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Methods: We derive a phenomenological mathematical model, based on coupled
phase oscillators with continuously distributed frequencies to describe the neural
activity of the thalamo-cortical loop. We examine the influence of the bidirectional
coupling strengths between the thalamic and the cortical area with regard to the
phase-locking effects observed in the experiments. We extend this approach to a
model consisting of a thalamic area coupled to two cortical areas, each comprising a
set of nonidentical phase oscillators. In the investigations of our model, we applied the
Ott-Antonsen theory and the Pikovsky-Rosenblum reduction methods to the original
system.

Results: The results derived from our mathematical model satisfactorily reproduce the
experimental data obtained by EEG measurements. Furthermore, they show that
modifying the coupling strength from the thalamic region to a cortical region affects
the duration of phase synchronization, while a change in the feedback to the thalamus
affects the strength of synchronization in the cortex. In addition, our model provides an
explanation in terms of nonlinear dynamics as to why brain waves desynchronize after
a given phase reset.

Conclusion: Our model can explain functional differences seen between EEG records
of healthy subjects and schizophrenia patients on a system theoretic basis. Because of
this and its predictive character, the model may be considered to pave the way
towards an early and reliable clinical detection of schizophrenia that is dependent on
the interconnections between the thalamic and cortical regions. In particular, the
model parameter that describes the strength of this connection can be used for a
diagnostic classification of schizophrenia patients.
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Introduction

Schizophrenia is a severe and complex mental illness causing disability [1-3]. It has been
conceptualized as a disconnectivity syndrome concerning the interplay of the brain areas
involved. As information on the activity of some of the deeply localized involved brain
areas, such as the thalamus is not accessible to noninvasive electroencephalography (EEG)
measurement, alternative methods, like mathematical models, need to be developed
in order to deepen our understanding of the fundamental neural processes underlying
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schizophrenia, and to detect dysfunctions in the interactions between the participating
brain areas. Such methods aim at deriving reliable criteria that indicate the progress of the
disease at an early stage. The early recognition is considered to be of special importance
in schizophrenia.

As schizophrenia has a very high degree of complexity, due to the large number of
neuronal processes involved, there is no model that treats all aspects of the disease con-
currently. The model in [4], for instance, focuses on the empirical dopamine hypothesis
of schizophrenia and postulates that an imbalance between glutamate and dopamine
activity plays a key role in schizophrenia disorder. In particular, the authors could show
that both hypoglutamatergia and hyperdopaminergia result in reduced activation of the
striatal complex and thus leads to schizophrenia [4].

Heiden et al. [5] on the other hand modeled the basic neural circuit underlying
schizophrenia as a dynamical system on a microstructural level of pyramidal cells (see also
Mackey et al. [6]). In their model, periodic firing patterns were associated with healthy
behavior, whereas aperiodic/chaotic firing patterns were associated with schizophrenic
states and the switch from periodic to aperiodic firing took place due to an increase in
dopamine level. In [7], the same model was analyzed in a hypo-glutamatergic setting, and
it also exhibited aperiodic firing.

A top-down approach in modeling the symptoms of schizophrenia is proposed in [8,9].
These authors relate cognitive, negative and positive symptoms of schizophrenia to a
reduced depth of attractor basins of the model regarded as a dynamical system. The model
consisting of pools of leaky integrate-and-fire neurons for the involved pyramidal cells and
inhibitory interneurons and AMPA, NMDA and GABA 4 synapses either developed spon-
taneous firing or was attracted to a high-firing state. The decrease in NMDA-receptor
conductance led to a decrease in attractor stability and therefore a decrease in mem-
ory and an increase in distractability [8,9]. An additional decrease in the conductance of
GABA-synapses led to jumping from spontaneous activity to attractors which could be
identified with the increase of positive symptoms [8].

In [10], fMRI data of healthy and schizophrenic test persons obtained in a memory-task
experiment were used to assess the connectivity between the visual, parietal and pre-
frontal regions using DCM as proposed by [11]. Each of these regions has a self-coupling
and bidirectional all-to-all coupling. Moreover, the working memory modulates the cou-
pling from visual to prefrontal and from prefrontal to parietal regions. The schizophrenic
patients and the healthy subjects differed significantly in the self-coupling strengths,
in the coupling between parietal and prefrontal regions in both directions and in the
coupling from visual to prefrontral regions [10].

In contrast to the modeling studies described above, we focused our attention on the
phenomena observed on the large-scale level of dysfunction of the thalamo-cortical loop
in schizophrenia. We did therefore not include any explicit biophysical properties into our
model. We constructed a mathematical model based on a study by [12]. In this study, the
difference between healthy subjects and schizophrenia patients was investigated, using
individual EEG recordings with respect to phase locking (PL) in the four frequency bands
(0, a, B and y). The two groups of test persons showed significant difference in the
strength of PL in the 6- and «-frequency band, while no significant difference in PL was
observed in the other two frequency bands. The duration of PL, i.e. the time until the
system desynchronize again, differed for each frequency band. However it did not differ
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significantly between healthy subjects and schizophrenia patients in each of the four
frequency bands.

In our earlier model [13], we described each component of the thalamo-cortical loop as
a single phase oscillator, where each of them operated at its natural frequency. We used
phase oscillators for the description of the dynamics in each brain area, since previous
studies suggested that the timing of the brain rhythms, i.e. the phases, were more impor-
tant than their amplitudes [12]. The coupling between these oscillators was expressed
in form of weighted phase differences with suitable coefficients, which were determined
from the natural frequencies of the oscillators. Using this model, we were able to explain
the difference in phase locking in the respective frequency bands of the two groups of test
persons depending on the feedback from the cortex to the thalamus. In this model, how-
ever, the synchronization effect observed directly after the given auditory stimulus did
not abate and vanish after a given period of time, contrary to what was seen in the exper-
iments [12]. We had therefore to change our mathematical model in order to be able to
account for the desynchronization effects, too.

