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Abstract In invasion percolation, the edges of successively maximal weight (the outlets)
divide the invasion cluster into a chain of ponds separated by outlets. On the regular tree,
the ponds are shown to grow exponentially, with law of large numbers, central limit theorem
and large deviation results. The tail asymptotics for a fixed pond are also studied and are
shown to be related to the asymptotics of a critical percolation cluster, with a logarithmic
correction.

Keywords Invasion percolation cluster · Ponds · Critical percolation · Incipient infinite
cluster

1 Introduction and Definitions

1.1 The Model: Invasion Percolation, Ponds and Outlets

Consider an infinite connected locally finite graph G , with a distinguished vertex o, the root.
On each edge, place an independent Uniform[0,1] edge weight, which we may assume
(a.s.) to be all distinct. Starting from the subgraph C0 = {o}, inductively grow a sequence of
subgraphs Ci according to the following deterministic rule. At step i, examine the edges on
the boundary of Ci−1, and form Ci by adjoining to Ci−1 the edge whose weight is minimal.
The infinite union

C =
∞⋃

i=1

Ci (1.1)

is called the invasion cluster.
Invasion percolation is closely related to ordinary (Bernoulli) percolation. For instance,

([4] for G = Zd ; later greatly generalized by [11]) if G is quasi-transitive, then for any
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p > pc , only a finite number of edges of weight greater than p are ever invaded. On the
other hand, it is elementary to show that for any p < pc , infinitely many edges of weight
greater than p must be invaded. In other words, writing ξi for the weight of the ith invaded
edge, we have

lim sup
i→∞

ξi = pc (1.2)

So invasion percolation produces an infinite cluster using only slightly more than critical
edges, even though there may be no infinite cluster at criticality. The fact that invasion
percolation is linked to the critical value pc , even though it contains no parameter in its
definition, makes it an example of self-organized criticality.

Under mild hypotheses (see Sect. 3.1), the invasion cluster has a natural decomposition
into ponds and outlets. Let e1 ∈ C be the edge whose weight Q1 is the largest ever invaded.
For n > 1, en is the edge in C whose weight Qn is the highest among edges invaded after
en−1. We call en the nth outlet and Qn the corresponding outlet weight. Write V̂n for the step
at which en was invaded, with V̂0 = 0. The nth pond is the subgraph of edges invaded at
steps i ∈ (V̂n−1, V̂n].

Suppose an edge e, with weight p, is first examined at step i ∈ (V̂n−1, V̂n]. (That is, i is
the first step at which e is on the boundary of Ci−1.) Then we have the following dichotomy:
either

• e will be invaded as part of the nth pond (if p ≤ Qn); or
• e will never be invaded (if p > Qn)

This implies that the ponds are connected subgraphs and touch each other only at the outlets.
Moreover, the outlets are pivotal in the sense that any infinite non-intersecting path in C
starting at o must pass through every outlet. Consequently C is decomposed as an infinite
chain of ponds, connected at the outlets.

In this paper we take G to be a regular tree and analyze the asymptotic behavior of the
ponds, the outlets and the outlet weights. This problem can be approached in two direc-
tions: by considering the ponds as a sequence and studying the growth properties of that
sequence; or by considering a fixed pond and finding its asymptotics. We will see that the
sequence of ponds grows exponentially, with exact exponential constants. For a fixed pond,
its asymptotics correspond to those of ordinary percolation with a logarithmic correction.

These computations are based on representing C in terms of the outlet weights Qn, as in
[1]. Conditional on (Qn)

∞
n=0, each pond is an independent percolation cluster with parameter

related to Qn. In particular, the fluctuations of the ponds are a combination of fluctuations
in Qn and the additional randomness.

Surprisingly, in all but the large deviation sense, the asymptotic behavior for the ponds is
controlled by the outlet weights alone: the remaining randomness after conditioning only on
(Qn)

∞
n=0 disappears in the limit, and the fluctuations are attributable solely to fluctuations of

Qn.

1.2 Known Results

The terminology of ponds and outlets comes from the following description (see [17]) of
invasion percolation. Consider a random landscape where the edge weights represent the
heights of channels between locations. Pour water into the landscape at o; then as more and
more water is added, it will flow into neighboring areas according to the invasion percolation
mechanism. The water level at o, and throughout the first pond, will rise until it reaches the
height of the first outlet. Once water flows over an outlet, however, it will flow into a new
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pond where the water will only ever rise to a lower height. Note that the water level in the
nth pond is the height (edge weight) of the nth outlet.

The edge weights may also be interpreted as energy barriers for a random walker explor-
ing a random energy landscape: see [15]. If the energy levels are highly separated, then (with
high probability and until some large time horizon) the walker will visit the ponds in order,
spending a long time in each pond before crossing the next outlet. In this interpretation the
growth rate of the ponds determines the effect of entropy on this analysis. See the extended
discussion in [15].

Invasion percolation is also related to the incipient infinite cluster (IIC), at least in the
cases G = Z

2 [12] and G a regular tree: see, e.g., [1, 5, 12]. For a cylinder event E, the law
of the IIC can be defined by

PIIC(E)
def= lim

k→∞
Ppc

(
E

∣∣o ↔ ∂B(k)
)

(1.3)

or by other limiting procedures, many of which can be proved to be equivalent to each other.
Both the invasion cluster and the IIC consist of an infinite cluster that is “almost critical”,
in view of (1.2) or (1.3) respectively. For G = Z

2 [12] and G a regular tree [1], the IIC can
be defined in terms of the invasion cluster: if Xk denotes a vertex chosen uniformly from
among the invaded vertices within distance k of o, and τXk

E denotes the translation of E

when o is sent to Xk , then

PIIC(E) = lim
k→∞

P (τXk
E) (1.4)

Surprisingly, despite this local equivalence, the invasion cluster and the IIC are globally
different: they are mutually singular and, at least on the regular tree, have different scaling
limits, although they have the same scaling exponents.

The regular tree case, first considered in [16], was studied in great detail in [1]. Any
infinite non-intersecting path from o must pass through every outlet; on a tree, this implies
that there is a backbone, the unique infinite non-intersecting path from o. In [1] a description
of the invasion cluster was given in terms of the forward maximal weight process, the outlet
weights indexed by height along the backbone (see Sect. 3.2). This parametrization in terms
of the external geometry of the tree allowed the calculation of natural geometric quantities,
such as the number of invaded edges within a ball. In the following, we will see that when
information about the heights is discarded, the process of edge weights takes an even simpler
form.

The detailed structural information in [1] was used in [2] to identify the scaling limit
of the invasion cluster (again for the regular tree). Since the invasion cluster is a tree with
a single infinite end, it can be encoded by its Lukaciewicz path or its height and contour
functions. Within each pond, the scaling limit of the Lukaciewicz path is computed, and the
different ponds are stitched together to provide the full scaling limit.

