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1 Introduction

Rabinowitz [1] showed that the bifurcation occurring in the Krasnoselskii theorem is ac-
tually a global phenomenon by using the topological approach of Krasnoselskii [2]. As
regards the p-Laplacian and generalized operators, nonlinear eigenvalue and bifurcation
problems have been extensively studied by many researchers in various ways of approach;
see [3-9]. While most of those results considered global branches bifurcating from the
principal eigenvalue of the p-Laplacian, under suitable conditions, Vith [10] introduced
another new approach to establish the existence of a global branch of solutions for the
p-Laplacian problems by using nonlinear spectral theory for homogeneous operators. Re-
cently, Kim and Vith [11] proposed a new approach. They observed the asymptotic behav-
ior of an integral operator corresponding to the nonhomogeneous principal part at infinity
and established the existence of an unbounded branch of solutions for equations involving
nonhomogeneous operators of p-Laplace type.

In recent years, the study of differential equations and variational problems involving
p(x)-growth conditions has received considerable attention since they can model phys-
ical phenomena which arise in the study of elastic mechanics, electro-rheological fluid
dynamics and image processing, etc. We refer the readers to [12-15] and the references
therein.

In this paper, we are concerned with the existence of an unbounded branch of the set
of solutions for nonlinear elliptic equations of p(x)-Laplacian type subject to the Dirichlet
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boundary condition

—div(e(x, |Vu|) Vi) = |ulP®2u + f(h, x,u, Vi) in L,

(B)
u=0 on 4%,
when p is not an eigenvalue of
—div(|Vulf®2Vy) = p|uf®2y  inQ, ©)

u=0 on 0L2.

Here € is a bounded domain in RY with Lipschitz boundary €2, the functions ¢(x, t) are
of type |t[P®-2 with a continuous function p: Q — (I,00) and f: R x @ x R x RN - R
satisfies a Carathéodory condition. When p(x) is a constant function, the existence of an
unbounded branch of the set of solutions for equations of p-Laplacian type operator is ob-
tained in [11] (for generalizations to unbounded domains with weighted functions, see also
[16, 17]). For the case of a variable function p(x), the authors in [18] obtained the global bi-
furcation result for a class of degenerate elliptic equations by observing some properties of
the corresponding integral operators in the weighted variable exponent Lebesgue-Sobolev
spaces.

In the particular case when ¢(x,2) = [¢[’™2, the operator involved in (B) is the
p(x)-Laplacian. The studies for p(x)-Laplacian problems have been extensively consid-
ered by many researchers in various ways; see [18—23]. As far as we know, there are no
papers concerned with the bifurcation theory for the nonlinear elliptic equations involv-
ing variable exponents except [18]. Noting that (B) has more complicated nonlinearities (it
is nonhomogeneous) than the p-Laplacian equation, we need some more careful and new
estimates. In particular, the fact that the principal eigenvalue for problem (E) is isolated
plays a key role in obtaining the bifurcation result from the principal eigenvalue. Unfor-
tunately, under some conditions on p(x), the infimum of all positive eigenvalues for the
p(x)-Laplacian might be zero; see [21]. This means that there is no principal eigenvalue
for some variable exponent p(x). Even if there exists a principal eigenvalue p., this may
not be isolated because p, is the infimum of all positive eigenvalues. Thus we cannot in-
vestigate the existence of global branches bifurcating from the principal eigenvalue of the
p(x)-Laplacian. However, based on the work of Vith [10], global behavior of solutions for
nonlinear problems involving the p(x)-Laplacian was considered in [18].

This paper is organized as follows. In Section 2, we state some basic results for the vari-
able exponent Lebesgue-Sobolev spaces. In Section 3, some properties of the correspond-
ing integral operators are presented. We will prove the main result on global bifurcation
for problem (B) in Section 4. Finally, we give an example to illustrate our bifurcation result.

2 Preliminaries
In this section, we state some elementary properties for the variable exponent Lebesgue-
Sobolev spaces which will be used in the next sections. The basic properties of the variable
exponent Lebesgue-Sobolev spaces can be found in [24, 25].