In the present study we extended this mathematical model such that now each area of
the thalamo-cortical loop is represented by a large population of phase oscillators. The
coupling between populations is driven by a complex meanfield (definition see below).
To reduce this high-dimensional model to a low dimensional system which still reflects
the behavior observed in the EEG data and to allow its analysis, we use the reduction
methods of Watanabe- Strogatz [14], Ott-Antonsen [15] and Pikovsky-Rosenblum [16].
The mathematical analysis of the model offers a conducive explanation for the under-
lying mechanisms leading to the differences observed between healthy subjects and
schizophrenia patients, as seen in the experiments by [12]. Our results suggest that the
differences are due to a decrease in strength of the coupling from the auditory cortex to
the thalamus in schizophrenia patients. Even so, our model is a rather abstract descrip-
tion of the neural dynamics that take place in the thalamo-cortical loop. A decrease in
coupling strength can occur due to changes in the dopamine, glutamate or serotonin con-
centrations. This means in any case a reduction in signal transduction from the auditory
cortex to the thalamus. Furthermore, our analysis of the reduced system reveals that the
mechanism underlying the abolition of synchrony observed in all four brain wave bands
is based on a fold limit cycle bifurcation that takes place when the coupling between the
auditory cortex and the thalamus is changed (in either direction). Our model addition-
ally predicts that a change in coupling strength from the thalamus to the auditory cortex,
however, affects the duration of phase synchrony.

The paper is organized as follows. In section “The experimental setup and results”,
we review the experimental setup and the results of the study by [12]. In section
“Mathematical model”, we present the general structure of the thalamo-cortical loop and
set up a mathematical model which we use to analyze first the behavior of two coupled
brain regions, the thalamus and one cortical region, and then that of three coupled ones,
the thalamus and two cortical regions.

The experimental setup and results

The mathematical model presented below is based on experimental results (for details of
the experiment and methods used see [12]). In the following, we outline the experiment
performed in [12]. Two groups of participants were investigated during the experiment:
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the first group consisted of 32 schizophrenia patients and the second of 32 healthy
subjects. The experiment was based on the well-established paired click paradigm [17]. It
consisted of 96 paired clicks (S; and Sy). Each click had a duration of 1 ms. The interstim-
ulus interval between the two clicks within a pair lasted 500 ms, and the inter-trial interval
between pairs of clicks 10s. The EEG was continuously recorded using 32 electrodes dur-
ing the whole experiment. Data from the vertex electrode Cz were taken for the analysis,
because the cortex around the location of this electrode performs sensory and motor
functions, see [18]. The recorded data have been divided into epochs of 1500 ms (500 ms
prior to S1 and 500 ms following stimulus S2). The occurence of stimulus S; in each seg-
ment was set to ¢ = 0, hence the stimulus of each segment appeared at ¢ = 0. To obtain
detailed information on the temporal and spectral properties of the EEG, a single-trial
analysis was applied to the epochs. Thus a complex Morlet wavelet transformation in the
frequency range from 3 Hz to 60 Hz in 1 Hz steps was performed to compute the phases of
the single-trial data. A typical result is displayed in Figure 1 (adapted from [13]) where the
cosine of the single trial phase after the wavelet transformation for a fixed frequency 54
Hz is shown. It includes 82 superimposed segments. Uniform distribution of the phases
prior stimulus onset, i.e. for t €[—50,0] is clearly visible, while the so called phase lock-
ing effect after the stimulus, i.e. for ¢ €[0,75], and the effect of desynchronisation after
t = 75 ms can also be clearly discerned.
The stimulus locking index

n
1 3 it
" k=1

defined in [19], can be used to measure the degree of phase locking for a certain fre-

SLI(t) = (1)

quency at time t. We denote the number of repetitions of the auditory double clicks by
n and the phase of the k-th oscillation at time t by ¢ (¢). Values near 0 indicate a uni-
form distribution of phases and values near 1 nearly synchronized phases. It was found
that schizophrenia patients produced significantly less phase locking in lower frequency
bands after the first stimulus than healthy subjects [12].

Table 1 shows the SLI and the duration of synchronization for the two groups of subjects
for the 6- and a-frequency band for which significant differences were found in the SLI
(see [12]). Based on these experimental results, we constructed a mathematical model

Gamma oscillations: 54 Hz - 82 segments

-50 0 50 100 150 200
time (msec)

Figure 1 Experimental data. The cosine of the phases, derived from EEG data of a single participant,
expressing a frequency of 54 Hz is shown (from [13]).
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Table 1 Example behavior of cortical regions

Max. SLI Duration
Patients Control [ms]
0 30 37 400
o 19 26 250

Columns 1-2: Maximum SLI values (from [12]); Column 3: Approximate duration of stimulus responses ([12], Figure two).

of the thalamo-cortical loop and used it to explain the observed differences between the
neural activities of schizophrenia patients and healthy subjects.

Mathematical model

Our model of the thalamo-cortical loop is based on the results of [4,12,13,20]. Accord-
ing to the experimental findings in these sources, we assume that essentially three main
brain areas are actively involved in auditory signal processing, i.e. the thalamic auditory
relay nucleus (here for the sake of simplicity, they are referred to as thalamus), the tha-
lamic reticular nucleus (here named TRN) and areas of the auditory cortex. An auditory
input signal reaches the thalamus and then propagates to the auditory cortex. From the
auditory cortex, the signal propagates to higher cerebral regions such as the prefrontal
cortex and back to the TRN, which inhibits the thalamus. Furthermore, backpropagation
from higher regions such as the prefrontal cortex modulates the activity of the thalamus.
These inhibitory and modulating influences lead to a reduced response of the thalamus
to the second of the two clicks [21-23]. Since we are only interested in the dynamics
after the first and before the second stimulus, we neglected the impact of the TRN. This
means that only the thalamus and different regions of the auditory cortex are present in
our model. It can be assumed that the different cortical regions act in different oscillatory
frequency ranges, which correspond to the 6, «, B and y ranges. The structure of the
thalamo-cortical loop used in our model is shown in Figure 2.