The two-dimensional case was also studied in a series of papers by van den Berg, Dam-
ron, Járai, Sapozhnikov and Vágvölgyi [5, 6, 17]. There they study, among other things,
the probability that the nth pond extends a distance k from o, for n fixed. For n = 1 this is
asymptotically of the same order as the probability that a critical percolation cluster extends
a distance k, and for n > 1 there is a correction factor (logk)n−1. Furthermore an exponen-
tial growth bound for the ponds is given. This present work was motivated in part by the
question of what the corresponding results would be for the tree. Quite remarkably, they are
essentially the same, suggesting that a more general phenomenon may be involved.

In the results and proofs that follow, we shall see that the sequence of outlet weights
plays a dominant role. Indeed, all of the results in Theorems 2.1–2.4 are proved first for Qn,
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then extended to other pond quantities using conditional tail estimates. Consequently, all of
the results can be understood as consequences of the growth mechanism for the sequence
Qn. On the regular tree, we are able to give an exact description of the sequence Qn in terms
of a sum of independent random variables (see Sect. 3.3). In more general graphs, this rep-
resentation cannot be expected to hold exactly. However, the similarities between the pond
behaviors, even on graphs as different as the tree and Z

2, suggest that an approximate ana-
logue may hold. Such a result would provide a unifying explanation for both the exponential
pond growth and the asymptotics of a fixed pond, even on potentially quite general graphs.

1.3 Summary of Notation

We will primarily consider the case where G is the forward regular tree of degree σ : namely,
the tree in which the root o has degree σ and every other vertex has degree σ + 1. The
weight of the ith invaded edge is ξi . The nth outlet is en and its edge weight is Qn. We may
naturally consider en to be an oriented edge en = (vn, vn), where vn is invaded before vn.
The step at which en is invaded is denoted V̂n and the (graph) distance from o to vn is L̂n.
Setting V̂0 = L̂0 = 0 for convenience, we write Vn = V̂n − V̂n−1 and Ln = L̂n − L̂n−1.

There is a natural geometric interpretation of Ln as the length of the part of the backbone
in the nth pond, and Vn as the volume (number of edges) of the nth pond. In particular V̂n is
the volume of the union of the first n ponds.

Rn is the length of the longest upward-pointing path in the nth pond, and R′
n is the length

of the longest upward-pointing path in the union of the first n ponds.
We shall later work with the quantity δn; for its definition, see (3.8).
We note the following elementary relations:

L̂n =
n∑

i=1

Li, V̂n =
n∑

i=1

Vi

Qn+1 < Qn, Ln ≤ Rn ≤ R′
n ≤

n∑

i=1

Ri

(1.5)

Probability laws will generically be denoted P. For p ∈ [0,1], Pp denotes the law of
Bernoulli percolation with parameter p. For a set A of vertices, the event {x ↔ A} means
that there is a path of open edges joining x to some point of A, and {x ↔ ∞} means that there
is an infinite non-intersecting path of open edges starting at x. We define the percolation
probability θ(p) = Pp(o ↔ ∞) and pc = inf{p : θ(p) > 0}. ∂B(k) denotes the vertices at
distance exactly k from o.

For non-zero functions f (x) and g(x), we write f (x) ∼ g(x) if lim f (x)

g(x)
= 1; the point at

which the limit is to be taken will usually be clear from the context. We write f (x) 	 g(x)

if there are constants c and C such that cg(x) ≤ f (x) ≤ Cg(x).

2 Main Results

2.1 Exponential Growth of the Ponds

Let 
Zn denote the 7-tuple


Zn =
(

log
(
(Qn − pc)

−1
)
, logLn, log L̂n, logRn, logR′

n,
1

2
logVn,

1

2
log V̂n

)
(2.1)
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and write 1 = (1,1,1,1,1,1,1).

Theorem 2.1 With probability 1,

lim
n→∞


Zn

n
= 1 (2.2)

Theorem 2.2 If (Bt )t≥0 denotes a standard Brownian motion then

( 
Z�Nt − Nt · 1√
N

)

t≥0

⇒ (Bt · 1)t≥0 (2.3)

as N → ∞, with respect to the metric of uniform convergence on compact intervals of t .

These theorems say that each component of 
Z satisfies a law of large numbers and func-
tional central limit theorem, with the same limiting Brownian motion for each component.

Theorem 2.2 shows that the logarithmic scaling in Theorem 2.1 cannot be replaced by a
linear rescaling such as en(Qn − pc). Indeed, log((Qn − pc)

−1) has characteristic additive
fluctuations of order ±√

n, and therefore Qn −pc fluctuates by a multiplicative factor of the
form e±√

n. As n → ∞ this will be concentrated at 0 and ∞, causing tightness to fail.

Theorem 2.3 1
n

log((Qn − pc)
−1) satisfies a large deviation principle on [0,∞) with rate

n and rate function

ϕ(u) = u − logu − 1 (2.4)

1
n

logLn, 1
n

logRn and 1
2n

logVn satisfy large deviation principles on [0,∞) with rate n and
rate function ψ , where

ψ(u) =
{

u − logu − 1 if u ≥ 1
2

log(2) − u if u ≤ 1
2

(2.5)

It will be shown that ψ arises as the solution of the variational problem

ψ(u) = inf
v≥u

(
ϕ(v) + v − u

)
(2.6)

2.2 Tail Behavior of a Pond

Theorems 2.1–2.3 describe the growth of the ponds as a sequence. We now consider a fixed
pond and study its tail behavior.

Theorem 2.4 For n fixed and ε → 0+, k → ∞,

P
(
Qn < pc(1 + ε)

) ∼ 2σ

σ − 1

ε(log ε−1)n−1

(n − 1)! (2.7)

and

P(Ln > k) ∼ P(L̂n > k) ∼ 2σ

σ − 1

(logk)n−1

k(n − 1)! (2.8)



924 J. Goodman

P(Rn > k) 	 P
(
R′

n > k
) 	 (logk)n−1

k
(2.9)

P(Vn > k) 	 P(V̂n > k) 	 (logk)n−1

√
k

(2.10)

Using the well-known asymptotics

θ(p) ∼ 2σ 2

σ − 1
(p − pc) as p → p+

c (2.11)

Ppc

(
o ↔ ∂B(k)

) ∼ 2σ

(σ − 1)k
as k → ∞ (2.12)

we may rewrite (2.7)–(2.10) as

P
(
Qn < pc(1 + ε)

) ∼ (log ε−1)n−1

(n − 1)! θ
(
pc(1 + ε)

)
(2.13)

P(Ln > k) ∼ P(L̂n > k) ∼ (logk)n−1

(n − 1)! Ppc

(
o ↔ ∂B(k)

)
(2.14)

P(Rn > k) 	 P
(
R′

n > k
) 	 (logk)n−1

Ppc

(
o ↔ ∂B(k)