To make a self-contained paper, we first recall some definitions and basic properties
of the variable exponent Lebesgue spaces L () and the variable exponent Lebesgue-
Sobolev spaces W™ (Q).
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Set

C.(Q) = {h € C(Q) : min(x) > 1}.

xeQ

For any 4 € C,(R2), we define

h,=suph(x) and h_= insfzh(x).
X€E

xeQ

For any p € C,(R), we introduce the variable exponent Lebesgue space
IP9(Q) = {u : u is a measurable real-valued function,/ !u(x) |p(x) dx < oo},
Q

endowed with the Luxemburg norm

el oy = inf{k 20 /
Q

The dual space of LF™¥(Q) is [P’ @(Q), where 1/p(x) + 1/p'(x) = 1. The variable exponent
Lebesgue spaces are a special case of Orlicz-Musielak spaces treated by Musielak in [26].
The variable exponent Sobolev space W?¥(Q) is defined by

u(x) p(x)

dx < 1},

W(Q) = {u e [FY(Q) : |Vu| € LFP(Q)},
where the norm is

”u”Wl.p(x)(Q) = ||M||Lp(x)(gz) + ||V14||Lp(x)(g)- (2.1)

Definition 2.1 The exponent p(-) is said to be log-Hoélder continuous if there is a constant
C such that
C

p(x) - p()| < ———— (2.2)
—log |x -yl

for every x,y € Q2 with |x —y| <1/2.

Without additional assumptions on the exponent p(x), smooth functions are not dense
in the variable exponent Sobolev spaces. This was considered by Zhikov [27] in connection
with Lavrentiev phenomenon. The importance of this above notion relies on the follow-
ing fact: if p(x) is log-Holder continuous, then C5°(S2) is dense in the variable exponent
Sobolev spaces W™ (Q) (see [28, 29]).

Lemma 2.2 ([24, 25]) The space L**)(Q) is a separable, uniformly convex Banach space,
and its conjugate space is LP'(Q), where 1/p(x) + 1/p'(x) = 1. For any u € I’™(Q) and
v € LF'%)(Q), we have

/ uvdx
Q

1 1
< (p— + (T)) el oty 1Vl gy < 211l oty 1V o -
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Lemma 2.3 ([24]) Denote
o(u) = / \ulP® dx  for all u € IP*(Q).
Q

Then
(1) p(u)>1(=1;<1) ifand only if | ul;pw o > 1 (= 1; < 1), respectively;
'y 1P()(Q) P 'y
@) If Null oy > 1 then [l o) < 00) < 3 0

Lemma 2.4 ([23]) Let g € L*(2) be such that 1 < p(x)q(x) < oo for almost all x € Q. If
u € L19(Q) with u # 0, then
1) If”u”l}?(x)q(x)(g) > 1, then ||u||?};(x)q(x)(9) = |||M|q(x)||LP(X)(Q) = ”M”;I;(x)q(x)m)}

(2) I ull ppeoqe ) < 1, then IIMIIZ;wq(x)(Q) < 19| iy < ”uHZ;(x)Q(x)(Q)'

Lemma 2.5 ([20]) Let p € C,(Q) satisfy the log-Holder continuity condition (2.2). Then,
forue Wé’p(')(Q), the p(-)-Poincaré inequality

”M”ui(x)(g) = C”V””Uf(x)(g)
holds, where the positive constant C depends on p and Q.
Lemma 2.6 ([28]) Let Q@ C RN be an open, bounded set with Lipschitz boundary and p €

C.(Q) with 1 < p_ < p, < oo satisfy the log-Hélder continuity condition (2.2). If g € L>°(R2)
with q_ > 1 satisfies

q(x) <p*(x):= ﬁéﬁ) if N > p(x), "
) +oo  ifN < px),

for all x € Q, then we have

lep(x)(Q) s Lq(")(Q)
and the imbedding is compact if inf,cq(p*(x) — g(x)) > 0.
3 Properties of the integral operators
In this section, we shall give some properties of the integral operators corresponding to
problem (B) by applying the basic properties of the spaces L**(Q2) and W"*®)(2) which
were given in the previous section.

Throughout this paper, let p € C,(Q) satisfy the log-Hélder continuity condition (2.2)
and X := Wé’p(x)(Q) with the norm

[[z|lx = inf{k >0 :/
Q

which is equivalent to norm (2.1) due to Lemma 2.5.

Vu(x) [P¥

dx < 1},
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Denote
le{er:1<p(x)<2}, sz{xefz:p(x)z2}.

(We allow the case that one of these sets is empty.) Then it is obvious that Q = Q; U Q,.
We assume that
(HJ1) ¢:£2 x [0,00) — [0, 00) satisfies the following conditions: ¢ (-, 1) is measurable
on  for all n > 0 and ¢(x, -) is locally absolutely continuous on [0, co) for almost
allx € Q.

(HJ2) There are a function a € Lp/(x)(Q) and a nonnegative constant b such that
‘qﬁ(x, |V|)V‘ <a(x) + blyrW1

for almost all x € Q and for all v € RV,
(HJ3) There exists a positive constant ¢ such that the following conditions are satisfied

for almost all x € Q:
0
¢(x,1) = ™2 and n%(x, n) +¢(x,n) = a7 (3.1)

for almost all € (0,1). If x € 25, then condition (3.1) holds for almost all
n € (1,00), and if x € 1, then assume for almost all € (1, 00) instead

0
$(r)=c and n%(x, )+ b = c. (3.2)

Let (-,-) denote the usual of X and its dual X* or the Euclidean scalar product on R¥,

respectively. Under hypotheses (HJ1) and (HJ2), we define an operator J : X — X* by

Vu(x)‘)Vu(x), V(p(x)>dx (3.3)

wmm=ﬁw@

forall p € X.