In our earlier work [13], we described each part of the thalamo-cortical loop by a single
phase oscillator. Each oscillator had a natural frequency, which was chosen according
to biological/experimental observations. We assumed, that coupling between all phases
is a form of weighted phase difference with suitable coefficients to be determined from
the natural frequencies. With this model, it was possible to reproduce the effects that
correspond to phase locking as observed in the EEG data of the two groups of subjects.
However, in contrast to what the data showed (see Figure 1, t > 75 ms), the oscillators

— Cortex

Kr K¢

Thalamuslé————

Figure 2 Thalamo-cortical loop. The general structure of the thalamo-cortical loop used in our modeling
study. Kt and K¢ denote coupling strengths between the thalamus and the auditory cortex. Both the thalamus
and the cortex are represented by one population of oscillators each. | denotes the stimulation strength.
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remained in the synchronized state perpetually, and their phases did not desynchronize
again. To overcome this major drawback of our old model, we now describe each element
of the thalamo-cortical loop as a large ensemble of nonidentical phase oscillators. Each
oscillator in the population has a natural frequency w, which is chosen from a Lorentz
distribution n(x). The coupling between populations is driven by a complex meanfield. In
the experiments, repeated stimulations were used in order to obtain stimulation moments
at different phases. In our mathematical model we use 1000 oscillators with distributed
phases in each population and stimulate each oscillator at ¢ = 0. Since we choose the
initial conditions for each oscillator to be different, the results obtained by stimulating
them at only one point in time are comparable to the experimental conditions.

First, we will consider a minimal mathematical model, which consists of only two
populations of oscillators, one for the thalamus and one for the 0-frequency band of
the auditory cortex. We will use this simplified model to understand the mechanism
behind the transition from the synchronized to the desynchronized state after stimulation

(as seen in Figure 1).

Minimal mathematical model (two populations)

In the minimal model, two populations of oscillators are coupled via their complex mean

fields as shown in Figure 3. One of them describes brain wave activity in the thalamus and

the other one in the cortex, in this case in the 0-band. In the course of this work, we will

refer to these populations as thalamus population and cortex population, respectively.
The system describing the neural activities of the two populations reads as follows

% = or + KcResin (0c — ¢r(wr)) +1(2) cos(¢r(wr)), 2)
% = wc + KrRr sin(07 — ¢c(wc)), 3)
where wr and w¢ are continuous parameters distributed in each ensemble of oscillators as
aa) = 2 a=(T,C) @

(1 + 4(w, — (;)61)2),

Rc
KC O¢
Thalamus Cortex
Figure 3 Mean field coupling. Visualization of the complex mean field coupling between the thalamic
region (T) and a single cortical region (C). Black represents the individual oscillators and red their complex
mean fields. The oscillators of one population are coupled through the mean phases ® and the degree of
synchronization R of the oscillators in the other population. See text for details.
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and represent the natural frequencies of the oscillators. ¢7 and ¢¢c denote the phases
of the oscillators of the thalamus and cortex populations, respectively. The state of each
population can be described by the distribution density W (x, ¢, ) = n(x)w(x, ¢, t), with
the conditional distribution density of oscillators denoted by w(x, ¢, ) [16].

Each oscillator in the cortical population is coupled to the complex mean field

Y1 = RpeT = /n(x)/ei¢Tw(x,¢T,t)d¢dx (5)

-

of the thalamic population and each oscillator in the thalamic population is coupled to
the complex mean field

Yo = Reec = / n(x) / 9w, ¢, t)dpdx (6)

of the cortical populations (see Figure 3). Coupling strengths are denoted by K7 and K¢,
respectively.

The thalamus population is stimulated by an external stimulus that acts directly on it
(see Figure 2). This stimulus is represented by the term I(¢) cos(¢1) where

I during stimulus,
I(t) = @)

0 otherwise.

A complete analysis of the model can be performed by means of the Watanabe-
Strogatz (WS) theory [14]. With this theory an N-dimensional system of identical
oscillators can be reduced to a three-dimensional system with the global variables
p, ¢ and . Here p is the global amplitute, ¢ and  are global phases. The origi-
nal phase variables can be reconstructed from the obtained WS variables by means
of the time-dependent transformation. The theory is described in more detail in the
Appendix.

Following [14-16,24], we transform system (2)-(3) using Equation 36 (see Appendix) and
obtain a reduced system of WS equations with the new variable pr, ¢, ¥7 and pc, ¢c,
¥c. By additionally introducing z,(w,) = p.e®* and the phase shift a,(w,) = ¢y — V4,
(a =T, C), we obtain

% = iorzr(or) + %C (Yc — Yizr(wr)?) + % (1+zr(@n)?),  (8)
% = wr + Im (z7(07)* KcYc + 1(0)i)), ©)
% = iwczc(wc) + KTT (Y7 — Yizc(we)?), (10)
% = wc + Im (zc(wc)*KrYT) . (11)

Here, i = /—1 and A* denotes the conjugate complex of A.
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Now we consider this reduced set of equations with respect to the Ott-Antonsen
manifold [25]. In this case, z(w) no longer depends on «(w), and the mean fields Y¢ and

Y7 can therefore be written as
Y, = Ry = / ny(X)za®)dx,  (a=T,C). (12)

Following the work by Ott and Antonsen for a similar distribution [25], the integrals
in Equation (12) can be calculated by applying the residue theorem, under an additional
assumption that z,(w) (a = T, C) is analytic in the upper half-plane. This calculation

yields

Yr = zp(or +i/2), (13)
Yo = zc(oc +i/2). (14)
Thus Equation (8) for wr = @&t + i/2 and Equation (10) for wc = @c¢ + i/2 provide a

2-dimensional system of complex ODEs that describe the behavior of the order parameter
of the thalamic and the cortex population, respectively:

ay 1 1

dTT - <ch1’ - 2) Yr+ 5 (KeYe +10i - Y2 (KcYs — 1)) (15)
dYc .1 Kt

G = (oci-g)rer G e e 16

In the following, we will investigate this system of two complex differential equations,
i.e. its dynamics during the post-stimulus interval.

