
Erbert et al. Algorithms Mol Biol (2017) 12:9
DOI 10.1186/s13015-017-0097-9

RESEARCH

Gerbil: a fast and memory‑efficient k‑mer
counter with GPU‑support
Marius Erbert, Steffen Rechner* and Matthias Müller‑Hannemann

Abstract 

Background:  A basic task in bioinformatics is the counting of k-mers in genome sequences. Existing k-mer counting
tools are most often optimized for small k < 32 and suffer from excessive memory resource consumption or degrad‑
ing performance for large k. However, given the technology trend towards long reads of next-generation sequencers,
support for large k becomes increasingly important.

Results:  We present the open source k-mer counting software Gerbil that has been designed for the efficient count‑
ing of k-mers for k ≥ 32. Our software is the result of an intensive process of algorithm engineering. It implements
a two-step approach. In the first step, genome reads are loaded from disk and redistributed to temporary files. In a
second step, the k-mers of each temporary file are counted via a hash table approach. In addition to its basic function‑
ality, Gerbil can optionally use GPUs to accelerate the counting step. In a set of experiments with real-world genome
data sets, we show that Gerbil is able to efficiently support both small and large k.

Conclusions:  While Gerbil’s performance is comparable to existing state-of-the-art open source k-mer counting tools
for small k < 32, it vastly outperforms its competitors for large k, thereby enabling new applications which require
large values of k.

Keywords:  k-mer counting, de novo assembly, Genome sequences, GPU computing, Algorithm engineering

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The counting of k-mers in genome reads is a common
task in bioinformatics. The problem is to count the
occurrences of all k-long substrings in a large amount of
sequencing reads. Its most prominent application is de
novo assembly of genome sequences. Although building
a histogram of k-mers seems to be quite a simple task
from an algorithmic point of view, it has attracted a con-
siderable amount of attention in recent years. In fact, the
counting of k-mers in large genome sequences becomes
a challenging problem, if it has to be both resource- and
time-efficient and therefore makes it an interesting object
of study for algorithm engineering. Existing tools for k-
mer counting are often optimized for k < 32 and lack
good performance for larger k. However, recent advances
in technology towards larger read lengths are leading to
the quest to cope with values of k exceeding 32. Studies

elaborating on the optimal choice for the value of k rec-
ommend relatively high values for various applications
[1, 2]. In particular, working with long sequencing reads
helps to improve accuracy and contig assembly (with k
values in the hundreds) [3]. In this paper, we introduce a
tool with a high performance for such large values of k. A
preliminary version of this article has been published in
the proceedings of WABI 2016 [4].

Related work
Among the first software tools that succeeded in count-
ing the k-mers of large genome data sets was Jellyfish [5],
which uses a lock-free hash table that allows parallel inser-
tion. In the following years, several tools were published,
successively reducing running time and required memory.
BFCounter [6] uses bloom filters for k-mer counting to fil-
ter out rarely occurring k-mers stemming from sequenc-
ing errors. Other tools like DSK [7] and KMC [8] exploit
a two-disk architecture and aim at reducing expensive IO
operations. Turtle [9] replaces a standard Bloom filter by
a cache-efficient counterpart. MSPKmerCounter [10]

Open Access

Algorithms for
Molecular Biology

*Correspondence: steffen.rechner@informatik.uni‑halle.de
Institute of Computer Science, Martin Luther University Halle-Wittenberg,
Von‑Seckendorff‑Platz 1, 06120 Halle (Saae), Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81816859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0097-9&domain=pdf

Page 2 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

introduces the concept of minimizers to the k-mer count-
ing, thus further optimizing the disk-based approach. The
minimizer approach was later on refined to signatures
within KMC2 [11]. Up to now, the two most efficient open
source software tools that can work with small memory
requirements have been KMC2 and DSK [12]. KMC2 uses
a sorting based counting approach that has been opti-
mized for k < 32. However, its performance drops when k
grows larger. Instead, DSK uses a single large hash table
and is therefore efficient for large k (but does not sup-
port k > 127). However, for small k, it is clearly slower
than KMC2. A recently released k-mer counting tool is
KCMBT [13]. By the use of multiple burst trees, KCMBT
is under some conditions even faster than KMC2. How-
ever, it is restricted to k < 32 and its memory require-
ments vastly exceeds the available memory of typical
desktop computers like our test systems. To the best of
our knowledge, the only existing approach that uses GPUs
for counting k-mers is the work by Suzuki et al. [14].