The following estimate is a starting point for obtaining that the operator J is a homeo-
morphism. When p(x) is constant, this is a particular form of Corollary 3.1 in [11] which
is based on Lemma 3.1 in [6]; see [30, Lemma 1]. In fact, the special case that ¢ is inde-
pendent of x is considered in [6]. The proof of the following proposition is essentially the

same as that in [31]. For convenience, we give the proof.
Proposition 3.1 Let (H]1) and (H]3) be satisfied. Then the following estimate

(¢ (3 1)t — (s, VI v, e = v)

cminfl, (Ju| + [v[’W 2} u-v|*>  ifx € Q, and (u,v) #(0,0),

(3.4)
43P+ |y — y|P) ifxeQy

holds for all u,v € RN, where c is the positive constant from (HJ3).

Page 5 of 20
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Proof Let u,v e RN with (u,v) # (0,0). Let ¥;(x, u) = ¢(x, |u|)u; fori=1,...,N and set n =
|u]. Observe that

o i, )
ZT@ wiw; = — —(x,n)Zw,uw]u,+¢x,n)Zw

ij=1 ij=1

193¢

= ZB—(x,n) w,u)* + ¢ (x, n)|w|*

a 2
= IWI2<n—¢(x,n)<i,z> +¢(x, n))
on wl n

for all u,w € RN \ {0}. We assume that x € . Setting A = (w/|w|,u/n)?, it follows from
(3.1) that

9 ad
A(nﬁ(x, n)) +o0,n) =10 -1)px,n) + k(n%(% n) + ¢, '7))

> clulP®2,
and so
N
a JAGZ]
MW;'W;‘ > C|u|p(")'2|w|2. (35)
. Buj
ij=1
Noticing that
1 N —
0 (x, )
o) - i) = [ 3D -y, (3.6)
0 = i
j=1

where u = v + t(u — v), we have by (3.5) and (3.6) that

N
(e, lul) e = B (s IvI)v, e = v) = Y (il 1) — Wl v) (s = i)

i=1

1 N

:/OZ

ij=1

oY,
8—;} (%, v+ t(u = v)) (uy = v)) (w; — v;) ddt

1
> / c}v+ t(u - v){p(x)_2|u —v|*dt.
0

Without loss of generality, we may suppose that |u#| < |v|. Then we obtain, for all ¢t €
[0,1/4],

|V+t(u v)|>|v| l|u v|>l|u v
- 4 — 4
and

1
(d)(x, |u|)u - ¢(x, |v|)v, u-— v) > / c|v +t(u - v)|p(x)72|u —v|%dt
0

> 417+ cly — v|P®,

Page 6 of 20
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Now assume that x € ;. As before, we obtain from (3.1) and (3.2) that

N

Z 3%("”") w; > cmin{1, P Hwl?

Pt ou;

for u,w € RN \ {0}. Using the fact that |tu + (1 — £)v| < |u| + |v|, we get

v+ t(u —v)) () — v)(w; — v;) dt

(6 (o, |l )2t — b (x, [v]) v, 1 — v) /

111

1
Z/ cmin{ ,
0

> cmin{1, (Ju| + |v|)p(x)_2}|u— v

)|p(x)—2} |u— v|2 dr

%
This completes the proof. d

From Proposition 3.1, we can obtain the following result.

Theorem 3.2 Assume that (HJ1)-(H]3) hold. Then the operator] : X — X* is a continuous,
bounded, strictly monotone and coercive on X.

Proof In view of (HJ1) and (HJ2), the superposition operator

Aw) ) = ¢ (%,

u(x)|)u(x)
acts from L7®(Q,RN) into LF'® (2, RY) and is continuous; see Corollary 5.2.1 in [32].
Hence the continuity of J follows from the fact that J is the composition of the continuous

map V: X — LP® (2, RN), the map A and the bounded linear map D : LZ @ (9, RN) — X*
given by

(Dv, w) :fsz(v(x),Vw(x))dx

Hence the operator J is bounded and continuous on X.
For any u in X with [|u|x > 1, it follows from (HJ3) that

(1), u) > Cllullfy

for some positive constant C. Thus we get that

(J(u), u) N

llaellx

as |lu||x — oo and therefore the operator J is coercive on X.
Next we will show that the operator / is strictly monotone on X. Set

po = inf p(x), p1 = sup p(x)
xeR

erl

Page 7 of 20
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p2=inf p(x),  p3 = sup p(x).
x€Q2) e

(Of course, if the sets €27 and €2, are nonempty, then p; = p, = 2 by the continuity of p(x).)
It is clear that

) - ), =)

:/;z(qb(x,
- [ bt
+/92 (o(

To get strict monotonicity of the operator /, without loss of generality, we divide the proof

Vu(x)})Vu(x) - d)(x, |Vv(x) ’)Vv(x), Vu(x) - Vv(x))dx

Vv(x) |)Vv(x), Vu(x) - Vv(x)) dx

Vu(x)|) Vu(x) - ¢ (x,

Vv (x) |)Vv(x), Vu(x) - Vv(x)) dx.