Analysis of the model behavior in the post-stimulation interval
For the analysis of egs. (15)-(16) in the post-stimulus interval, i.e. when I(¢) = 0, we trans-
form them to a 4-dimensional system of real ODEs via Y7 = x7 +iyr and Yc = xc + iyc.

This leads to
C Ty () e 29 07
% = wrer — Jyr+ 5 Kc ye — 2eryrac + (4 — %) o) 18
% - %xc —ocyc + %KT (v7 = (x& — ¥¢) #1 — 2xcycyT) (19)
% = wcxc — %yc + %KT (vr — 2xcycar + (¢ — 5¢) yr) - (20

In a next step, we linearize this new system about its fixed point xr = (0,0,0,0) and
investigate the stability of this fixed point with the coupling strengths K¢ and K7 as

parameters. The linearized system reads:
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dxt
AN
dyr
Al =al?T | with (1)
axc X
ddt c
& ye
K
BT
A= 2 0 % (22)
— | & ) .
5 0 -3 —wC
0 I% wc —%

A one-dimensional bifurcation diagram is displayed in Figure 4. For the calculation of
this diagram, we fix one of the coupling parameters, K¢ = 1.2, and show the dependence
of one of the system variables (xc) on the second coupling parameter K. The system has
a fixed point x¢ = (0,0,0,0), which is stable for K7 < K. At Ky =K1 = %
a Hopf bifurcation (HB) occurs in the system, i.e. a complex conjugate pair of eigenvalues
of A passes through the imaginary axis (see Figure 4). At this point, the branch of stable
fixed points (xr, red line in Figure 4) loses its stability because it collapses into a branch
of unstable periodic orbits (xpy, blue circles). Additionally, the system exibits a fold limit
cycle bifurcation (FLB) at K iLB < K ?B . At this bifurcation point, two periodic orbits, a
stable (xps, green discs) and an unstable one (blue circles) are born. The bifurcation dia-
gram reveals three parameter regions in which the system displays different behavior. In
region I (0 < Kr <K ;LB) we have a stable fixed point xr = (0, 0, 0, 0), which corresponds
to the state of full desynchronization in the non-reduced system (2)-(3). In region III
(K7 > K JIZIB) the fixed point xr has lost its stability and all trajectories are attracted to the

1
08 + -
Xp
046* ............I.l.....'..!
04 F -
]
o . Xj
02 |- o'y .
o o °
HB
Xc 0 XF
o©°
02 - 00?° ° .
o o
]
04 F 4
®e
-0.6 ..".lo-oono-oooooooo;
08 B
I i 11
-1 L I
0 5 LS EfP s 20
Kt
Figure 4 Bifurcation diagram. Bifurcation diagram in the (K7 — x¢)-plane. The coupling strength from the
cortex to the thalamus has been set to K- = 1.2 and the coupling strength K7 from the thalamus to the
cortex is varied; @c = 3 Hzand @r = 7 Hz. Red line: stable fixed points (xf), black line: unstable fixed points;
green filled circles represent the maximum and minimum of stable periodic orbits (xps) while the blue circles
represent the maximum and minimum of unstable periodic orbits (xp). Bifurcation points, i.e. the fold limit
cycle bifurcation (FLB) at K% and the Hopf-bifurcation (HB) at K/ are marked with vertical blue lines. The
light blue box represents the parameter region where the initially synchronized system desynchronizes in
finite time (like in Figure 1).
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stable periodic orbit xpg (filled green circles in Figure 4). This corresponds to a state near
perfect synchronization of the non-reduced system. In region II (K IT:LB <Kr <K ?B), the
system is bistable. It can exhibit fixed point solutions as well as periodic ones. Both behav-
iors are separated by an unstable periodic orbit xp;;. Depending on the initial conditions
of the system, the trajectory will stay in the region of attraction of the fixed point xr or is
attracted by the stable periodic orbit xps.

Let us now focus on the blue region surrounding the bifurcation points FLB. It is pos-
sible to choose a value of the parameter K7 inside this region such that the trajectory is
resetted to a state near the periodic orbit and drops back to the stable fixed point after a
certain amount of time.

