effected via Procrustes analysis. As mentioned,
this includes always estimating a rescaling parameter as
part of the Procrustes transformation which mitigates the
lack of scale invariance of the RMSD criterion. Distance
error avoids the need for transformation by compar-
ing corresponding within-reconstruction distances. Let
d;, &j) be the Euclidean distance between positions ¢, 3615
of rows (loci) i,/ of X; and similarly for X;. Then distance

error is given by \/Z?<j(d(fcf,3cf) — d(?cf,?c;))z. However,
as formulated, distance error is also not scale invariant.
Following [37] we use the scale invariant version obtained
by substituting d*(?cf,?c*;) = d@f,&f)/ s d(?c?,?cj') for
d(, fc*;) and similarly for d(x/, fc;).

The experimental design for examining reconstruc-
tions under differing conditions for the mESC data con-
sisted of a complete cross between sampling scheme
(3 differing equi-spaced selections) x restriction enzyme
(HindIII, Ncol) x stage two distance specification (hybrid,
non-hybrid) for a total of 12 conditions. Additional
reconstructions utilized non-metric MDS at stage two
via the smacof R package [38], however, conver-
gence/computational difficulties resulted in very few
solutions. The hybrid category for stage two distance
specification refers to the blending of within-chromosome
Euclidean distances with between-chromosome power
law derived distances as detailed in the preceding section.
The non-hybrid category pertains to using the same sam-
pling scheme as for the hybrid approach but using power
law derived distances both within and between chromo-
somes. Thus, this factor addresses putative gains afforded
by the two stage algorithm. The sampling schemes uti-
lized every 10th bin from differing start positions. More
sophisticated alternatives are described below and in the
‘Discussion.

The 12 conditions give rise to (122) = 66 pairwise
comparisons for which we obtain (standardized) distance
error and RMSD measures of agreement. We partition
the condition defining factors according to between- and
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within-level comparisons and fit separate regression mod-
els for the two (outcome) measures of agreement. Results
are presented in Tables 1 (distance error) and 2 (RMSD).
For both measures we observe highly significant differ-
ences for between RE comparisons versus within RE com-
parisons, with the within RE structures being closer than
their between RE counterparts. There is no statistical
difference between the two within RE categories. Simi-
larly, for distance error, between hybrid and power-law
distance comparisons are significantly different than the
corresponding within distance type comparisons, again
there being no statistically significant distinction between
the two within distance type categories. It is notable that
for both measures there are no differences between the
sampling schemes. While the extent of sampling schemes
examined is modest, this null result provides some reas-
surance that the proposed two-stage approach, with its
sampling component, can produce concordant whole
genome 3D reconstructions.

We next sought to further assess this finding by
performing a more extensive exploration of sampling
schemes as applied to the human GM06990 lymphoblas-
toid cell line data. Here we used three sampling schemes:
equi-spaced, binned, and first principal components each
at 10 sampling fractions (0.1,0.2,...,1.0). Equi-spaced
sampling selects evenly spaced bins according to the pre-
scribed sampling proportion. Instead of selection of indi-
vidual bins, aggregation combines bins so as to attain the
specified sampling proportion. The principal component
scheme is an attempt to go beyond (linear) genomic coor-
dinate based sampling and to utilize (minimal) 3D infor-
mation. For each individual chromosome 3D reconstruc-
tion the first principal component of the attendant points
is obtained. The points are projected onto this component
and sampling proceeds, according to prescribed propor-
tion, along this component. This represents a crude, albeit

Table 1 Regression estimates for standardised distance error

Estimate  StdError t-value Pr(> |t])
Within Hindlll referent
Between Hindlll & Ncol 1.340e-05 2.375e-06 5639 5.83e-07
Within Ncol -3.277e-06 2.788e-06 -1.175 0.245
Within hybrid distances referent
Between hybrid & power-law ~ 1.302e-05 2375e-06 5482 1.04e-06
Within power-law distances ~ -2.222e-06 2.788e-06 -0.797 0429
Within sample 1 referent
Between samples 1 &2 4.609e-07 3.686e-06  0.125 0.901
Between samples 1 &3 3.561e-07 3.686e-06 0.097 0923
Within sample 2 5851e-06 4.408e-06 1.328 0.190
Between samples 2 & 3 -4.143e-07 3.686e-06 -0.112 0911
Within sample 3 -3.388e-06 4.408e-06 -0.769 0.445
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Table 2 Regression estimates for RMSD