Contribution
In this article we present the open source k-mer counting
tool Gerbil. Our software is the result of an extensive pro-
cess of algorithm engineering that tried to bring together
the best ideas from the literature. The result is a k-mer
counting tool that is both time efficient and memory fru-
gal.1 In addition, Gerbil can optionally use GPUs to accel-
erate the counting step. Thus, Gerbil outperforms its
strongest competitors both in efficiency and resource
consumption.

The software is written in C++ and uses CUDA for
GPU programming. It is freely available at https://github.
com/uni-halle/gerbil under MIT license.

Structure
In the next section we describe the general algorithmic
work flow of Gerbil. In the main part of this article, we
focus on algorithm engineering aspects that proved
essential for high performance and describe details,
like the integration of a GPU into the counting process.
Afterwards, we evaluate Gerbil’s performance in a set of
experiments and compare it with those of KMC2 and
DSK. We conclude this article by a short summary and a
glance on future work.

Work‑flow
Gerbil uses a two-disk approach that is similar to those
of most contemporary k-mer counting tools [7, 10, 11].
The first disk contains the input read data and is used to
store the counted k-mer values. We call this disk input/

1  The tool is named Gerbil because of its modest resource requirements,
which it has in common with the name-giving mammal.

output-disk. The second disk, which we call working
disk, is used to store temporary files that are created and
removed during runtime.

To make optimal use of the hardware, Gerbil is
designed as a parallel program, with multiple threads
running concurrently. Although the following descrip-
tion of the main work flow is presented sequentially, all
of the steps are interleaved and therefore executed in
parallel. This is done by a classical pipeline architecture.
Each output of a step makes the input of the next. A cou-
ple of specialized buffers are used to connect the steps of
the pipeline. Such buffers are designed for all combina-
tions of single or multiple producers (SP/MP) and single
or multiple consumers (SC/MC). The actual number of
parallel threads depends on the system and is determined
by the software at runtime to achieve optimal memory
throughput.

Gerbil is divided into two phases: distribution and
counting. Next, we give a high-level description of both
phases.

Distribution
Whole genome data sets typically do not fit into the main
memory. Hence, the goal of the first phase is to split the
input data into a couple of smaller temporary files. The
key idea is to assure that the temporary files partition the
input genome data in such a way, that all occurrences of
a certain k-mer are stored in the same temporary file.
This way, one can simply count the k-mers of the tem-
porary files independently of each other, with smaller
main memory requirements. To split the genome data
into temporary files, we make use of the minimizer
approach that has been proposed by [15] and later on
refined by [11]: a genome sequence can be decomposed
into a number of overlapping super-mers. A super-mer
of a genome sequence is defined as a substring of maxi-
mal length such that all k-mers on that substring share
the same minimizer. Hereby, a minimizer of a k-mer
is defined as a substring of fixed length m that is mini-
mal with respect to some total ordering on strings of
length m. Thus, contiguous k-mers of a genome read are
joined to a super-mer if they share the same minimizer.
By storing super-mers with the same minimizer in the
same temporary file, we guarantee that all occurrences of
identical k-mers end up in the same temporary file. See
Fig. 1 for an example.

Similar to related approaches, Gerbil counts the canon-
ical representations of k-mers. Since DNA is organized
in double helix form, each k-mer x ∈ {A,C ,G,T }k cor-
responds to its reverse-complement y which is defined
by reversing x and replacing A ⇔ T and C ⇔ G.
Many applications do not distinguish between a k-
mer and its reverse-complement. Thus, Gerbil uses the

https://github.com/uni-halle/gerbil
https://github.com/uni-halle/gerbil

Page 3 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

lexicographically lesser of x and y as the canonical rep-
resentation of both. This reverse-complement normaliza-
tion can be turned off by command flag.