Figure 5 shows the behavior of the reduced system (left) and the corresponding behav-
ior of the non-reduced system (right) for the three parameter regions described above.
Red lines in the figures of the left column indicate the maximum amplitude of the solu-
tions. Black thick lines in the figures of the right column indicate the SLIs. In region I
(see Figure 4), i.e. for low value of K7, e.g. Kt = 1, the reduced system exhibits a sta-
ble fix point solution (Figure 5(a), left), and the corresponding non-reduced system is
in the desynchronization regime (Figure 5(a), right), hence SLI = 0. For K7 in region III
(see Figure 4), e.g. KT = 16, the stable periodic orbit of the reduced system is shown in

v o
2
O
~
o 200 400 600 800 1000
Time (ms)
1 Cortex
)
m o
T
~
- 200 400 600 800 1000 - 200 400 600 800 1000
Time (ms) (b) Time (ms)
3
K3
&
<
~
L . . . . . _ A
Stm 200 400 600 800 1000 i 600 800
Time (ms) (c) Time (ms)

Figure 5 Bifurcation behaviors. The real part of the solution of the reduced system (left) and the
corresponding cosine of the solution of the non-reduced system (right) for (@) K = 1 inregion |, (b) Kt = 16
in region lll and () K7 = 5.5 in region Il of Figure 4 are shown. In (c) the behavior of both systems is shown
during and after stimulation. For the reduced system, red lines indicate the maximum amplitude of the
solutions (panels in the left column). For the non-reduced system, the oscillators’ (only 200 out of N = 1000
displayed) activities are shown as blue curves, and the corresponding max SLI is plotted in black (panels in
the right column). Kc = 1.2, @c = 3Hz, @r = 7 Hz The stimulus intensity was set to / = 100 and had a
duration of 50 ms for all simuli.
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Figure 5(b) on the left and the corresponding synchronization regime of the non-reduced
system on the right with SLI = 0.6. In Figure 5(c) K7 is fixed near KX8 (K7 = 5.5, left edge
of blue region in Figure 4). With this parameter choice, we observe the same dynamics
as seen in the experiments: before stimulation we have desynchronization in the non-
reduced system and a fix point in the reduced one. After the stimulation interval (marked
with vertical dash lines), we see a phase reset, and the phases of the oscillators of the non-
reduced system are now synchronized (thin wave). After some time (t > 700 ms) they
desynchronize again. The length of the synchronization state can be modulated by chang-
ing the distance of Kt to K ITTLB . The closer K7 is set to K. ;LB the longer the trajectory will
stay in the state of synchronization before it desynchronizes again.

In Figure 6, top left, the maximum SLI of the cortex population for different pairs of
coupling strengths (K¢, Kr) is shown. For this we stimulated the system of two popula-
tions (N = 1000 oscillators each) with a stimulation strength of I = 100 for 50 ms and

1000 ,_.
calculated max 055 ;; 276G
of the frequency distribution on these parameters was calculated using the fast Fourier
transformation (MATLAB function FFT). It is shown in the bottom left panel of Figure 6.
The coupling strengths K7 and K¢ were varied independently from 0 to 10 with a step

® for each fixed pair (K¢, K7). The dependence of the peak

Max SLI Cortex

Max SLI Cortex

Frequency Cortex
Frequency Cortex

6.5
A
55
B
5
4.5
4
3.5
—
2 3
K,

-

)

K¢

Figure 6 Coupling parameter dependence. Left: Maximal SLI (top) and mean frequency (bottom) of the
oscillators in the cortical region (for @c = 3 Hz, @1 = 7 Hz and N = 1000) as functions of the coupling
strengths K¢ and Kr. Right: enlargments of the marked areas in the corresponding panels. Solid curves mark
Hopf-Bifurcations (black) and fold-limit cycle bifurcations (gray) of the reduced system. The arrows A and B
show possible transitions from a level of high synchronization (K- = 2, K7 = 5) to a level of lower
synchronization (tip of arrow A: Kc = 1.1,Kr = 5; tip of arrow B: Kc = 2, Kt = 4.5).
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size of 0.05. The grey and black curves in the K¢-K7 plane represent the branches of fold
limit cycle bifurcations (FLBs) of the periodic orbits and of Hopf-bifurcations (HBs) of
the fixed points, respectively. As seen in Figure 4, only parameter values to the left and
close to the grey curve and parameter values which yield SLI > 0.3 guarantee a strong
synchronized population which desynchronizes in finite time. The closer the coupling
parameters are set to the branch of FLBs the longer the population will stay in the syn-
chronized state. When the value of the coupling parameter Ky is decreased the system
moves away from the curve of FLBs, thus the synchronization of the system becomes
weaker and shorter. This happens even for small changes in K7 (direction denoted by B in
Figure 6, top left). Changing the value of the coupling parameter K¢, however, has a much
weaker effect on the strength of synchronization (direction denoted by A in Figure 6,
top left). An enlargement of this region of interest is shown in Figure 6, top right.

We know from the experimental data of [12] that schizophrenia patients show a lower
synchronization in the 0-band than healthy subjects (max SLI = 0.3 and 0.37, respec-
tively). If we now change the parameters K¢ and K7 such that the SLI changes from 0.37
to 0.3 (in the A or B direction or in a direction representing a linear combination of the
two), the mean frequency of the #-oscillators does only minimally change, i.e. it remains
approximately 6 Hz. A major change in the mean frequency should of course not hap-
pen when the conditions of the system are changed from the healthy to the schizophrenic
state. Figure 6, bottom left shows the mean frequency of the cortical oscillators for dif-
ferent pairs of coupling parameters (K¢, Kr). An enlargement of the region of interest is
shown in Figure 6, bottom right.

Summing up, our model simulations nicely show that the neural dynamics observed in
EEG data of schizophrenia patients and healthy subjects strongly depend on the strength
of the coupling between the thalamus and the cortex: decreasing one or both of the cou-
pling parameters K7 or K¢ in an appropriate manner decreases the max SLI of the system
and changes the time the system stays synchronized but leaves its mean frequency nearly
unchanged.

Model with three populations
In this section, we consider the extension of our minimal model to three populations of
coupled phase oscillators, where one of them describes brain activity in the thalamus and
the other two 6- and «-brain waves in the auditory cortex. We only consider the 6- and
a-frequency band here since the experimental data of [12] showed significant differences
between schizophrenia patients and healthy subjects in these frequency bands, only.