Estimate  StdError  t-value  Pr(> |t|)
Within Hindlll referent
Between Hindlll & Ncol 0.0179 0.0085 2.101 0.040
Within Ncol -0.0129 00100 -1.297 0.200
Within hybrid distances referent
Between hybrid & power-law 0.0113 0.0085 1.320 0.192
Within power-law distances 0.0024 0.0100 0.246 0.806
Within sample 1 referent
Between samples 1 & 2 -0.0026 0.0132 -0.198 0.844
Between samples 1 & 3 0.0004 0.0132 0.033 0.974
Within sample 2 0.0111 0.0158 0.699 0487
Between samples 2 & 3 -0.0037 0.0132  -0.276 0.783
Within sample 3 00076 00158 0481 0.632

computationally straightforward, way to capture local 3D
density as part of the sampling scheme. Comparisons
were effected by specifying a referent reconstruction from
which the RMSD of all other reconstructions was com-
puted. Use of such a common referent allows for compar-
isons across settings in view of the previously mentioned
concern of RMSDs not being scale invariant.

Results are depicted in Fig. 3. The referent reconstruc-
tion was chosen to be that based on equi-spaced sampling
at a proportion of 1.0, under the hybrid algorithm with
inverse squared distance weighting. When this recon-
struction is compared against itself, an RMSD of 0 is
obtained as seen in the upper left panel. Some findings
are readily apparent. First, results are reasonably sta-
ble with respect to sampling proportions, with evidence
of improved agreement (smaller RMSDs) correspond-
ing to larger fractions. Second, there are no consistent
or pronounced differences between sampling schemes.
Third, the hybrid algorithm tends to produce smaller
RMSDs than the non-hybrid algorithm across all sam-
pling proportions. Fourth, concordant RMSD values are
obtained regardless of whether weighted (w; = 1 /Dl-zj) or
unweighted (w;; = 1) MDS is used for stage two relative
positioning. Identical findings pertained for other choices
of the referent reconstruction. So, in summary, this col-
lection of results further supports the conclusion that
whole genome 3D reconstructions are not overly influ-
enced by the choice of sampling scheme and/or fraction
or, indeed, other aspects of the second stage reposition-
ing step. These findings pertained down to a sampling
fraction of 5 %. Such a result is critical for the pro-
posed two-stage strategy to have any potential. As we
detail further in the ‘Discussion; this assessment is sup-
ported by recent work that approached sampling and 3D
reconstruction from a different perspective [26].
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Improved resolution and replication human data

A more comprehensive evaluation of resolution and repli-
cation aspects was pursued using a richer dataset. Rao
et al. [12] deploy their in situ Hi-C assay to comprehen-
sively map genome-wide chromatin contacts in a variety
of cell lines, at several resolutions, and, importantly, to
examine replicates thereof. Here we utilize their data from
GM12878 B-lymphoblastoid cells at 1 Mb and 500 kb res-
olutions, each from primary and replicate studies. These
datasets represent pools over individual experiments: 18
for the primary series and 11 for the replicate series. We
use unnormalized, filtered versions that restrict to read
pairs with mapping Q scores greater than or equal to 30.
Stage one individual chromosome reconstructions used
MDS with w;; = 1/D;;. We use the same ten equi-spaced
sampling fractions as above and again make recourse to a
referent reconstruction selected at the maximal sampling
proportion (i.e. complete data) for the primary series.
Additionally, we computed RMSDs between primary and
replicate series at each sampling fraction without use of a
global referent (not shown).

Results are displayed in Figs. 4 and 5. Once again, we
see invariance with respect to sampling proportion. More-
over, at both resolutions, distance as measured via RMSD
to the referent is almost identical for the primary and
replicate studies at all sampling fractions and these val-
ues are not substantially increased over the RMSD for
the replicate series when no downsampling is employed.
While examination of per sampling fraction primary ver-
sus replicate comparisons, without use of a global ref-
erent at both 1 Mb and 500 kb resolutions revealed no
systematic trends, there was no indication of deterio-
rated performance at low sampling fractions. We also
made comparisons between these resolutions. These were
performed by thinning a given 500 kb reconstruction,
for a particular sampling fraction, so that the genomic
loci corresponding to each 3D point of the reconstruc-
tion were also represented in the 1 Mb reconstruction
at that same sampling fraction. The thinning essentially
amounts to considering every other point. Procrustes
transformation was then used to align these reconstruc-
tions and the attendant RMSD obtained. These RMSDs
were very small across the suite of sampling fractions
ranging from 1.6 x1073 to 4.0 x10~3. This good agree-
ment in part reflects the fact that the data underly-
ing the 1 Mb reconstructions is arrived at by binning
the 500 kb data, as opposed to being independently
generated.