The work-flow of the first phase is described by the fol-
lowing steps. See Fig. 2 for a visualization.

1.	 A group of reader threads read the genome reads
from the input disk into the main memory. For com-
pressed input, these threads also decompress the
input.

2.	 A group of parser threads convert the read data from
the input format into an internal read bundle format.

3.	 A group of splitter threads compute the minimizers
of all k-mers of the reads. All subsequent substrings
of a read that share the same minimizer are stored as
a super-mer into an output buffer.

4.	 A single writer thread distributes the super-mers to
one of multiple temporary files that are stored at the
working disk. Hereby, all super-mers with the same
minimizer are assigned to the same temporary file.

Counting
After the first phase has been completed, the tempo-
rary files are sequentially re-read from working disk.
The counting of k-mers is typically done by one of two
approaches: Sorting and Compressing [11] or using a
hash table with k-mers as keys and counters as values [5,
7]. The efficiency of the sorting approach typically relies
on the sorting algorithm Radix Sort, whose running time
increases with the length of k-mers. Since we aim at high
efficiency for large k, we decided to implement the hash
table approach. Therefore, we use a specialized hash table
with k-mers as keys and counters as values. We use a
hash table that implements open addressing and solves
collisions via quadratic hashing. Alg. 1 shows a high level
description of the insertion method.

The number of probing operations during the inser-
tion of k-mers in a hash table has a crucial influence on
the efficiency of the whole process. Experimentally, we
observed that the average number of probings is quite
small (about 1.5 probings per k-mer in the F vesca data
set.) However, a few k-mers may need a very high number
of probings until a match or an empty entry is detected.
Since these k-mers would slow down the whole process,
we stop the probing of the hash table after a constant
number imax of trials. To prevent k-mers from getting lost,
Gerbil stores such k-mers in failure buffers that are repre-
sented by additional temporary files at the working disk.

Fig. 1  Minimizers and super-mers of the DNA string CAAGAACA-
GTG. Here, k = 4 and m = 3. For each k-mer, the bold part is its mini‑
mizer. The example uses the lexicographic ordering on 3-mers based
on A < C < G < T . The sequence is divided into the five super-mers
CAAGA, AGAA, GAACA, ACAG, and CAGTG that would be stored in
temporary files

Algorithm 1 Insert a k-mer into a hash table.
1: procedure Insert(x)
2: Input: k-mer x
3: Data: table entries T , threshold imax
4: i ← 0 is the number of probing steps
5: while i < imax do
6: p ← hash(x, i)
7: if Tp = (x, c) then -mer x is stored at position p with current value c
8: Tp ← (x, c+ 1) increment counter
9: return
10: else if Tp is empty then -mer x has not been inserted yet
11: Tp ← (x, 1) insert x at position p with value 1
12: return
13: else position p is occupied by a different k-mer
14: i ← i+ 1 reprobe another table position
15: end if
16: end while
17: store x in failure buffer start failure handling
18: end procedure

Page 4 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

The value imax is supposed to be roughly log2 n, where n is
the total number of k-mers in a data set. Thus, the whole
insertion process has a running time of O(n log n). Since
n is in the order of several billions in most real-world data
sets, we found that imax = 30 works well in most cases.
Figure 3 visualizes the work-flow of the second phase. The
following steps are executed for each temporary file.

1.	 A single reader thread reads the super-mers from the
temporary file and stores them in main memory.

2.	 A group of splitter threads split the super-mers
into k-mers. Each k-mer is distributed to one of mul-
tiple hasher threads by considering the hash value of
each k-mer. This ensures that multiple occurrences of
the same k-mer are assigned to the same hasher thread.

3.	 A group of hasher threads insert the k-mers into their
thread-own hash tables. Thus, every hasher thread
maintains its own hash table. After a temporary file
has been completely processed, each hasher thread
sends the content of its hash table to an output buffer.