Our extended system has the form

J 2

% = or+ ;KC,RC; sin (6¢; — ¢7(wr) +1(2) cos (@7 (1)), 23
% = wc; + KRy sin (9T — ¢y (wcl)) ’ 29
% = wc, + KRy sin (07 — ¢, (0c,)) - )

All notations are the same as in the minimal model. ¢7 and ¢c,, ¢, are the phases cor-
responding to the oscillators of the thalamus population and the oscillators of the 6 cortex
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and « cortex populations, respectively. wt, wc, and wc, represent the natural frequencies
of the corresponding oscillators chosen from the distribution described in Equation 4.
Each oscillator of both cortical populations is coupled to the complex mean field

g
Yr :RTeiGT = /n(x) / ei‘pTw(x, ¢, t)dpdx

-

of the thalamic population with the corresponding coupling parameters K7;,j = 1, 2. Each
oscillator in the thalamic population is coupled to both complex mean fields

T
Y¢, = Rge" = / n(x) / “Iw, gc, dgdx,  j=1,2
-7

of the 0 and « cortical populations with the corresponding coupling parameter K¢;,
j=1,2.

For the sake of simplicity and as a first approximation, we assume, that there is no direct
connection between the two cortical populations. Note, that these populations are con-
sidered as functionally distinct groups in the cortex, not as anatomically distinct ones.
They, however, influence each other indirectly through the feedback they receive from
the thalamic population. Figure 7 shows a schematic illustration of the thalamo-cortical
loop with two cortex populations. The thalamus population is stimulated with the same
external stimulus as in the case of the minimal model (see Equation 7).

Again, we apply the Watanabe-Strogatz ansatz [14] and its extension by Pikovsky and
Rosenblum [16] to the system (23)-(25) and obtain

2 .
% = iorzr(07T) + ; K% (ch - YaZT(wT)2> + % (14 zr(@r)?), (26)
% = wr + Im (zr(07)* (K¢, Yc, + Ko, Y, + 10)i)), (27)
% = iwc zc, (wcy) + K% (Y7 — Yize, (0c)?), (28)
% = wc, +1Im (z¢, (wc,) K1, Y1), (29)

Cortex

Thalamus

Figure 7 Three population structure. Scheme of the three-population model. Fixed couplings are shown
in black and variable ones in red.
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dz K

% = 06,26, (w06,) + > (Y1 = Yize,(0c,)%), (30)
d

% = wc, + Im (2, (wc,) K1, YT) - (31)

This system can again be reduced to a 3-dimensional system of complex ODEs
representing the dynamics of the order parameters. The reduced system has the form:

dY 1 1
' (dm‘ - > Yr+3 (IO + Y2I(0)i) +

dt 2
1 2
2
+3 3 (Kq Ye, - Y2K, Yg/) , (32)
j=1
dYc .1 KT, 2
G - (wcll - 2) Yo, + = (YT ~ Y2 Y;), (33)
dYe .1 Kr. 2
dtz — (a)czl — 2) Yo, + 72 (YT — YCZ Y;) . (34)

The main results of the analysis of this model are illustrated in Figure 8. The pan-
els of the figure on the left show the maximum SLI and the frequency for both cortex
populations over the plane of the coupling parameters K¢, and K¢,. The right column
shows enlargements of a region of interest of each of the figures shown in the left col-
umn. In these simulations we fixed the coupling from the thalamus population to the 6-
and o-populations, i.e. Ky, = 5.5 and K1, = 7, respectively. For each parameter pair
(Kc,, Kc,), we stimulated the system (N = 1000 oscillators in each of the three popula-

tions) with a stimulus intensity of / = 100 for 50 ms and calculated the maximum SLI
1000 ., .

> %G9 The results are shown in the first and third row of Figure 8.

j=1

The figures in the second and fourth row of Figure 8 show the mean frequency of the 6-

1
as mtaX 1000

and a-populations, respectively, as functions of the coupling strengths K¢, and K¢,. The
coupling strengths K¢, and K¢, were varied independently from 0 to 10 with a step size
of 0.05. The grey and black curves again denote the branches of fold limit cycle bifur-
cations (FLBs) of the periodic orbits and of Hopf bifurcations (HBs) of the fixed points,
respectively.

Using these simulations, we can now navigate through the (K¢,, Kc,;) parameter plane
and find pairs of coupling parameter values at which our model exhibits brain dynamics
as observed in healthy subjects or in schizophrenia patients. To change the dynamics of
the model from the healthy to the schizophrenic state, the parameter pairs need to be
chosen such that: i) the max SLI of the 6-brain waves changes from 0.37 to 0.3; ii) the one
of the «-waves from 0.26 to 0.19; iii) the frequencies of the 8- and «-populations change
only minimally, i.e. they remain approximately 5 — 7 Hz for the 6- and 9 — 12 Hz for the
a-population.

With the letters P and C, we label the positions in the (K¢,,Kc,) parameter plane
which correspond to the max SLIs and frequencies observed in schizophrenia patients
and healthy subjects, respectively. For healthy subjects the coupling constants are
Kc, = 3.9,Kc, = 2.2, for schizophrenia patients K¢, = 3.2, K¢, = 1.2. We can see that
schizophrenia patients, compared to healthy subjects, have a reduced feedback from both
cortex populations to the thalamus.