)
(2.15)

P(Vn > k) 	 P(V̂n > k) 	 (logk)n−1
Ppc

(∣∣C(o)
∣∣ > k

)
(2.16)

Working in the case G = Z
2, [6] considers R̃n, the maximum distance from o to a point

in the first n ponds, which is essentially R′
n in our notation. [6, Theorem 1.5] states that

P(R̃n ≥ k) 	 (log k)n−1
Ppc

(
o ↔ ∂B(k)

)
(2.17)

and notes as a corollary

P(R̃n ≥ k) 	 Ppc

(
o

n−1←→ ∂B(k)
)

(2.18)

where
i↔ denotes a percolation connection where up to i edges are allowed to be vacant

(“percolation with defects”). (2.18) suggests the somewhat plausible heuristic of approxi-
mating the union of the first n ponds by the set of vertices reachable by critical percolation
with at most n − 1 defects. Indeed, the proof of (2.17) uses in part a comparison to percola-
tion with defects. By contrast, on the tree the following result holds:

Theorem 2.5 For fixed n and k → ∞,

Ppc

(
o

n↔ ∂B(k)
) 	 k−2−n

(2.19)

The dramatic contrast between (2.18) and (2.19) can be explained in terms of the number
of large clusters in a box. In Z

2, a box of side length S has generically only one cluster of
diameter of order S. On the tree, by contrast, there are many large clusters. Indeed, a cluster
of size N has of order N edges on its outer boundary, any one of which might be adjacent
to another large cluster, independently of every other edge. Percolation with defects allows
the best boundary edge to be chosen, whereas invasion percolation is unlikely to invade the
optimal edge.
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2.3 Outline of the Paper

Section 3.1 states a Markov property for the outlet weights that is valid for any graph. From
Sect. 3.2 onwards, we specialize to the case where G is a regular tree. In Sect. 3.2 we recall
results from [1] that describe the structure of the invasion cluster conditional on the outlet
weights Qn. Section 3.3 analyzes the Markov transition mechanism of Sect. 3.1 and proves
the results of Theorems 2.1–2.3 for Qn.

Section 4.1 states conditional tail bounds for Ln, Rn and Vn given Qn. The rest of
Sects. 4–6 use these tail bounds to prove Theorems 2.1–2.4. The proof of the bounds in
Sect. 4.1 is given in Sect. 7. Finally, Sect. 8 gives the proof of Theorem 2.5.

3 Markov Structure of Invasion Percolation

In Sect. 3.1 we give sufficient conditions for the existence of ponds and outlets, and state
a Markov property for the ponds, outlets and outlet weights. Section 3.2 summarizes some
previous results from [1] concerning the structure of the invasion cluster. Finally in Sect. 3.3
we analyze the resulting Markov chain in the special case where G is a regular tree and prove
the results of Theorems 2.1–2.3 for Qn.

3.1 General Graphs: Ponds, Outlets and Outlet Weights

The representation of an invasion cluster in terms of ponds and outlets is guaranteed to be
valid under the following two assumptions:

θ(pc) = 0 (3.1)

and

lim sup
i→∞

ξi = pc a.s. (3.2)

(3.1) is known to hold for many graphs and is conjectured to hold for any transitive graph
for which pc < 1 ([3, Conjecture 4]; see also, for instance, [13, Sect. 8.3]). If the graph G is
quasi-transitive, (3.2) follows from the general result [11, Proposition 3.1]. Both (3.1) and
(3.2) hold when G is a regular tree.

The assumption (3.1) implies that w.p. 1,

sup
i>i0

ξi > pc for all i0 (3.3)

since otherwise there would exist somewhere an infinite percolation cluster at level pc . We
can then make the inductive definition

Q1 = max
i>0

ξi = ξV̂1
(3.4)

Qn = max
i>V̂n−1

ξi = ξV̂n
(n > 1) (3.5)

since (3.2) and (3.3) imply that the maxima are attained.
Condition on Qn, en, and the union C̃n of the first n ponds. We may naturally consider

en to be an oriented edge en = (vn, vn) where the vertex vn was invaded before vn. The
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condition that en is an outlet, with weight Qn, implies that there must exist an infinite path
of edges with weights at most Qn, starting from vn and remaining in G\C̃n. However, the
law of the edge weights in G\C̃n is not otherwise affected by Qn, en, C̃n. In particular we
have

P
(
Qn+1 < q ′∣∣Qn, en, C̃n

) = Pq ′(en ↔ ∞ in G\C̃n)

PQn(en ↔ ∞ in G\C̃n)
(3.6)

on the event {q ′ ≤ Qn}. In (3.6) we can replace G\C̃n by the connected component of G\C̃n

that contains en.

3.2 Geometric Structure of the Invasion Cluster: The Regular Tree Case

In [1, Sect. 3.1], the same outlet weights are studied, parametrized by height rather than by
pond. Wk is defined to be the maximum invaded edge weight above the vertex at height k

along the backbone.
A key point in the analysis in [1] is the observation that (Wk)

∞
k=0 is itself a Markov

process. Wk is constant for long stretches, corresponding to k in the same pond, and the
jumps of Wk occur when an outlet is encountered. The relation between the two processes
is given by

Wk = Qn iff L̂n−1 ≤ k < L̂n (3.7)

From (3.7) we see that the (Qn)
∞
n=0 are the successive distinct values of (Wk)

∞
k=0, and

Ln = L̂n − L̂n−1 is the length of time the Markov chain Wk spends in state Qn before jump-
ing to state Qn+1. In particular, Ln is geometric conditional on Qn, with some parameter
depending only on Qn. As we will refer to it often, we define δn to be that geometric param-
eter:

P(Ln > m|Qn) = (1 − δn)
m (3.8)

A further analysis (see [1, Sect. 2.1]) shows that the off-backbone part of the nth pond is a
sub-critical Bernoulli percolation cluster with a parameter depending on Qn, independently
in each pond. We summarize these results in the following theorem.

Theorem 3.1 [1, Sects. 2.1 and 3.1] Conditional on (Qn)
∞
n=1, the nth pond of the invasion

cluster consists of

1. Ln edges from the infinite backbone, where Ln is geometric with parameter δn; and
2. emerging along the σ − 1 sibling edges of each backbone edge, independent sub-critical

Bernoulli percolation clusters with parameter

pc(1 − δn) (3.9)

Given (Qn)
∞
n=0, the ponds are conditionally independent for different n. δn is a continuous,

strictly increasing functions of Qn and satisfies

δn ∼ σ − 1

2σ
θ(Qn) ∼ σ(Qn − pc) (3.10)

as Qn → p+
c .
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The meaning of (3.10) is that δn = f (Qn) where f (q) ∼ σ−1
2σ

θ(q) ∼ σ(q − pc) as q → p+
c .