4.	 A single writer thread writes the final k-mer counts
to the output disk.

Algorithm engineering
In this section, we want to point out several details on the
algorithm engineering process that were essential to gain
high performance. Since the more delicate problems are

located in the counting step, most of these details refer to
the second phase.

Hash functions
The efficiency of the hash table approach relies on a
well-chosen hash function that maps k-mers to integers.
Gerbil uses two different hash functions for different
purposes. In general, the combination of two independ-
ent hash functions leads to a more uniform distribution
of k-mers. The first hash function hash(x, i) is used
for the probing of the hash table (see Alg. 1). Since the
hash table has a large and variable number of entries,
the function needs to cover a large range of values to
reach every table position. In contrast, we use a sec-
ond hash function partHash for assigning k-mers to
hasher threads. This function is designed to map k-mers
to a small range of values with very little computational
effort. Alg. 2 shows the C++ implementation of both
hash functions in a slightly simplified manner. A major
difference between the implementations of hash and
partHash is the number of bases that is considered.
While hash uses blocks of 32 bases (64 bits) in each
step, the function partHash uses smaller blocks of 8
bases (16 bits). A second difference is the running time
of both functions. Whereas the running time of par-
tHash is constant, the running time of hash grows lin-
early with k.

Fig. 3  Work flow of Phase Two

Fig. 2  Work flow of Phase One

Page 5 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

Hash table size
A key aspect for an efficient implementation is the eco-
nomic use of main memory. Therefore, we aim at esti-
mating the expected size of each hash table as closely
as possible. An economic use of main memory ensures
that the operating system can use the free main mem-
ory as cache for the buffering of expensive disk opera-
tions. To find a economic size of our hash tables, we
first approximate the number d of distinct k-mers in a
temporary file.

Approximation
Since d is not known before processing the temporary
file, we estimate this quantity using a simple linear model.
In contrast to the number of distinct k-mers, the total
number n of k-mers in a temporary file is already known
from the first phase. To find an estimation for d, we mul-
tiply n with a variable α that describes the estimated ratio
between distinct k-mers and the total number of k-mers

in the current file. Since we assume that the values of α
do not deviate much between different temporary files,
we initialize α with the value α′ of the temporary file that
has been processed previously and adjust it at runtime.
Figure 4 shows the distribution of α for one of our test
data sets.

Fill level
The probing of the hash table becomes more expen-
sive as the number of inserted elements grows. At a
high fill level, most entries are occupied by non-match-
ing k-mers and thus, a high number of reprobing opera-
tions is needed to insert a k-mer. To care for this effect,
we initialize our tables to total size of |T | = α · n · β−1
for β < 1 . Thus, after the k-mers of a temporary file have
been inserted, the tables have an expected fill level of
about β. The advantage of this strategy is a small num-
ber of probing operations during the insertion process at
expense of unused main memory. Experiments showed

0 5 10 15 20 25 30

0
1

2
3

4
5

#28−mers (in millions)

#d
is

tin
ct

 2
8−

m
er

s
(in

 m
ill

io
ns

)

#distinct 28−mers / #28−mers

F
re

qu
en

cy

0.10 0.15 0.20 0.25 0.30

0
10

20
30

Fig. 4  Left The number of k-mers and distinct k-mers of 511 temporary files that have been created while processing the F vesca data set for k =
28. A single temporary file is not shown since it contains far more k-mers than the other files. Right Distribution of the ratio between the number of
distinct k-mers and the total number of k-mers for the temporary files of the F vesca data set and k = 28

Algorithm 2 Hash Functions hash and partHash.
template<int k> uint64_t
hash(const Kmer& x, const int i) {

// interpret x as sequence of 32 bases
uint64_t* data = (uint64_t*) &x;

uint64_t res = 0; // hash value

// for each block of 32 bases
for(int c = 0; c < (k+31)/32; ++c)

res += 453569 * res + data[c];

return res + 5696063 * i*i;
}

template<int k> uint64_t
partHash(const Kmer& x) {

// interpret x as sequence of 8 bases
uint16_t* data = (uint16_t*) &x;

uint64_t res = 0; // hash value

// for the first 8 blocks of 8 bases
for(int c = 0; c < min(8,k/8); ++c)

res += 453569 * res + data[c];

return res;
}

Page 6 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

that a fill level of about β = 40% seems to balance both
aspects best.