We therefore hypothesize based on our model that schizophrenia patients have deficits
in signal transduction from the auditory cortex back to the thalamus.
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Max-SLI #-Cortex Max-SLI #-Cortex
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Frequency 6-Cortex Frequency 6-Cortex
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4
Ke,

Max-SLI a-Cortex Max-SLI a-Cortex

4
Ke, Ke,

Frequency a-Cortex Frequency a-Cortex

Figure 8 Coupling parameter dependence for three populations. Left: maximum SLI and frequency of
the 8-population (@, = 3 Hz; top two) and the a-population (@¢, = 14 Hz; bottom two) as functions of the
coupling parameters K¢, and K¢, . Right: enlargement of the marked areas. The points in the corresponding
left panels C (K, = 3.9,K, = 1.2)and P (K¢, = 3.2,Kc, = 1.2) mark parameter choices that yield the max SLIs
and frequencies observed in healthy subjects (controls) and schizophrenia patients, repectively. The coupling
parameters from the thalamus (@7 = 7 Hz) to the cortex are fixed at K7, = 5.5 and K7, = 7.0. Solid curves
mark branches of Hopf bifurcations (black) and of fold limit cycle bifurcations (gray) of the reduced system.

Figure 9 shows the behaviour of the - and «-populations in the case of schizophrenia
patients, i.e. the coupling parameters are Ky, = 5.5, K1, = 7, K¢, = 3.2,K¢;, = 1.2
The cosine of the phases of 200 oscillators is shown (in total we calculated N=1000 oscil-
lators in each population). The system was stimulated at £ = 0. The black lines indicate
the max SLI. Before the stimulation, i.e. £ €[—100, 0], we have a uniform distribution of

the phases, which means that the oscillators in each population are desynchronized, i.e.
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cos(pcy )

Time (ms)

cos(pcy)

Time (ms)

Figure 9 Dynamic behavior of cortical regions. An example of the desynchronization in the two cortical
areas of the non-reduced system (only 200 of N = 1000 oscillators are shown); éc, = 3Hz é&c, = 14Hz,
@1 = 7Hz, Ky, =55,Kr, =7.0,Kc, = 3.2,Kc, = 1.2. The max SLI is shown in black. Frequency of coupled
oscillators in the phase-locking interval: 6 Hz for 8-population and 9.4 Hz for a-population.

max SLI = 0. Directly after the stimulation at £ = 0 a phase reset occurs and the phases
of the oscillators synchronize (thin blue waves), hence now max SLI > 0. After a cer-
tain time, they desynchronize again: the desynchronization in the «-population happens
earlier (at &~ 250 ms) followed by that in the 6-population (at ~ 400 ms). These simulation
results fully agree with the experimental data [12].

Discussion
We have constructed a mathematical model which describes some aspects of the dysfunc-
tion in neural activity of the thalamo-cortical loop during schizophrenia. This model is,
in contrast to the models introduced at the beginning [5,7,8,10], an abstract description
of the neural activity of the brain regions involved. The description is based on synchro-
nization phenomena as found in the EEG records of healthy subjects and schizophrenia
patients. The model allows us to study the interaction of the brain areas involved in a
systematic way and to detect the effects of changes of the couplings between them.

A major advantage of our model is that it provides insight into activities of brain
areas not directly accessible by EEG measurements. A second advantage is its flexibility:
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since we did not include any explicit biophysical properties into our model and stayed
on a phenomenological macrostructural level, it can be adjusted to fit similar effects
in other diseases, e.g. Morbus Parkinson [5] or bipolar disorder [26]. Patients suffer-
ing from Morbus Parkinson show a decrease in post-movement synchronization in the
B-band [27] in the motor cortex. To simulate the system dynamics underlying this dis-
ease, it is possible to extend our model by including oscillators with B-frequencies in
the cortex population (as done by the extension of our model from initially 2 to 3
populations). In a graph-theoretical analysis, Kim et al. [26] could show that only syn-
chronization in « frequencies is significantly lower in patients with bipolar disorder
than in healthy controls. Thus it would be possible to adjust the coupling strengths
in our model in a way that it could appropriately reproduce the symptoms of this
disease.

We have seen that the description of each area by a population of phase oscillators
with distributed frequencies instead of only a single one per region allows the model
to exhibit phase desynchronization in addition to phase-resetting after a given auditory
stimulus. With this model it is now possible to get insights into the brain dynamics of
the thalamic region which are not accessible to EEG measurements and to investigate
the impact of different connection topologies between the thalamic and cortical brain
regions on the duration and strength of synchronization in the respective brain frequency
bands.

By analyzing our model, we have seen that it supports the current view [9] that the cou-
pling between the thalamic and the cortical regions is responsible for dysfunction of the
thalamo-cortical loop in schizophrenia. In particular, our model shows that a reduction
in the strength of coupling from the thalamic to a cortical region, i.e. decreasing the cou-
pling parameters K7;, shortens the time interval of phase synchronization after stimulus.
The closer K7; is to the fold limit cycle bifurcation the longer the state of high synchrony
lasts. A reduction in the strength of the coupling from the cortical regions back to the
thalamus, i.e. decreasing the coupling parameters Kc;, however reduces the strength of
synchronization. Comparing this with the findings in [12] yields that patients differ mostly
in the 6- and a-frequency bands in that they have a significantly lower coupling K¢, from
the cortex to the thalamus and only a little weaker coupling K, from the thalamus to the
cortex, than healthy subjects.

The bifurcation analysis of our model was only possible, because we were able to
reduce this large-scale model to systems of only two or three dimensions by using the
Ott-Antonsen theory and the reduction methods by Pikovsky and Rosenblum. Thanks
to these reduction methods, we could do so without loosing the desynchronization
phenomena observed in experiments and exhibited by the large-scale model. The bifurca-
tion analysis helped us to understand the mechanisms underlying the desynchronization
which follows the initial phase reset after the auditory stimulus. As far as we are aware
of, our model can show for the first time which bifurcations underlie the changes in the
simulated brain dynamics.