It is not at first apparent that the geometric parameter δn in (3.8) is the same quantity that
appears in (3.9), and indeed [1] has two different notations for the two quantities: see [1,
Eqs. (3.1) and (2.14)]. Combining Eqs. (2.3), (2.5), (2.14) and (3.1) of [1] shows that they
are equivalent to

δn = 1 − σQn

(
1 − Qnθ(Qn)

)σ−1
(3.11)

For σ = 2 we can find explicit formulas for these parameters: pc = 1
2 , θ(p) = p−2(2p − 1)

for p ≥ pc , δn = 2Qn − 1 and pc(1 − δn) = 1 − Qn. However, all the information needed
for our purposes is contained in the asymptotic relation (3.10).

3.3 The Outlet Weight Process

The representation (3.6) simplifies dramatically when G is a regular tree. Then the connected
component of G\C̃n containing en is isomorphic to G , with en corresponding to the root.
Therefore the dependence of Qn+1 on en and C̃n is eliminated and we have the following
result.

Corollary 3.2 On the regular tree, the process (Qn)
∞
n=1 forms a time-homogeneous Markov

chain with

P(Q1 < q) = θ(q) (3.12)

and

P
(
Qn+1 < q ′∣∣Qn = q

) = θ(q ′)
θ(q)

(3.13)

for pc < q ′ < q .

Equations (3.12) and (3.13) say that, conditional on Qn, Qn+1 is chosen from the same
distribution, conditioned to be smaller. In terms of (Wk)

∞
k=0, (3.13) describes the jumps of

Wk when they occur, and indeed the transition mechanism (3.13) is implicit in [1].
Since θ is a continuous function, it is simpler to consider θ(Qn): θ(Q1) is uniform on

[0,1] and

P
(
θ(Qn+1) < u′∣∣θ(Qn) = u

) = u′

u
(3.14)

for 0 < u′ < u. But this is equivalent to multiplying θ(Qn) by an independent Uniform[0,1]
variable. Noting further that the negative logarithm of a Uniform[0,1] variable is exponen-
tial of mean 1, we have proved the following proposition.

Proposition 3.3 Let Ui , i ∈ N, be independent Uniform[0,1] random variables. Then, as
processes,

(
θ(Qn)

)∞
n=1

d=
(

n∏

i=1

Ui

)∞

n=1

(3.15)

Equivalently, with Ei = logU−1
i independent exponentials of mean 1,

log
(
θ(Qn)

−1
) d=

n∑

i=1

Ei (3.16)

jointly for all n.
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Corollary 3.4 The triple


Z′
n = (

log
(
θ(Qn)

−1
)
, log

(
(Qn − pc)

−1
)
, log δ−1

n

)
(3.17)

satisfies the conclusions of Theorems 2.1 and 2.2, and each component of 1
n


Z′
n satisfies a

large deviation principle with rate n and rate function

ϕ(u) = u − logu − 1 (3.18)

Proof The conclusions about log(θ(Qn)
−1) follow from the representation (3.16) in terms

of a sum of independent variables; the rate function ϕ is given by Cramér’s theorem. The
other results then follow from the asymptotic relation (3.10). �

4 Law of Large Numbers and Central Limit Theorem

4.1 Tail Bounds for Pond Statistics

Theorem 3.1 expressed Ln,Rn and Vn as random variables whose parameters are given in
terms of Qn. Their fluctuations are therefore a combination of fluctuations arising from
Qn, and additional randomness. The following proposition gives bounds on the additional
randomness.

Recall that δn is a certain function of Qn with δn ∼ σ(Qn − pc): see Theorem 3.1.

Proposition 4.1 There exist positive constants C,c, s0, γL, γR, γV such that Ln, Rn and Vn

satisfy the conditional bounds

P(δnLn ≥ S|δ) ≤ Ce−cS
P(δnLn ≤ s|δ) ≤ Cs (4.1)

P(δnRn ≥ S|δ) ≤ Ce−cS
P(δnRn ≤ s|δ) ≤ Cs (4.2)

P(δ2
nVn ≥ S|δ) ≤ Ce−cS

P(δ2
nVn ≤ s|δ) ≤ C

√
s (4.3)

for all n and all S, s > 0; and

P(δnLn ≤ s|δ) ≥ cs on {δn ≤ γLs} (4.4)

P(δnRn ≤ s|δ) ≥ cs on {δn ≤ γRs} (4.5)

P(δ2
nVn ≤ s|δ) ≥ c

√
s on

{
δ2
n ≤ γV s

}
(4.6)

for s ≤ s0.

The proofs of (4.1)–(4.6), which involve random walk and branching process estimates,
are deferred to Sect. 7.

4.2 A Uniform Convergence Lemma

Because Theorem 2.2 involves weak convergence of several processes to the same joint
limit, it will be convenient to use Skorohod’s representation theorem and almost sure con-
vergence. The following uniform convergence result will be used to extend convergence
from one set of coupled random variables (δn,N ) to another (Xn,N ): see Sect. 4.3.
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Lemma 4.2 Suppose {Xn,N }n,N∈N and {δn,N }n,N∈N are positive random variables such that
δn,N is decreasing in n for each fixed N , and for positive constants a, β and C,

P
(
δa
n,NXn,N > S

) ≤ CS−β (4.7)

P
(
δa
n,NXn,N < s

) ≤ Csβ (4.8)

for all S and s. Define

X̂n,N =
n∑

i=1

Xi,N (4.9)

Then for any T > 0 and α > 0, w.p. 1,

lim
N→∞

max
1≤n≤NT

log(δa
n,NXn,N )

Nα
= lim

N→∞
max

1≤n≤NT

log(δa
n,N X̂n,N )

Nα
= 0 (4.10)

Proof Let ε > 0 be given. For a fixed N , (4.7) implies

P

(
max

1≤n≤NT

log(δa
n,N X̂n,N )

Nα
> ε

)
≤

∑

1≤n≤NT

P
(
δa
n,N X̂n,N > eNαε

)

≤
∑

1≤n≤NT

n∑

i=1

P

(
δa
n,NXi,N >

eNαε

n

)

≤
∑

1≤n≤NT

n∑

i=1

P

(
δa
i,NXi,N >

eNαε

n

)

≤
∑

1≤n≤NT

n∑

i=1

Cnβe−βNαε

≤ (NT )2+βCe−βNαε (4.11)

where we used δi,N ≥ δn,N in the third inequality. But then, noticing that

∞∑

N=1

(NT )2+βCe−βNαε < ∞,

the Borel-Cantelli lemma implies

lim sup
N→∞

max
1≤n≤NT

log(δa
n,N X̂n,N )

Nα
≤ ε (4.12)

a.s. Similarly, (4.8) implies

P

(
max

1≤n≤NT

log(δa
n,NXn,N)

Nα
< −ε

)
≤

∑

1≤n≤NT

P
(
δa
n,NXn,N < e−Nαε

)