Multiple passes
In its first phase, Gerbil divides the genome sequences
into temporary files. Since a single temporary file is far
smaller than the original genome data, it can be pro-
cessed efficiently. However, it is still possible that the
number of k-mers in a single temporary file exceeds
the maximal capacity |Tmax| of our hash tables, which is
given by available main memory. In such a case, the set
of k-mers that do not fit into the hash tables would be
transfered into failure buffers and stored in additional
temporary files by Gerbil’s failure handling. This behav-
iour is not optimal in cases where the size of a tempo-
rary file vastly exceeds the capacity of our hash tables.
This is because in contrast to regular temporary files
that contain super-mers, the additional files contain
single k-mers. Since this would be an inefficient way
to store large amounts of k-mers, we apply a different
approach. For each temporary file, we first consider the
number n of k-mers. Should this number exceed the
maximal total capacity |Tmax|, we run multiple passes
over the file. The total number of passes p is calcu-
lated by p = ⌈n/|Tmax|⌉ . In each pass, Gerbil considers
a subset of the k-mers by evaluating the hash function
partHash on each k-mer. In the i-th pass, it considers
only those k-mers for which partHash(x) ≡ i mod p.
Thus, after p passes, all k-mers are guaranteed to be
processed.

Load balancing
Gerbil has multiple hasher threads, each maintaining
its own hash table. This has several advantages. One
major advantage is the distribution of the hash tables
to separated memory spaces like main memory and
GPU memory. Here, we discuss the problem of assign-
ing k-mers to the hasher threads. Gerbil uses the value
of partHash of each k-mer to determine the id tid of
a hasher thread. In the most simple form, the k-mers
could be distributed uniformly to all hasher threads by
selecting tid(x) = partHash(x) mod N , where N is
the number of hasher threads. However, as shown by
experiments, GPU hasher threads are often far more
efficient than CPU hasher threads. A uniform distribu-
tion of k-mers between all hasher threads is therefore
not desirable. A better approach is to assign a num-
ber of k-mers to each thread that is proportional to its
throughput. Thus, more work is assigned to GPU hasher
threads. To do so, we constantly measure the throughput
of each hasher thread, i. e. the time needed to insert and
extract a fixed number of k-mers. Whenever a new tem-
porary file is loaded from disk, we re-balance the number

of k-mers that are assigned to each hasher thread, con-
sidering the throughput and capacity of each hash table.
By that, we automatically determine a good division of
work between hasher threads without the need of careful
hand-tuning.

GPU integration
Gerbil can use GPUs to speed-up the counting step by
enabling additional GPU hasher threads. To integrate
one or more GPUs into the process of k-mer counting,
several problems have to be dealt with. Typically, a GPU
performs well only if it deals with data in a highly paral-
lel manner. In addition, memory bound tasks (i. e. tasks
that do not require a lot of arithmetic operations) like the
counting of k-mers require a carefully chosen memory
access pattern to minimize the number of accesses to the
GPU’s global memory. We decided to transfer the hash
table based counting approach to the GPU. When com-
piled and executed with GPU support, Gerbil automati-
cally detects CUDA capable GPUs. For each GPU, Gerbil
adds a GPU hasher thread which maintains its own hash
table in GPU memory. Each GPU hash table is similar in
function to a traditional hash table. However, there are
two major differences in design.

1.	 Unlike the CPU hasher thread approach, a GPU
hasher thread adds a large number of k-mers in par-
allel. Therefore, the insertion procedure is slightly
changed. First, a bundle of several thousand k-mers
is copied to the GPU global memory space. The set
of k-mers is divided into bundles of nearly equal size.
Then, we launch a large number of CUDA blocks,
each consisting of 32 or more threads. Each CUDA
block is responsible for the insertion of one k-mer
bundle into a common GPU hash table.