We evaluated how well the coordinates correspond-
ing to each bin in the stage one individual chromo-
some reconstructions matched their counterparts in the
merged whole-genome reconstruction as obtained by the
second stage. Despite the whole-genome reconstruction
being obtained by rigid Procrustes transformation, these
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Fig. 3 RMSDs for a series of sampling proportions and schemes. RMSD comparisons across a range (0.10,0.20, . . ., 1.0) of second stage sampling
proportions and schemes (equi-spaced, aggregated and first principal component based) for reconstructions from human GM06990
lymphoblastoid cell lines [5]. Hybrid and non-hybrid algorithms and MDS weighting options are also contrasted. Comparisons are performed with
respect to a referent reconstruction based on equi-spaced sampling at a proportion of 1.0, under the non-hybrid algorithm with inverse squared
distance weighting

point sets do not necessarily coincide since this trans-
formation is determined solely by the sampled bins. In
brief, agreement as measured by RMSD was comparable
across all sampling proportions, this holding for both pri-
mary and replicate data series at both 500 kb and 1 Mb.
For a given sampling fraction and resolution, there was
excellent agreement between primary and replicate data
RMSDs on a per chromosome basis. There was a tendency
toward greater between-chromosome RMSD variability

at small (< 0.3) sampling proportions as compared with
large (> 0.7) proportions.

Note that sampling fractions employed extend to 1.0
even for data at 500 kb resolution. That is, we were able
to perform stage two MDS on a distance matrix D with
row and column dimension of approximately m = 3 x
10°/500x 103 = 6,000. An m x m distance matrix D occu-
pies m x m X size of (double) = m x m x 8 bytes of RAM,
which for the 500 kb resolution comes to 275 MB of RAM

0.25 -
0.20 -
° o ° ° ° o ° ° °
0.15- !
8 samp.e
= 1 primary
o * replicate
0.10-
0.05 -
0.00 -
I I I I I
0.00 0.25 0.50 0.75 1.00
Sampling Proportion
Fig. 4 RMSD comparisons between replicates at 1 Mb resolution. Comparisons across a range (0.10,0.20, . . ., 1.0) of second stage equi-spaced
sampling proportions for reconstructions from primary and replicate human GM12878 B-lymphobilastoid cell line pools [12] at a resolution of 1 Mb.
The referent reconstruction is based on a proportion of 1.0 for the primary series. Overplotting obscures coincident points at some sampling
proportions
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0.00-
0.00 0.25 0.50 0.75 1.00
Sampling Proportion
Fig. 5 RMSD comparisons between replicates at 500 kb resolution. Comparisons across a range (0.10,0.20, . . ., 1.0) of second stage equi-spaced
sampling proportions for reconstructions from primary and replicate human GM12878 B-lymphoblastoid cell line pools [12] at a resolution of
500 kb. The referent reconstruction is based on a proportion of 1.0 for the primary series. Overplotting obscures coincident points at some sampling
proportions

(1 MB = 10242 bytes). Roughly allowing for memory com-
plexity of the smacof algorithm, coupled with the need
to utilize an m x m weight matrix, by introducing a fac-
tor of 10 results in memory requirements of 2.7 GB of
RAM, which can readily be handled. However, in attempt-
ing to pursue 3D reconstructions at 100 kb resolution we
encounter runtime (as opposed to memory) challenges.
Specifically, while we can obtain reconstructions at sam-
pling fractions of 5, 10, 15, 20, 30 and 40 % in respectively
5.0, 8.0, 21, 56, 117, and 480 h on a 2.6 GHz Opteron pro-
cessor with 512 GB of memory. We comment further on
memory and computational complexity in the context of
higher resolution in situ Hi-C data in the 1.

Discussion

The purpose of this article was to demonstrate proof-
of-principle for a two-stage approach to obtaining whole
genome 3D reconstructions from Hi-C assays. The advan-
tages of such a strategy include (i) effective use of both
within chromosome (majority of interaction counts) and
between chromosome (majority of interaction pairs) con-
tacts; (ii) the ability to use existent reconstruction tools,
especially for the first stage generation of individual chro-
mosome solutions; and (iii) the potential to obtain higher
resolution whole genome reconstructions. As noted, this
latter point is consequential with respect to eliciting
topological and contact domains in mammalian genomes
[11, 12]. The two-stage reconstruction method could
potentially be improved by employing more sophisticated
sampling schemes. These could make recourse to tar-
geting loci with large inter-chromosomal counts or be

based on curvature summary measures for the individual
chromosome solutions. Moreover, a variety of sampling
schemes could be deployed and a consensus (averaged)
structure reported after performing Procrustes alignment.
The regression-based testing of between versus within
sample variation, as utilized for the comparisons pre-
sented in the ‘Results; could be used as a precursor
determinant as to whether such averaging was justified,
analogous to the consensus index [7].