≤ NT Ce−βNαε (4.13)
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so that

lim inf
N→∞

max
1≤n≤NT

log(δa
n,NXn,N )

Nα
≥ −ε (4.14)

a.s. Since ε > 0 was arbitrary and Xn,N ≤ X̂n,N , (4.10) follows. �

4.3 Proof of Theorems 2.1–2.2

The conclusions about Qn are contained in Corollary 3.4. The other conclusions will follow
from Lemma 4.2. From Corollary 3.4, we may apply Skorohod’s representation theorem to
produce realizations of the ponds for each N ∈ N, coupled so that

(
log(δ−1

�Nt,N ) − Nt√
N

)

0≤t≤T

→ (Bt )0≤t≤T (4.15)

a.s. as N → ∞. Then the relation

1
a

logXn,N − Nt

N1/2
= log(δ−1

�Nt,N ) − Nt

N1/2
+ log(δa

�Nt,NX�Nt,N )

aN1/2
(4.16)

shows that 1
a

logXn will satisfy a central limit theorem as well, with the same limiting Brow-

nian motion. The same holds for X̂n. We will successively set

Xn,N = Ln,N with a = 1 (4.17)

Xn,N = Rn,N with a = 1 (4.18)

Xn,N = Vn,N with a = 2 (4.19)

The bounds (4.7)–(4.8) follow immediately from the bounds in Proposition 4.1. This proves
Theorem 2.2 for Ln and Vn. For Rn, the quantity R̂ is not the one that appears in Theo-
rem 2.2, but the bound Rn ≤ R′

n ≤ R̂n implies the result for R′
n as well.

The lemma also implies the law of large numbers results (2.2), by taking T = 1 and using
the same ponds for every N .

5 Large Deviations: Proof of Theorem 2.3

In this section we present a proof of the large deviation results in Theorem 2.3. As in Sect. 4,
we prove a generic result using a variable Xn and tail estimates. Theorem 2.3 then follows
immediately using Corollary 3.4 and Proposition 4.1.

Note that Proposition 5.1 uses the full strength of the bounds in Proposition 4.1.

Proposition 5.1 Suppose that δn and Xn are positive random variables such that, for posi-
tive constants a,β, c,C,γ, s0,

P
(
δa
nXn > S

∣∣δn

) ≤ Ce−cSβ

(5.1)

P
(
δa
nXn < s

∣∣δn

) ≤ Cs1/a (5.2)
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for all S and s, and

P
(
δa
nXn < s

∣∣δn

) ≥ cs1/a (5.3)

on the event {δa
n < γ s}, for s ≤ s0. Suppose also that 1

n
log δ−1

n satisfies a large deviation
principle with rate n on [0,∞) with rate function ϕ such that ϕ(1) = 0, ϕ is continuous on
(0,∞), and ϕ is decreasing on (0,1] and increasing on [1,∞). Then 1

an
logXn satisfies a

large deviation principle with rate n on [0,∞) with rate function

ψ(u) = inf
v≥u

(
ϕ(v) + v − u

)
(5.4)

Proof It is easy to check that ψ is continuous, decreasing on [0,1] and increasing on [1,∞),
ψ(1) = 0, and ψ(u) = ϕ(u) for u ≥ 1. So it suffices to show that

lim
n→∞

1

n
log P

(
1

an
logXn > u

)
= − inf

v>u
ϕ(v) (5.5)

for u > 0 and

lim
n→∞

1

n
log P

(
1

an
logXn < u

)
= −ψ(u) (5.6)

for 0 < u < 1. For (5.5), let ε > 0. Then

P

(
1

an
logXn > u

)
≤ P

(
1

n
log δ−1

n > u − ε

)
+ P

(
1

n
log δ−1

n ≤ u − ε,
1

an
logXn > u

)

≤ P

(
1

n
log δ−1

n > u − ε

)
+ P

(
1

an
log

(
δa
nXn

)
> ε

)

≤ P

(
1

n
log δ−1

n > u − ε

)
+ Ce−ceβanε

(5.7)

where we used (5.1) with S = eanε . The last term in (5.7) is super-exponentially small, so
(5.7) and the large deviation principle for 1

n
log δ−1

n imply

lim sup
n→∞

1

n
log P

(
1

an
logXn > u

)
≤ − inf

v>u−ε
ϕ(v) (5.8)

On the other hand,

P

(
1

an
logXn > u

)
≥ P

(
1

n
log δ−1

n > u + ε,
1

an
log

(
δa
nXn

)
> −ε

)

≥ P

(
1

n
log δ−1

n > u + ε

)(
1 − Ce−nε

)
(5.9)

using (5.2) with s = e−anε . So

lim inf
n→∞

1

n
log P

(
1

an
logXn > u

)
≥ − inf

v>u+ε
ϕ(v) (5.10)

Since ϕ is continuous and ε > 0 was arbitrary, this proves (5.5).
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For (5.6), let u ∈ (0,1) be given and choose v ∈ (u,1), ε ∈ (0, u). Then for n sufficiently
large we have

P

(
1

an
logXn < u

)
≥ P

(
v − ε <

1

n
log δ−1

n < v,
1

an
log

(
δa
nXn

)
< u − v

)

≥ P

(
v − ε <

1

n
log δ−1

n < v

)
ce−n(v−u) (5.11)

Here we used (5.3) with s = e−an(v−u). Note that if n is large enough then s ≤ s0 and the
condition δa

n < γ s follows from v−ε < 1
n

log δ−1
n . Therefore, since ϕ is decreasing on (0,1],

lim inf
n→∞

1

n
log P

(
1

an
logXn < u

)
≥ −

(
inf

v−ε<w<v
ϕ(w)

)
− (v − u)

= −ϕ(v) − a(v − u) (5.12)

(5.12) was proved for u < v < 1. However, since ϕ is continuous and the function −ϕ(v) −
av is decreasing in v for v ≥ 1, (5.12) holds for all v ≥ u. So take the supremum over v ≥ u

to obtain

lim inf
n→∞

1

n
log P

(
1

an
logXn < u

)
≥ −ψ(u) (5.13)

Finally

P

(
1

an
logXn < u

)

≤ P

(
1

n
log δ−1

n ≤ u

)
+ E

(
1

(
1

n
log δ−1

n > u

)
P

(
1

an
logXn < u

∣∣∣∣δn

))

= P

(
1

n
log δ−1

n ≤ u

)

+ E

(
1

(
1

n
log δ−1

n > u

)
P

(
1

an
log

(
δa
nXn

)
< u − 1

n
log δ−1

n

∣∣∣∣δn

))

≤ P

(
1

n
log δ−1

n ≤ u

)
+ E

(
1

(
1

n
log δ−1

n > u

)
Cen(u− 1

n log δ−1
n )

)
(5.14)

(using (5.2) with s = ean(u− 1
n log δ−1

n )). Apply Varadhan’s lemma (see, e.g., [7, p. 32]) to the
second term of (5.14):

lim
n→∞

1

n
log E

(
1

(
1

n
log δ−1

n > u

)
Cen(u− 1

n log δ−1
n )

)

= sup
v>u

(
u − v − ϕ(v)

) = −ψ(u) (5.15)

Therefore

lim sup
n→∞

1

n
log P

(
1

an
logXn < u

)
≤ max

{−ϕ(u),−ψ(u)
} = −ψ(u) (5.16)

which completes the proof. �
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6 Tail Asymptotics

In this section we prove the fixed-pond asymptotics from Theorem 2.4.