Vu(x) ’)Vu(x) - ¢(x,

into two cases.
Casel. Let u, vbein X with |Vu — V| pw g, > 1 for i =1,2. By Proposition 3.1, we have

Vu(x)’)Vu(x) - ¢>(x, ’Vv(x) ’)Vv(x), Vu(x) - Vv(x)> > 417+ | Vu(x) — Vv(x) ’p(x)

(o (x

for almost all x € Q2,. Integrating the above inequality over € and using Lemma 2.3, we

assert that

) ), u—-v)= /Q (@ (% | Vu@)]) Vulx) - ¢ (x, | Vv(x)|) VV(x), Vilx) — Vv(x)) dx

1—
> 417+ ¢| Vi - VV||IZ;(x)(QZ)
2po

> 4P|V - VV||L’;1(%)(Q2 (3.7)

X

For almost all x € ©;, by Proposition 3.1, we have

(](u) —J(v),u— v) = /Q <¢ (x, \Vu(x)|)Vu(x) - ¢(x, VV(x)|)Vv(x), Vu(x) — Vv(x))dx

>c / 92|V y(x) - V()| dax, (3.8)
Q

where £(x) = min{1, |Vu(x)| + |Vv(x)|}. From Holder’s inequality in Lemma 2.2, we obtain
that

/ |Vau(x) - Vo) dx
Q)

(%) (2-p(x)) (%) (p(x)-2)
= / Tt (Zp 2 \Vu(x) - Vv(x) |p(x)) dx
Q)

< 2”£p<x><22—p<x» | Hzpw(pﬂ(x)—z) Vi vy 2 . (3.9)
L2710 () LP® (@)
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The first term on the right-hand side in (3.9) is calculated by Lemma 2.4 as follows:

=52 2,
L2770 (Qq)
ro (227191) Jal (2£po)
= 1l g, * Il ey
m m(zz—po)
= [Vl 199 i,y + 11VHl+ 1991 il g,

Po2-p1) p1(2-po)
=< (”VMHLP(x)(Q) + ||VV||Lp(x)(Q)) 2 + (”Vu”[p(x)(g) + ”vv”yﬂ(x)(g))

for any u,v € X. Since |Vu = Vv|| 9 (q,) > 1, we deduce that

P(x)(szp(x)) ” P12-po)

|e <2(Jlulx +Ivix) % . (3.10)

2
L2-P@) ()

If

f 61"(")’2|Vu(x) - Vv(x)|2 dx>1,
Q1

then it follows from (3.9), (3.10), Lemmas 2.3 and 2.4 that

n1ro) Hzp(x)(péw—z) Vi — VyP® || o

Vu - Vy|?° <4
Vu VIILp(x)ml)_ (Ilullx + IvIix) ey

]

p1(2-po)
<4(llullx + Ivllx) 2 (f ep<x)2|Vu(x)—vV(x)|2dx)
Q)

Hence we deduce that

2po
_2 -2 -
() =T @) =v) = a7 (lullx + V)™ IV = VYl g g )
2 p1(Po-2) 211%
> 7 (Jlullx + Ivllx) 70 IVa =Vl Jh o (3.11)
On the other hand, if
] 61"(")’2|Vu(x) - Vv(x)|2 dx <1,
Q1
then the analogous argument implies that
r1Po-2) 2
) —J@),u—v) = Ci(llullx +Ivix) 70 Vi =YV 0, (312)

for some positive constant C;. From the previous inequalities (3.11) and (3.12), we have
that

—2) 2po

r1lpo
@) - JW),u—v) = Co(llullx + IVlx) 7o [[Vu—-Vy| (3.13)

oy
179)(0y)’
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where C, is a positive constant. Consequently, we obtain by (3.7) and (3.13) that

@) =), u—v)
:/ (@ (.
Q

r1(Po-2)
> Gyl + Ivl) % 1Vu- VI oy + 47l V= VYIS o

Vu(x)})Vu(x) - ¢>(x, }Vv(x) ’)Vv(x), Vu(x) - Vv(x))dx

p1(po=2) o
> Ca(llullx + Ivlx) 70 1Vee= Vvl fy

r1(po-2) 2}%
> Callullx + Ivlix) 7o lu—viy

for some positive constants C; and Cj.
Case 2. Letu, vbe in X with [V~ Vv|| g, < 1fori=1,2and (u,v) # (0, 0). For almost

all x € ©;, the following inequality holds:
(IVul + [V))P ™2 Vi = Vof? < Vi - Vo, (3.14)