	 In contrast to the CPU hasher threads, the GPU
hasher threads do not probe a single position of the
hash table in each step. When probing a table posi-
tion p, a GPU hasher thread additionally scans
adjacent table positions in a range of 128 bytes (see
Fig. 5). Due to the architecture of a GPU, this can be
done within the same global memory access. Thus,
we scan up to 16 table entries in parallel, thereby
reducing the number of accesses to a GPU’s global
memory. In addition, the total number of probing
operations is drastically reduced. To eliminate race
conditions between CUDA blocks, we synchronize
the probing of the hash table by using atomic opera-
tions to lock and unlock hash table entries. Since
such operations are efficiently implemented in hard-
ware, a large number of CUDA blocks can be exe-
cuted in parallel.

Page 7 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

2.	 A second difference to CPU hasher threads is failure
handling. Instead of directly evacuating failed k-mers
into failure buffers, GPU hasher threads use free GPU
memory to store k-mers that could not be inserted
after the maximal number of trials. After all k-mers
of a temporary file have been processed, the k-mers
in this area are counted via sorting and compres-
sion. A problem occurs when the GPU memory is
exhausted. In such cases, Gerbil copies the k-mers
back to main memory and stores them in failure buff-
ers, similarly to CPU hasher threads.

Length of minimizers
The length m of minimizers is a parameter that has to be
chosen with care. However, we can consider a basic rule:
The larger m is chosen, the less likely it becomes that
consecutive k-mers share the same minimizer. Therefore,
the number of super-mers increases with growing m. An
advantage of a large number of super-mers is that the set
of super-mers can be distributed to temporary files more
uniformly, which results in temporary files of approxi-
mately uniform size. However, a major drawback of a large
number of super-mers is the increased total size of all
temporary files. Thus, a smaller m results in a better data
compression. In our experiments, we found that choosing
minimizer length m = 7 is efficient for most data sets.

Total ordering on minimizers
The choice of a total ordering has large effects on the size
of temporary files and thus, also on the performance. To
find a good total ordering, we have to balance various
aspects. On the one hand, the total number of resulting
super-mers are to be minimized to reduce the total size
of disk memory that is needed by temporary files. On the
other hand, the maximal number of distinct k-mers that
share the same minimizer should not be too large since
we want an approximately uniform distribution of k-mers
to the temporary files. An “ideal” total ordering would
have both a large total number of super-mers and a small
maximal number of distinct k-mers per minimizer. Since
these requirements contradict each other, we experi-
mentally evaluated the pros and cons of various ordering
strategies.

• • CGAT: the lexicographic ordering of minimizers
based on C < G < A < T .

• • Roberts et al. [16]: they propose the lexico-
graphic ordering of minimizers with respect
to C < A < T < G. Furthermore, within the mini-
mizer computation all bases at even positions are to
be replaced by their reverse complement. Thus, rare
minimizers like CGCGCG are preferred.

• • KMC2: the ordering that is proposed by [11] is a lexi-
cographic ordering with A < C < G < T and some
built-in exceptions to eliminate the large number of
minimizers that start with AAA or ACA.

• • Random: a random order of all strings of fixed
length m is unlikely to have both a small number of
super-mers and a highly imbalanced distribution of
distinct k-mers. It is simple to establish, since we do
not need frequency samples or further assumptions
about the distribution of minimizers.

• • Distance from Pivot (dfp(p)): to explain this strategy,
consider the following observations: Ascendingly
sorting the minimizers by their frequency favors
rare minimizers. As a consequence, the maximal
number of distinct k-mers per minimizer is small.
However, the total number of super-mers can be
very large. Similarly, an descendingly sorted order-
ing results in quite the opposite effect. To find a
compromise between both extremes, we initially
sort the set of minimizers by their frequency. Since
the frequencies depend on the data set, we approxi-
mate them by taking samples during runtime. We fix
a pivot factor 0 ≤ p ≤ 1 and re-sort the minimizers
by the absolute difference of their initial position to
the pivot position 4mp. The result is an ordering that
does neither prefer very rare nor very common mini-
mizers and therefore makes a good compromise.