Proof of (2.7) Recall from (3.16) that log(θ(Qn)
−1) has the same distribution as a sum of

n exponential variables of mean 1, i.e., a Gamma variable with parameters n,1. So

P
(
θ(Qn) < ε

) = P
(
log

(
θ(Qn)

−1
)
> log ε−1

)

=
∫ ∞

log ε−1

xn−1

(n − 1)!e
−x dx (6.1)

Make the substitution x = (1 + u) log ε−1:

P
(
θ(Qn) < ε

) = ε(log ε−1)n

(n − 1)!
∫ ∞

0
(1 + u)n−1e−u log ε−1

(6.2)

Then Watson’s lemma (see for instance (2.13) of [14]) implies that

P
(
θ(Qn) < ε

) ∼ ε(log ε−1)n−1

(n − 1)! (6.3)

and so (3.10) gives

P
(
Qn < pc(1 + ε)

) ∼ 2σε(log ε−1)n−1

(σ − 1)(n − 1)! (6.4)

�

Combining (6.3) with (3.10) implies at once that

P(δn < ε) 	 ε
(
log ε−1

)n−1
(6.5)

We use (6.5) to prove (2.9)–(2.10) using the following lemma.

Lemma 6.1 Let δn be a random variable satisfying (6.5). Suppose a,β are positive con-
stants such that aβ > 1, and Xn is any positive random variable satisfying

P
(
δa
nXn > S

∣∣δ
) ≤ CS−β (6.6)

for all S,n > 0, and

P
(
δa
nXn > s0

∣∣δ
) ≥ p0 (6.7)

for some s0,p0 > 0. Write X̂n = ∑n

i=1 Xi . Then

P(Xn > k) 	 P(X̂n > k) 	 (logk)n−1

k1/a
(6.8)

as k → ∞.
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Proof From (6.7) and (6.5), we have the lower bound

P(Xn > k) ≥ P
(
δa
nXn > s0

∣∣δn < s0k
−1/a

)
P
(
δn < s0k

−1/a
)

≥ c1
(logk)n−1

k1/a
(6.9)

For the upper bound,

P(Xn > k) ≤ P
(
δn < k−1/a

) + E
(
1(δn≥k−1/a )P

(
δa
nXn > kδa

n

∣∣δn

))

≤ C2
(logk1/a)n−1

k1/a
+ E

(
1(δn≥k−1/a)C

(
kδa

n

)−β)

= C3
(logk)n−1

k1/a
+ CE

(∫ ∞

δn

dr
k−βr−aβ−1

aβ + 1
1(k−1/a≤δn<r)

)

≤ C3
(logk)n−1

k1/a
+ C

∫ ∞

k−1/a

dr
k−βr−aβ−1

aβ + 1
P(δn < r) (6.10)

Use (6.5) and make the substitution r = k−1/a(1 + u) to obtain

P(Xn > k) ≤ C3
(logk)n−1

k1/a
+ C4

k1/a

∫ ∞

0
du (1 + u)−aβ

(
log

(
k1/a(1 + u)

))n−1

≤ (log k)n−1

k1/a

[
C3 + C5

∫ ∞

0
du (1 + u)−aβ

(
1 + a log(1 + u)

logk

)n−1]
(6.11)

The last integral in (6.11) is bounded as k → ∞ since aβ > 1, which proves the upper bound
for Xn.

To extend (6.8) to X̂n, assume inductively that we have the bound P(X̂n > k) 	
(logk)n−1/k1/a . (The case n = 1 is already proved since X̂1 = X1.) The bound P(X̂n+1 >

k) ≥ P(Xn+1 > k) is immediate, and we can estimate

P(X̂n+1 > k) ≤ P
(
Xn+1 > k − k′) + P

(
X̂n > k′) (6.12)

where we set k′ = �k/(log k)a/2. Then k − k′ ∼ k and log(k − k′) ∼ logk′ ∼ logk, so that

P
(
Xn+1 > k − k′) 	 (logk)n

k1/a
(6.13)

while

P
(
X̂n > k′) 	 (logk′)n−1

(k′)1/a
	 (logk)n−1/2

k1/a
(6.14)

which is of lower order. This completes the induction. �

Proof of (2.9)–(2.10) These relations follow immediately from (6.5) and Lemma 6.1; the
bounds (6.6)–(6.7) are immediate consequences of Proposition 4.1. As in Sect. 4.3, the
asymptotics for R′

n follow from the asymptotics for R̂n and the bound Rn ≤ R′
n ≤ R̂n. �

Proof of (2.8) For Ln, we can use the exact formula P(Ln > k|δn) = (1 − δn)
k . Write δn =

g(θ(Qn)), where g(p) is a certain continuous and increasing function. By (3.10), g(p) ∼
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σ−1
2σ

p as p → 0+; we will use the bound g(p) ≥ cp for some constant c > 0. Noting as
above that log θ(Qn)

−1 is a Gamma random variable, we compute

P(Ln > k) = 1

(n − 1)!
∫ ∞

0

(
1 − g

(
e−x

))k
xn−1e−x dx

= 1

(n − 1)!
∫ k

0

(
1 − g(y/k)

)k
(logk − logy)n−1 dy

k

= (logk)n−1

k(n − 1)!
∫ ∞

0
1(y ≤ k)

(
1 − g(y/k)

)k

(
1 − logy

logk

)n−1

dy (6.15)

after the substitution e−x = y/k. But the integral in (6.15) converges to
∫ ∞

0 e− σ−1
2σ

y dy = 2σ
σ−1

as k → ∞: pointwise convergence follows from g(p) ∼ σ−1
2σ

p, and we can uniformly bound
the integrand using

(
1 − g(y/k)

)k ≤ e−kg(y/k) ≤ e−cy (6.16)

Lastly, a simple modification of the argument for X̂n extends (2.8) to L̂n. �

7 Pond Bounds: Proof of Proposition 4.1

In this section we prove the tail bounds (4.1)–(4.6). Since the laws of Ln, Rn and Vn do not
depend on n except through the value of δn, we will omit the subscript in this section. For
convenient reference we recall the structure of the bounds:

P
(
δaX > S

∣∣δ
) ≤ Ce−cS (7.1)

P
(
δaX < s

∣∣δ
) ≤ Cs (7.2)

for all S and s, and

P
(
δaX < s

∣∣δ
) ≥ cs1/a (7.3)

on the event {δa < γ s}, for s ≤ s0. We have a = 1 for X = L and X = R, and a = 2 for
X = V .