From the above relation (3.14) and Lemmas 2.2 and 2.4, we obtain that

/ |V — Vy[P®
Q
2WC-p) POEE-2)
:/ (IVul +[Vv]) 2 ((IVul +|Vv]) 7 |Vu-VyP¥)dx
Q1

(%) (2-p(x) Px)(p(x)-2)

(%) )
< 2||(|Vu| n |VV|)p 2 ”L%(QI)HUVM + |VV|) > |Vu- VV|p(x) ”LW(S’ZQ

2(I1Vull oy + 1YV i)

Po

2
X (/ (IVul + [Vv])’ P~ 2|Vu—VV|2dx> , (3.15)
Q

where « is either 20221 2 21 oy pl(zz_p(’) .Since (|Vu| + | VV])P¥2|Vy — Vy|2 < P02V, - V|2,

we assert by (3.15) and Proposition 3.1 that

Po

2
_ p1 o p(x)-2 _ 2
Vet = Vol ) < 2l + Vi) (/Q V=V dx) ,

and so

21
() =] @), u—v) = c2” 7 (lullx + 1vlx)” V- Yl iy (3.16)

for almost all x € ;. For almost all x € 5, Proposition 3.1 yields the following estimate:

(](u) — ) u— V) > 4P+ || Vi - V"”ﬁ(x)(gzy (3.17)

Page 10 of 20
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Consequently, it follows from (3.16) and (3.17) that

) =T (v),u—v)

27

2 2a
_2 L 1—
> 2770 (lullx + Vi) 70 I Vae = VIl J5 o+ 4P el V= V)R

P0
Lr)(

2
max (21 p3)

2 _ 20
> Csmin {c2 70 (Jlullx + [vIlx) 70,417 c}lu - vil (3.18)

for some constant Cs > 0. This completes the proof. d

Using the previous result, we show the topological property of the operator J which will
be needed in the main result of the next section.

Lemma 3.3 [f(HJ1), (H]2) and (H]3) hold, then ] : X — X* is a homeomorphism onto X*.

Proof From Theorem 3.2, we see that / : X — X™* is strictly monotone and coercive. The
Browder-Minty theorem hence implies that the inverse operator /™! : X* — X exists and is
bounded; see Theorem 26.A. in [33]. For each /1 € X*, let (h,,) be any sequence in X* that
converges to 4 in X*. Set u,, = J1(h,,) and u = J"}(h) with ||u, — u|x < 1. We obtain from
(3.18) that

-1 2 _20 1 1
4 — ullx < C5” min {c2770 ([luyllx + ullx) 70,4} P | () - 7@ B,

where 8 = max{%,pg}. Since {u, : n € N} is bounded in X and J(u,) — J(#) in X* as
n — o0, it follows that (u,) converges to u in X. Thus, /™! is continuous at each % € X*.
This completes the proof. O

The main idea in obtaining our bifurcation result is to study the asymptotic behavior
of the integral operator / and then to deduce a spectral result for operators that are not
necessarily homogeneous. To do this, we consider a function ¢, : 2 x RN — RN defined
by

¢p(x) (x,v) := |V|p(x)_2V

and an operator J,( : X — X* defined by

(]p(A)(u),¢>::/Q<¢p(x)(x, Vu(x)),Vgo(x))dx

forall p € X.
To discuss the asymptotic behavior of /, we require the following hypothesis.
(HJ4) For each ¢ > 0, there is a function M € LZ¥(2) such that for almost all x €  the
following holds:

|¢(9€, |V|)V - ¢p(x)(x’ V)| <e
T

for all v e RN with |v| > |M(x)].
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Now we can show that the operators J and J,( are asymptotic at infinity, as in Proposi-
tion 5.1 of [11].