See Fig. 6. The value on the x-axis corresponds to the
expected temporary disk memory, whereas the value on
the y-axis is correlated with the maximal main memory
consumption of our program. A perfect strategy would
be located at the bottom left corner. Several strategies
seem to be reasonable choices. We evaluated each strat-
egy and found that a small number of super-mers is more

AGC

p

3

p + 4

−

p + 8

0

p + 12

... 1

p + 124

CAG

p + 128

Area that is scanned in parallel.

Fig. 5  GPU memory access pattern. The figure shows the memory area that is being scanned while probing a hash table entry that is stored at
memory address p. In this example, k = 3 and each table entry needs four bytes for the key and four bytes for the counter. Therefore, 16 entries can
be loaded from global memory within one step and are scanned in parallel

Page 8 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

important than a small maximal number of k-mer per
minimizer for most data sets. As a result, we confirm that
the total ordering that is already been used by KMC2 is a
good choice for most data sets. Therefore, Gerbil uses the
strategy from KMC2 for its ranking of minimizers.

Results
Experimental setup
We tested our implementation in a set of experiments.
For each of our test data sets we counted the k-mers for
a set of different k and compared Gerbil’s running time
with those of KMC2 in version 2.3.0 and DSK in version
2.0.7. To judge performance on various types of hard-
ware, we executed the experiments on two different desk-
top computers. See Table 1 for details about the hardware
configuration of the test systems.

Data sets
To get a fair comparison to KMC2 and DSK, we used the
same set instances as Deorowicz et al. [11]. To test our tool
for large k, we used additional genome reads with long
read length [17]. In addition, we used a synthesized test
set GRCh38, created from Genome Reference Consor-
tium Human Reference 38, from which we uniformly sam-
pled k-mers of size 1000. The purpose of these data sets is to
have longer reads allowing to test the performance for larger
values of k. Table 2 gives an overview of all test data sets.

Running time
 Table 3 and Fig. 7 show the results of the performance
evaluation. We want to point out several interesting
observations.

• • Gerbil with GPU support (gGerbil) is the most effi-
cient tool in almost all cases. Exceptions occur for
small k = 28, where the sorting based approach
KMC2 is sometimes slightly more efficient.

• • For data sets with small read length like G gallus,
the running time of each tool decreases with grow-
ing k (see top left part of Fig. 7). In addition, one can
observe the erratic increase of running time near k =
32 and k = 64 for all tools, due to a change of the
internal k-mer representation.

• • When k grows, KMC2 becomes more and more inef-
ficient, while Gerbil stays efficient. When counting
the 200-mers in the GRCh38 data set, KMC2 did not
finish within 20 h, whereas Gerbil finishes in about
1 h. The running time of DSK grows similarly fast as
that of KMC2. Recall that DSK does not support val-
ues of k > 127 (see top right part Fig. 7).

• • For small k, the use of a GPU improves the run-
ning time by a significant amount of time. However,
with growing k, the data structure that stores k-mers
grows larger. Therefore, the number of table entries
that can be scanned in parallel decreases. Thus, the
load balance will distribute less k-mers to a GPU.
Experimentally, we found that the GPU induced
speedup nearly vanishes when k exceeds 150.

Memory and disk space
We gain some additional interesting insights when we
take a closer look into Table 4 that shows detailed infor-
mation on running time and memory usage of each tool.

• • The use of a GPU accelerates Gerbil’s second phase
by up to a factor of about two. However, since a GPU
only affects the second phase, the overall speedup is
moderate.

• • All tools were called with an option that sets the
maximal memory size to 14 GB on test system one
and 30 GB on test system two. However, Gerbil typi-
cally uses much less memory due to its dynamic
prediction of the hash table size. In contrast, both
KMC2 and DSK use a significantly larger amount of
main memory.

• • Gerbil’s disk usage is comparable to KMC2’s disk
usage, whereas the disk usage of DSK is much larger.

• • Gerbil’s frugal use of disk- and main memory is a
main reason for its high performance. The use of lit-
tle main memory gives the operating system oppor-
tunity to use the remaining main memory for buffer-
ing disk operations. A small disk space consumption
is essential since disk operations are far more expen-
sive than the actual counting.