In (7.3) it is necessary to assume δa < γ s. This is due only to a discretization effect: if
X is any N-valued random variable, then necessarily P(δaX < s|δ) = 0 whenever δa ≥ s.
Indeed, the bounds (4.4)–(4.6) can be proved with γ = 1, although it is not necessary for
our purposes.

Note that, by proper choice of C and s0, we can assume that S is large in (7.1) and
s is small in (7.2) and (7.3). Since we only consider N-valued random variables X, we
can assume δ is small in (7.2), say δ < 1/2 (otherwise take s < (1/2)a without loss of
generality). Moreover, Theorem 3.1 shows that L, R and V are all stochastically decreasing
in δ. Consequently it suffices to prove (7.1) for δ small, say δ < 1/2. Finally the constraint
δa < γ s0 makes δ small in (7.3) also.

We note for subsequent use the inequalities

(1 − x)y ≤ e−xy (7.4)
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for x ∈ (0,1), y > 0 and

1 − (1 − x)y ≤ 1 − e−2xy ≤ 2xy (7.5)

for x ∈ (0,1/2), y > 0, which follow from log(1 − x) ≤ −x for x ∈ (0,1) and log(1 − x) ≥
−2x for x ∈ (0,1/2).

7.1 The Backbone Length L: Proof of (4.1) and (4.4)

From Theorem 3.1, L is a geometric random variable with parameter δ. So

P(L > S/δ|δ) = (1 − δ)�S/δ

≤ e−δ�S/δ ≤ e−S+δ ≤ e−S+1 (7.6)

since δ ≤ 1, proving (7.1). For (7.2) and (7.3), we have

P(L < s/δ|δ) = 1 − (1 − δ)�s/δ�−1 (7.7)

For δ ≤ 1
2 we can use (7.5) to get

P(L < s/δ|δ) ≤ 2δ
(�s/δ� − 1

) ≤ 2s (7.8)

which proves (7.2). For (7.3), take γL = 1/2. Then on the event {δ < γLs} we have �s/δ� ≥ 3
so that expanding (7.7) as a binomial series gives

P(L < s/δ|δ) ≥ (�s/δ� − 1
)
δ − 1

2

(�s/δ� − 1
)(�s/δ� − 2

)
δ2

≥ (s − δ) − 1

2
s(s − δ)

≥ s

2

(
1 − s

2

)
≥ s

4
(7.9)

for s ≤ 1 = s0. So (7.3) holds.

7.2 The Pond Radius R: Proof of (4.2) and (4.5)

Conditional on δ and L, R is the maximum height of a percolation cluster with parameter
pc(1−δ) started from a path of length L. We have R ≥ L so (7.2) follows immediately from
the corresponding bound for L. R is stochastically dominated by

L + max
1≤i≤L

R̃i (7.10)

where R̃i is the maximum height of a branching process with offspring distribution
Binomial(σ,pc(1 − δ)) started from a single vertex, independently for each i. Define

ak = P(R̃i > k|δ) (7.11)

for k > 0. Thus ak is the probability that the branching process survives to generation k + 1.
By comparison with a critical branching process,

ak ≤ C1

k
(7.12)
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for some constant C1. On the other hand, ak satisfies

ak+1 = 1 − f (1 − ak) (7.13)

where f (z) is the generating function for the offspring distribution of the branching pro-
cess. (This is a reformulation of the well-known recursion for the extinction probability.) In
particular, since f ′(z) ≤ f ′(1) = σpc(1 − δ) = 1 − δ,

ak+1 ≤ f ′(1)ak = ak(1 − δ) (7.14)

Combining (7.12) with (7.14),

ak+j ≤ ak(1 − δ)j ≤ C1

k
e−δj (7.15)

and taking k = �S/2δ� ≥ S/2δ, j = �S/δ − �S/2δ� ≥ S/2δ − 2,

P

(
R̃i >

S

δ

∣∣∣∣δ
)

= a�S/δ ≤ 2C1δ

S
eδ(S/2δ−2)

≤ C2δe
−c3S

S
(7.16)

Using this estimate we can compute

P

(
R >

S

δ

∣∣∣∣δ
)

≤ P

(
L >

S

2δ

∣∣∣∣δ
)

+ P

(
L ≤ S

2δ
, R̃i >

S

2δ
for some i ≤ S/2δ

∣∣∣∣δ
)

≤ C4e
−c5S +

(
S

2δ

)
C6δe

−c7S

S
≤ C8e

−c9S (7.17)

Similarly

P

(
R <

s

δ

∣∣∣∣δ
)

≥ P

(
L <

s

2δ
, R̃i <

s

2δ
for all i <

s

2δ

∣∣∣∣δ
)

≥ c10s

(
1 − C11δe

−c12s

s

)s/2δ

≥ c13s (7.18)

provided δ is sufficiently small compared to s, i.e., provided γR is small enough.

7.3 The Pond Volume V : Proof of (4.3) and (4.6)

From Theorem 3.1, conditional on δ and L, V is the number of edges in a percolation cluster
with parameter pc(1 − δ), started from a path of length L and with no edges emerging from
the top of the path. We can express V in terms of the return time of a random walk as
follows.

Start with an edge configuration with L backbone edges marked as occupied. Mark as
unexamined the (σ − 1)L edges adjacent to the backbone, not including the edges emerging
from the top. At each step, take an unexamined edge (if any remain) and either (1) with
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probability 1 − pc(1 − δ), mark it as vacant; or (2) with probability pc(1 − δ), mark it as
occupied and mark its child edges as unexamined. Let Nk denote the number of unexamined
edges after k steps. Then it is easy to see that Nk is a random walk Nk = N0 + ∑k

i=1 Yi (at
least until Nk = 0) where N0 = (σ − 1)L and

Yi =
{

σ − 1 w.p. pc(1 − δ)

−1 w.p. 1 − pc(1 − δ)
(7.19)

Let T = inf{k : Nk = 0}. (T is finite a.s. since E(Yi |δ) = −δ < 0 and Nk can jump down
only by 1.) T counts the total number of off-backbone edges examined, namely the number
of non-backbone edges in the cluster and on its boundary, not including the edges from the
top of the backbone. Consequently

T = [V − L] + [
(σ − 1)V + σ

] − σ = σV − L (7.20)

In order to apply random walk estimates we write Xi = Yi + δ, Zk = ∑k

i=1 Xi , so that
E(Xi |δ) = 0; c1 ≤ E(X2

i |δ) ≤ C2 for universal constants c1,C2; and Nk = Zk − kδ +
(σ − 1)L. Note that

{V > V0} = {T > σV0 − L}
⊆ {

Z�σV0−L > δ�σV0 − L − (σ − 1)L
}

(7.21)

so using, for instance, Freedman’s inequality [9, Proposition 2.1] leads after some computa-
tion to