For demonstration purposes we have, in part, used
ChromSDE for stage one reconstructions of individual
chromosomes because of its desirable characteristics. Two
recent papers purportedly show relatively poor perfor-
mance of ChromSDE; accordingly we make some brief
comments on these assessments. Varoquaux et al. [8]
use MDS to provide an initial 3D reconstruction then
refine this configuration using Poisson regression. In
making comparisons between differing reconstruction
approaches, they comment that “ChromSDE does not
infer the relative position of chromosomes” Our two-
stage algorithm provides such relative positioning thereby
expanding the scope and utility of ChromSDE. Moreover,
based on simulation studies, [8] contend that ChromSDE
performs relatively poorly in low signal-to-noise settings.
However, the simulations were based on data generated
according to their Poisson model and employed a fixed
a value conforming to this model. Such a framework
deprives ChromSDE from demonstrating putative advan-
tages associated with estimating «. A more complete com-
parison would result from applying the Poisson model to
data generated with a misspecified « value.
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In evaluating ShRec3D, Lesne et al. [24] also make
comparisons with ChromSDE, again based on simulation.
While the methods are comparable with respect to accu-
racy, ChromSDE is deemed worse with respect to both
problem size capability and computational time. Again,
these are aspects wherein our proposed two-stage algo-
rithm can extend applicability of ChromSDE. Further,
contrary to [7], Lesne et al. contend that the choice of
a is not critical. As they note, weak or vanishing con-
tact frequencies do not contribute to inferred distances,
since shortest path constructions will avoid corresponding
links (of large or infinite lengths). Accordingly, ShRec3D
involves an implicit filtering. Since 3D solutions are also
obtained via MDS it is presumably the degree of this filter-
ing that is responsible for its improved problem size and
compute time characteristics.

Recent work by Diament and Tuller [26] also employs
sampling as a precursor to 3D genome reconstruction.
For S. cerevisiae they demonstrate that even under sparse
samplings, down to the 5 % level, the resultant recon-
structions are concordant with the original reconstruction
in terms of co-localization of various genomic landmarks
and functional groups. This concordance is used to sug-
gest the possibility of reducing the scale of Hi-C exper-
imentation, if 3D reconstruction is used to analyze the
data. As such, their findings are consistent with our results
that show that sampling, also down to the 5 % level,
does not impact the 3D reconstruction itself. Accord-
ingly, our two-stage approach is able to realize 20-fold
improvements in resolution.

The mouse and human data analyzed herein are diploid.
To date, 3D whole-genome reconstructions based on Hi-C
data from diploid organisms implicitly treat homologous
chromosome pairs as coincident (i.e. as occupying roughly
the same position, relative to inter-chromosomal position-
ing) [7, 8, 24]. The reasonableness of such an assumption
is unclear. The emergence of high resolution in situ Hi-C
assays [12] has enabled phasing of Hi-C maps. This derives
from having sufficient reads overlap SNPs so that con-
tacts can be assigned to specific chromosomal homologs.
At present, the resolutions needed for such phasing are
such that computational bottlenecks, even with our two-
stage algorithm, preclude 3D genome reconstruction on a
diploid level. Even though the disambiguation provided by
phasing shows that, for autosomes, maternal and paternal
homologs exhibit very similar inter- and intra- chromo-
somal contact profiles (Pearson’s R > 0.998) and, accord-
ingly, very similar between loci distances, this does not in
itself imply that are homologous pairs are roughly coinci-
dent in view of results from computational geometry [39].
We note that for a near-haploid chronic leukemia cell line
(KBM?7) Ay et al., [27] provide a diploid reconstruction.

Contact data at 1 kb resolution from in situ Hi-C assays
will challenge existing 3D reconstruction algorithms on
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both memory and computational complexity grounds. For
example, 10 % downsampling of whole genome human
1 kb resolution data will still yield a distance matrix requir-
ing ~670 GB of RAM. Accordingly, even obtaining indi-
vidual chromosome solutions will require downsampling
and/or algorithmic refinements (cf [40, 41]). However,
once these are generated, the two-stage approach devel-
oped here will again be valuable in eliciting whole genome
3D architecture.

Conclusions

The proposed two-stage algorithm offers a promising
technique for obtaining whole genome 3D reconstruc-
tions from Hi-C assays. By sampling 3D coordinates from
individual chromosome solutions (obtained using any
existing method), and deploying inter-chromosomal con-
tacts to relatively position these solutions, it efficiently
leverages contact data enabling substantial improvements
in resolution.
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