Proposition 3.4 Assume that (H]1), (H]2) and (H]J4) are fulfilled. Then we have

17 (20) = Ty () lx=

lullx—o0 Pl

Proof Given ¢ > 0, choose an M € L?™(Q) such that for almost all x € Q2 the following
holds:

| (x, [V])V = @piy (2, V)| < el

for all v € RN with |v| > |M(x)|. We have by (HJ2) that for almost all x € Q2 the estimate
6 (5, 171)v = By, )| < alo) + (b+ DM

holds for all v € RN with |v| < |M(x)]. Set
() = al®) + (b + 1)| M) P9

Then oy belongs to LF'®)(R) and for almost all x € 2, the estimate

| (% [VI)V = By (5, V)| < max {oeae(x) |, elvIP~"}

holds for all v € RN, From Hélder’s inequality, we have that

() = T (), )| = ’ /Q (@ (x| V()| ) Vielx) = @iy (3, Vi), Voo () dx
= 2[[¢(x, Vel Vit = G0 (x Vo) ”Lp’(x)(g) Vel )

for all ¢ € X, and hence for each # € X, we obtain by Minkowski’s inequality and the fact
that We"®(Q) < WP~ () that

”](M) - ]p(~)(u)

= slup |7) = Ty (@), 9|

lollx<1
= 2(“(]5(96, |Vu|)vu - ¢P(x)(x’ Viu) ”U”(x)(g))

=< 2(||aM||Ln/(x)(Q) +e H |vu|p,—l ”Lp’(x)(Q))

_—1
< 2(lewl gy + G [1V0P ] 0, )
p—-1
p—
fz(”“M”Lp’(x)(Q) +5C1(/ |Vu|p7 dx) )
Q

p——1
2l ey + £Callulli, )

( 0
(

=
p--1
<2 ||05M||Lp’(x)(g) +eClully )
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for some positive constants C; and C,. From

— * o /(&
I () ]p(4)(1/l)||X §2<” MHLP()(Q) +8C2>,

p--1 p—-1
(E205% llaell

the conclusion follows, because the right-hand side of the inequality tends to ¢ as

|lu|| x = oo. This completes the proof. O

Next we deal with the properties for the superposition operator induced by the function
f in (B). In particular, we give the compactness of this operator and the behavior of that at
infinity, respectively. The ideas of the proof about these properties are completely the same

as in [18]. We assume that the variable exponents are subject to the following restrictions:

P = 3, q(x) € (B o) if N > p(x),
P*(x),gq(x) € (1, 00) arbitrary if N < p(x)

for almost all x € Q2. Assume that
(F1) f:R x Q x R x RN — R satisfies the Carathéodory condition in the sense that
f(A,-,u,v) is measurable for all (A, u,v) € R x R x RN and f(-,%,, ) is continuous
for almost all x € Q.
(F2) For each bounded interval I C R, there are a function a; € L1¥(Q2) and a

nonnegative constant b; such that

Pt} )

(x
[f()»,x, u,v)| <ar(x) + b,(|u|W + |V|W)
for almost all x € Q and all (A, u,v) €I x R x RN,

(F3) There exist a function a € L” @(Q) and a locally bounded function b: [0,00) — R
with lim,_, o b(r)/r = 0 such that

F(0,,1,1)] < a@) + [b(1ul + 1v) "

for almost all x € Q and all (&, v) € R x RN,
Under assumptions (F1) and (F2), we can define an operator F: R x X — X* by

(F(A, u), v> = /f(k,x, u(x), Vu(x))v(x) dx (3.19)
Q
and an operator G : X — X* by
(G(u), v> = / |u(x)‘p(x)72u(x)v(x) dx (3.20)
Q

forallve X.
In proving the following result, a key idea is to use a continuity result on the superposi-
tion operators due to Vith [34]. For the case that p(x) is a constant function, it has been

proved in [11].
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Lemma 3.5 If (F1) and (F2) hold, then F : R x X — X* is continuous and compact. More-

over, the operator G : X — X* is continuous and compact.

Proof A linear operator I; : R x X — R x LZ"®)(Q) x L’W(Q,RY) defined by
LA u):=(Au,Vu) for (Au) e RxX

is clearly bounded because ||| ;p*x ) < Cllu|x for some positive constant C. Set Y :=
R x LZ* W(Q) x LFW(Q, RN). Define the superposition operator ® : Y — L1%(Q) by

DA, u,v)(x) ::f(k,x, u(x), V(x)).

If I is a bounded interval in R and a; € L1¥(2) and b; € [0, 00) are chosen from (F2), then
® is bounded because

/ |<I>(A,u, V)|q(x) dx
Q

* p()

) P
= / (Smax{|d1|,b1|u| @, by|v] 4@ })‘I(x)dx
Q
P P
=3" (f [|a1| +brlu| 1@ + b1|v|q(7c)]q(x) dx)
Q

<127+ (/ lar| 7% dx + 1 + b)) / [ul?"® dx + (1 + by)™ / |y[P®) dx).
Q Q Q

Since Y is a generalized ideal space and L™ () is a regular ideal space (since L1¥ ()
satisfies Aj-condition), Theorem 6.4 of [34] implies that ® is continuous on Y. Recalling
the fact that the conjugate function of g(x) is strictly less than p*(x), we know by Lemma 2.6
that the embedding I : X < L7 ®(Q) is continuous and compact and so is the adjoint
operator I : L1¥(Q) — X* given by

(I;(u), (p) = / up dx
Q
for any ¢ € X. From therelation F = I} o ® o[}, it follows that F is continuous and compact.
In particular, if we set f(A,x,u,v) = |ul?®=2u, then G is continuous and compact. This
completes the proof. d

We observe the behavior of F(0, -) at infinity.