We have, furthermore, seen that the mechanism of desynchronization is preserved if
the model is extended from initially 2 to 3 regions to describe the neural activity in
the thalamo-cortical loop. In this model, however, both parameter regions which corre-
spond to data of schizophrenia patients and of healthy subjects are rather small (see little
island in Figure 8). For the sake of simplicity and as a first approximation, we did not
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include any direct couplings between the cortical regions. Preliminary results (simulation
results not shown) suggest that the size of this parameter region will increase, if additional
intra-cortical connections are included in the model, and the mechanisms of desynchro-
nization will still be preserved. However, further investigations will be needed to gather
firm evidence that supports the preliminary results.

Simulation results obtained with our model support the notion that schizophrenia is not
caused by focal brain abnormalities, but results from pathological interactions between
brain regions [28]. In contrast to other studies that found abnormal functional connec-
tivity between temporal and frontal regions, as measured by PET and fMRI [29-31], our
model hypothesizes that it is the feedback from the thalamus to the auditory cortex that
causes the disabilities, even in the absense of direct coupling between cortical frequencies.

Of course, the validity of our model needs to be further tested by comparing
the simulation results with experimental ones obtained in new measurements. The
“disconnection hypothesis” suggests that the core pathology of schizophrenia is an
impaired neuromodulation of synaptic plasticity that leads to abnormal functional inte-
gration of neural systems, i.e., “dysconnectivity” [32,33]. A possible next step would
therefore be to investigate the influence of medications like eicosapentaenoic acid
[34], pregnenolone [35,36] or antipsychotics [37] on the functional signal transduc-
tion by calculating individual SLIs from the EEG data or in a DCM study [38]. This
would provide information on the coupling between the thalamus and the auditory
cortex in schizophrenia patients. One could then compare whether a regeneration
of functions can be linked to a restored connection strength between thalamus and
cortex.

Moreover, EEG measurements on individual patients and the calculation of their indi-
vidual coupling strength between the thalamus and the cortex could then be used as a
tool to diagnostically classify the different types of schizophrenia. The advantage of this
approach would be that the grouping of patients would not simply be driven by data but
would be constrained by a well-founded and carefully specified theory.

In order to explain the experimental observations we consider in this paper a simple
and plausible model which inherits properties of the coupling of the Kuramoto model.
Despite the simplicity of the model, we observed good agreement between experimental
data and numerical simulations. This justifies our chosen degree of approximation. Of
course more sophisticated phase models including the nonresonance case [39,40] as well
as detailed networks of the brain regions of interest could improve the quality of that
results. Particularly, if we extended our model to include other brain regions with distinct
natural frequencies, such as - or y-bands, we should definitely consider models that
incorporate the nonresonance property.

Conclusion

Our model can explain functional differences seen between EEG records of healthy sub-
jects and schizophrenia patients on a system theoretic basis. Because of this and its
predictive character, the model may be considered to pave the way towards an early
and reliable clinical detection of schizophrenia that is dependent on the interconnec-
tions between the thalamic and cortical regions. In particular, the model parameter that
describes the strength of this connection can be used for a diagnostic classification of
schizophrenia patients.
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Appendix

Mathematical theory

In this section, we will present the main reduction methods that are used to analyze
our systems in section “Mathematical model”. The Pikovsky-Rosenblum ansatz [16] is an
extension of the reduction method by Watanabe and Strogatz [14] which covers infinitely
large systems of nonidentical phase oscillators. The general model treated in this theory
reads:

d¢5§’ D _ w0 + Im [Hex, e ). N

The natural frequencies of the oscillators are denoted by w(x,¢). They depend on a

continuous parameter x. The oscillators are coupled via a complex field H(x, £). The state
of the system can be described by the distribution density W (x, ¢, £) which is determined
by the distribution density of the parameter n(x) and the conditional distribution density
of oscillators w(x, ¢, t), written as

W(x, ¢,t) = n(x)w(x, ¢, t).

According to the idea presented in [14], three new variables p(x,£), ®(x,t), V(x, 1)
and constants of motion v (x) are introduced to the original system of equations via the
transformation

1Y)

it — oi® P , (36)

pel(l/f_“l’) —+ 1

which transforms the time-dependent density w(x, ¢,t) to a stationary density o (x, V)
with the new variables ® (x, £), ¥ (x, t) and p(x, t) which satisfy the following

P, t) 1—p?

_ —id
= e ), -
2
D — vt + et (H 0 ), o
W  1-p° —i®
s = gy Im(HE e ). >

As three new variables are added to the system, additional constraints have to be defined
to guarantee that the transformation (36) determines p, ®, W uniquely. These constraints
are defined in [14,16] as follows:

b4
/ o, x)eVdy =0
-7

and
g

Re / o (U, x)e2Vdy = 0.
-7
In section “Mathematical model”, we apply this ansatz to populations of oscillators with
complex mean field coupling. It is therefore important to determine the order parameters
of each subpopulation. In [16] it was shown that

Y = Re© = / nx)Z(x)dx = /n(x)y(x)z(x)dx

holds. This simplifies further if the constants of motion are distributed uniformly in which
case y (x) = 1 (see [16]).
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In [15,25] the same general model (35) is treated with a different ansatz. Their idea was
to extend the density function W (x, ¢, £) to a Fourier series:

Wi(x, ¢,t) = % 1+ me(x, He " e |,

m=1

where c.c. denotes complex conjugate. Ott and Antonsen have shown that the continu-
ity equation that expresses the conservation of the number of oscillators is fullfilled if
the Fourier coefficients f;,, can be written in terms of a single function F”*. This set of
solutions is the so-called OA-manifold. Pikovsky and Rosenblum argued in [16] that the
OA-manifold corresponds to the case of uniformly distributed constants of motion in the
Watanabe-Strogatz Theory. Ott and Antonsen discussed in [25] that the OA-manifold is
the only attractive region in terms of long-time evolution under the assumption that the
parameter distribution #(x) is continuous. This makes it possible to reduce the systems
to the OA-manifold for purposes of a long-time analysis.
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