P(V > S0L/δ|δ,L) ≤ P
(
Z�L(σS0−δ)/δ > L(σS0 − 2δ − σ + 1)

∣∣δ,L
)

≤ exp

(
− L2(σS0 − 2δ − σ + 1)2

2(σL(σS0 − 2δ − σ + 1) + C2L(σS0 − δ)/δ)

)

≤ exp
(−c3S0Lδ(1 − 2/S0)

2
) ≤ exp(−c4S0Lδ) (7.22)

if S0 ≥ 3, say. Then, setting S0 = S/δL,

P
(
V > S/δ2

∣∣δ
) ≤ P(L > S/3δ|δ) + P(V > S0L/δ,L ≤ S/3δ|δ)
≤ C5e

−c6S + exp
(−c4(S/δL)Lδ

)

≤ C7e
−c8S (7.23)

which proves (7.1).
For (7.2), apply Freedman’s inequality again:

P
(
V ≤ s/δ2

∣∣δ,L
) = P

(
T ≤ σs/δ2 − L

∣∣δ,L
)

= P

(
min

k≤σs/δ2−L

(Zk − kδ) ≤ −(σ − 1)L

∣∣∣δ,L
)

≤ P

(
min

k≤σs/δ2
Zk ≤ −(

L − δ
(
σs/δ2

))∣∣∣δ,L
)

≤ exp

(
− (L − σs/δ)2

2(σ (L − σs/δ) + C9s/δ2)

)
(7.24)
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≤ exp
(−c(δL − σs)2/s

)
(7.25)

(where in the denominator of (7.24) we use L ≤ s/δ2 since V ≥ L). So

P
(
V ≤ s/δ2

∣∣δ
) ≤P(L < 2σs/δ|δ)

+ E
(
1(L≥2σs/δ) exp

(−c(δL − σs)2/s
)∣∣δ

)
(7.26)

The first term in (7.26) is at most C10s from (4.1) and will therefore be negligible compared
to

√
s. For the second term, note that for L ≥ σs/δ,

exp
(−c(δL − σs)2/s

) =
∫ ∞

σs/δ

1(l>L)

2cδ(δl − σs)

s
e−c(δl−σs)2/sdl (7.27)

and so, with the substitution x
√

s = δl − σs,

E
(
1(L≥2σs/δ) exp

(−c(δL − σs)2/s
)∣∣δ

)

= 2c

∫ ∞

σs/δ

P(L < l|δ) δ(δl − σs)

s
e−c(δl−σs)2/sdl

= 2c

∫ ∞

0
P

(
L <

x
√

s + σs

δ

∣∣∣∣δ
)

xe−cx2
dx

≤ C11

∫ ∞

0
(x

√
s + σs)xe−cx2

dx ≤ C12
√

s (7.28)

which proves (7.2)
Finally, for (7.3), the Berry-Esseen inequality (see for instance [8, Theorem 2.4.9]) im-

plies
∣∣∣P(Zk < −x

√
k

√
E

(
X2

i

∣∣δ
)|δ) − �(−x)

∣∣∣ ≤ C13√
k

(7.29)

where �(x) = P(G < x) for G a standard Gaussian, and C13 is some absolute constant. In
particular, using 0 < c1 ≤ E(X2

i |δ),

P
(
Zk < −(σ − 1)

√
k
∣∣δ

) ≥ c14 > 0 (7.30)

for k ≥ C15. Choose γV = 1 ∧ γ 2
L ∧ (C15 + 1)−1. Then we have s/δ2 ≥ 1 (so we may bound

σs/δ2 − √
s/δ ≥ s/δ2);

√
s/δ ≤ γL; and �s/δ2 ≥ C15, so that

P
(
V < s/δ2

∣∣δ
) = P

(
T < σs/δ2 − L

∣∣δ
)

≥ P
(
T < σs/δ2 − √

s/δ,L <
√

s/δ
∣∣δ

)

≥ P
(
T < s/δ2,L <

√
s/δ

∣∣δ
)

≥ P
(
Z�s/δ2 < δ

⌊
s/δ2

⌋ − (σ − 1)L,L <
√

s/δ
∣∣δ

)

≥ P
(
Z�s/δ2 < −(σ − 1)

√
s/δ2

∣∣δ
)
P(L <

√
s/δ|δ)

≥ c16
√

s (7.31)

proving (7.3).



940 J. Goodman

8 Percolation with Defects

In this section we prove

Ppc

(
o

n↔ ∂B(k)
) 	 k−2−n

(8.1)

The case n = 0 is a standard branching process result. For n > 0, proceed by induction.
Write C(o) for the percolation cluster of the root o. The lower bound follows from the
following well-known estimate:

Ppc

(∣∣C(o)
∣∣ > N

) 	 N−1/2 (8.2)

If C(o) > N then there are at least N vertices v1, . . . , vN on the outer boundary of C(o), any
one of which may have a connection to ∂B(k) with n − 1 defects. As a worst-case estimate
we may assume that v1, . . . , vN are still at distance k from ∂B(k), so that by independence
we have

Ppc

(
o

n↔ ∂B(k)
) ≥ Ppc

(∣∣C(o)
∣∣ > N

)(
1 − (

1 − Ppc

(
o

n−1↔ ∂B(k)
))N)

≥ c1√
N

(
1 − (

1 − c2k
−2−n+1)N )

(8.3)

for constants c1, c2. If we set N = k2−n+1
then the second factor is of order 1, and the lower

bound is proved. For the upper bound, use a slightly stronger form of (8.2) (see for instance
[10, p. 260]):

Ppc

(∣∣C(o)
∣∣ = N

) 	 (N + 1)−3/2 (8.4)

Now if C(o) = N , with N ≤ k/2, then there are at most σN vertices on the outer boundary
of C(o), one of which must have a connection with n − 1 defects of length at least k − N ≥
k/2. So

Ppc

(
o

n↔ ∂B(k)
)

≤ Ppc

(∣∣C(o)
∣∣ > k/2

) +
�k/2∑

N=0

Ppc

(∣∣C(o)
∣∣ = N

)(
1 − (

1 − Ppc

(
0

n−1↔ ∂B(k/2)
))σN)

≤ c3√
k

+
∞∑

N=0

c4

(N + 1)3/2

(
1 − (

1 − c5k
−2−n+1)σN)

≤ c3√
k

+
∑

N<k2−n+1

c6k
−2−n+1

N

(N + 1)3/2
+

∑

N≥k2−n+1

c4N
−3/2

≤ c3k
−2−1 + c7

(
k2−n+1)−1/2

(8.5)

which proves the result (the first term is an error term if n ≥ 2 and combines with the second
if n = 1).
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