Lemma 3.6 Under assumptions (F1) and (F3), the operator F(0,-) : X — X* has the fol-
lowing property:

IF©, )l

lulix—o0 [zl

Proof Let 0 < ¢ <1 be arbitrary. Choose a positive constant R such that |b(r)| < er for all

r > R. Since b is locally bounded, there is a nonnegative constant Cg such that |b(r)| < Cpg
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for all r € [O,R]. Let u € X. Set Qr = {x € Q: |u(x)| + |Vu(x)| < R}. By assumption (F3),
Minkowski’s inequality and the fact that Wé’p (x)(Q) < Wé'p ~(R2), we obtain

(0, u(x), Vuuli)) ”LP/(")(Q)
< lall gy + | B(ul + 192l | o e

< llall ey + Clo(1# + Va0 0

1

<ty + € [ o010 + 7| dx) o

p-—-1

p—

< lall o) +c(/Q (Cr)- dx) "~ +c</ﬂ\Q e (Ju(x)] + |[Vulx)|)" dx)

_ p=-1 _ _ _-1
< llall o) + C(Ch meas()) 7= + 2= e Clully.
0

p=-l1 =
< llall gy + C(Ch meas(Qg)) 7= +27-1el ' Cllullfy ™
for all u € X, where C are some positive constants. It follows from Hélder’s inequality that

|(F(0,), )| =< 2| (0,5, u(x), V() || o g 101l 1000

_ p=-1 1y -1
SC(llﬂlle/<x><Q) + (Cy meas(Qg)) 7~ + 2Pl ) lellx

for all u, ¢ € X. Therefore, we get

IE(0, )|l x+

lulx—oo |ytt U

Recall that a real number p is called an eigenvalue of (E) if the equation

o) (@) = nG(u)

has a solution u, in X that is different from the origin.
Now we consider the following spectral result for nonhomogeneous operators. When
p(x) is a constant function, the following assertion has been shown to hold by virtue of the

Furi-Martelli-Vignoli spectrum; see Theorem 4 of [35] or Lemma 27 of [10].
Lemma 3.7 If i is not an eigenvalue of (E), we have

—uG "
fiming V0 =#GWIx o
llellx—o0 flaal|% ™

Proof Suppose that

W) - nG@) e
liminf —————
llellx—o00 [Pl

Page 15 of 20
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Choose an unbounded sequence (u,,) in X with ||u, | x > 1 such that

”](un) - /'LG(M}’I) |+
[

—0 asn— 0. (3.21)
ll 24

Set v,, = u,,/||u,||x for n € N. Then we have

- o) (#) — T (2) |l x+ . ”](MH)_HG(un)”X*‘

oty (v) = 1G W) | . <

p--1 p—-1
””n”x ”Mn”x

Hence it follows from Proposition 3.4 and (3.21) that

”]p(-) (Vn) - /’LG(VH)

w0 asn— oo (3.22)

By the compactness of G, we may assume that G(v,) converges to some point w € X*. From
(3.22) it follows that J,)(v,) = uwas n — o0o. Put v := ];(%)(Mw), Since J,( is a homeomor-
phism (see Theorem 3.2 in [18]), we get that v # 0 and v,, — v as n — 00 and so

oty (v) = nG(v)

X* =< ”]p(-)(V) _]p(-)(Vn)|X* + H]p(-)(Vn) - /LG(Vn)

+ | 1G(vn) - nG(v)

X*

w0 asm— oo
We conclude that u is an eigenvalue of (E). This completes the proof. O

4 Main result
In this section, we are preparing to prove our main result. First we give the definition of
weak solutions for our problem.

Definition 4.1 A weak solution of (B) is a pair (A, %) in R x X such that
J(u) — uG(u) = F(A,u) in X%,
where J, F and G are defined by (3.3), (3.19) and (3.20), respectively.

The following result about the existence of an unbounded branch of solutions for non-
linear operator equations is taken from Theorem 2.2 of [11] (see also [10]) as a key tool in
obtaining our bifurcation result.

Lemma 4.2 Let X be a Banach space and Y be a normed space. Suppose that ] : X — Y
is a homeomorphism and G : X — Y is a continuous and compact operator such that the
composition ] o (=G) is odd. Let F : R x X — Y be a continuous and compact operator. If
the set

U {#eX:J@) + Gu) = tF(0,u)}

te[0,1]

is bounded, then the set
{(A,u) eERxX:J(u) + G(u) :F(A,u)}

has an unbounded connected set C C (R \ {0}) x X such that C intersects {0} x X.
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Proof Since /7! o (-G) is odd, Borsuk’s theorem implies that the condition
deg(I- (/" 0 (-G)),B,,0) #0

is satisfied for all sufficiently large r > 0, where I is the identity operator on X and B, is the
open ball in X centered at 0 of radius r, respectively. In view of Theorem 2.2 of [11], the
conclusion holds. d

Based on the above lemma, we now can prove the main result on bifurcation result for
problem (B).

Theorem 4.3 Suppose that conditions (HJ1)-(HJ4) and (F1)-(E3) are satisfied. If i is not
an eigenvalue of (E), then there is an unbounded connected set C C (R\ {0}) x X such that
every point (A, u) in C is a weak solution of the above problem (B) and C intersects {0} x X.

Proof Apply Lemma 4.2 with X = W;'”(")(Q) and Y = X*. From Lemmas 3.3 and 3.5 we
know that J : X — X* is a homeomorphism, the operators G and F are continuous and
compact, and /™! o (1G) is odd. Since u is not an eigenvalue of (E), Lemmas 3.6 and 3.7
imply that for some B > 0, there is a positive constant R > 1 such that

> Blul ™ > | FO,u

[70) - 1G]

e = [E Q)] .

for all # € X with |lu#||x > R and for all ¢ € [0,1]. Therefore, the set

S= | {weX:J(u) - uGw) = tF(0,u)}

te[0,1]
is bounded. By Lemma 4.2, the set
{(A, u) € R x X :J(u) — nG(u) = F(A, u)}

contains an unbounded connected set C which C intersects {0} x X. This completes the
proof. d

Finally, we give an example which illustrates an application of our bifurcation result.

Example 4.4 Let 8 € (p_ - 1,p,], w € L®°(RQ) and o € L?W/F(Q) N L®(Q). Assume that
w(x) > & > 0 and there is a real number § in (0,1] such that

8—1§a(x)§max{

2(p--1) wm—n_4
B-(p--1)" (B-(p--1)?

for almost all x € Q. Let

¢(x, |V|) = w(x) (1 + li(mﬂ ) [y [P@)-2

for all v € RN, If i is not an eigenvalue of (E) and assumptions (F1)-(F3) are fulfilled, then
there is an unbounded connected set C intersecting {0} x X such that every point (A, u)


http://www.boundaryvalueproblems.com/content/2014/1/27

Kim Boundary Value Problems 2014, 2014:27 Page 18 of 20
http://www.boundaryvalueproblems.com/content/2014/1/27

in C is a weak solution of the nonlinear equation

—div(p(x, |Vul)Vu) = wlulP~2u + f(A,%,u, Vu) inQ,
u=0 on 0%2.

Proof Putting A(x) := (p(x) — 1)/ 8, we claim that

Alx) plx)-1
o\x o\x 1%
| ( )| |V|p(x)_1 < | ( )| | | (V RN)
1+|v|# A 1-A,

If v = 0, the inequality is clear. Now let v # 0. It follows from Young’s inequality that

la@)| e v
L+vlf P (1+vIP)
|ot(x)|)‘(x) |V|ﬁ(1—)»(x))

+
T A_vp@-1 T (1= A)A + |v|f)@

and hence
|o ()| Pt < Joe ()| ) v|f
L+ v|f T A= x,)|v|Pa=2G)
o ()@ Jy|pt-1
A 1-A,

Set a(x) = [w(x)|(A_) " |a(x)]*™® and choose ¢y > 0 such that |w(x)| < co for almost every-
where x € Q. Then

/ w1 ,
[Q la(x)[” ™ dx = /Q ()| "‘).Mm o) i

)" & ' P
< . |o:(x)| dx <00, ie.,acl?Y(Q).
- Q

Thus (HJ1) and (HJ2) are satisfied. Removing some null set from € if necessary, we may

suppose that the hypotheses are satisfied for all x € Q. If we put

a(x)

o (x, 1) = w(x) (1 + —)n”(")‘z (n=>0),
1+nf

we observe that the first relation in (3.1) holds, because a(x) > ¢ — 1 and w(x) > ¢ > 0.

Moreover, a straightforward calculation shows that for all # > 0,

1 9
W(nﬁ(& g +¢(x,n)>

a(x) a(x)pnf
z(p__l)(“ 1+nﬂ> T (1+np)?

e Gt
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From an analogous argument in the proof of Corollary 3.2 in [11], we can show that this
expression is bounded from below by a positive constant which is independent of > 0
and x € Q. Therefore (HJ3) is satisfied. Finally, (HJ4) holds if for each ¢ > 0 we choose

M(x) = |e‘1w(x)a(x) \Uﬁ

for almost all x € Q. O
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