Conclusions
We introduced the k-mer counting software Gerbil
that uses a hash table based approach for the counting
of k-mers. For large k, a use case that becomes impor-
tant for long reads, we are able to clearly outperform

350 400 450 500 550

10
30

50

Rating of Minimizers

Number of super−mers (in millions)

M
ax

im
al

 n
um

be
r o

f d
is

tin
ct

k−
m

er
s

pe
r m

in
im

iz
er

 (i
n

m
ill

io
ns

)

Random
CGAT
Roberts et al.
dfp(0)
dfp(0.5)
dfp(0.8)
dfp(1)
KMC2

Fig. 6  Evaluation of various total ordering strategies for mini‑
mizers (F vesca, m = 6, k = 28). Strategy dfp(p) has been tested
with p ∈ {0, 0.5, 0.8, 1}

Page 9 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

the state-of-the-art open source k-mer counting tools,
while using significantly less resources. We showed that
Gerbil’s running time can be accelerated by the use of
GPUs. However, since this only affects the second phase,
the overall additional speedup is moderate. As future
work, we plan to optimize the processing of compressed
genome sequences. Another option for further speed-up
would be to give up exactness by using bloom filters.

Authors’ contributions
ME implemented the basic Gerbil functionality. SR integrated the GPU func‑
tionality. All authors participated in the writing of the article. All authors read
and approved the final manuscript.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The software is located at https://github.com/uni-halle/gerbil. The genome
data sets can be downloaded from the URL’s that are stored in the additional
file.

Appendix
Details on DNA sequence handling
We want to give some details on general aspects of our
handling of DNA sequences.

Undetermined bases
DNA reads typically contain bases that could not been
identified correctly during the sequencing process. Usu-
ally, such bases are marked N in FASTQ input files. In
accordance with established k-mer counting tools, we
ignore all k-mers that contain an undetermined base.

Input formats
Gerbil supports the following input formats of genome
read data: FASTQ, FASTA, staden, as well as compressed
files of these formats. To process multiple files, it can
also process simple text files that contain paths to one or
more input files, with one path per line.

Output format
Gerbil uses a binary output format that is easy to parse
and requires little space. The counter of each occuring k-
mer is stored in binary form, followed by the correspond-
ing byte-encoded k-mer. Each four bases of a k-mer are
encoded in one single byte. We encode A with 00, C with
01, G with 10 and T with 11. Most counters of k-meres
are slightly smaller than the coverage of the genome data.
We exploit this property by using only one byte for coun-
ters less than 255. A counter greater than or equal to 255
is encoded in five bytes. In the latter case, all bits of the
first byte are set to 1. The remaining four bytes contain

Table 1  Test systems

System one System two

CPU Intel Core-i5 2550k Intel Xeon(R) E3-1231v3

Threads 4 8

RAM 16 GB DDR3 32 GB DDR3

GPU GeForce GTX 970 GeForce GTX TITAN X

Working-disk 256 GB Crucial M550 2x Samsung 850 EVO 500 GB (RAID-0)

OS Ubuntu 16.04 LTS Ubuntu 16.04 LTS

In/out-disk Transcend StoreJet 35T3 USB 3.0 (External HDD) Transcend StoreJet 35T3 USB 3.0 (External HDD)

Table 2  Data sets (Additional file 1)

 The rightmost column ’Ratio‘ describes the ratio between the number of distinct 28-mers and the total number of 28-mers

Data set Format Size (GB) ∅ Read length # 28-mers # Distinct 28-mers Ratio (%)

F. vesca FASTQ 10.2 352.1 4,134,078,256 632,436,468 15

M . balbisiana FASTQ 98.6 100.0 20,531,572,597 965,691,662 4

G. gallus FASTQ 115.9 100.0 25,337,974,831 2,727,529,829 11

H. sapiens FASTQ 223.3 100.0 62,739,461,708 6,336,805,684 10

H. sapiens 2 FASTQ 339.5 100.0 98,892,620,173 6,634,382,141 7

GRCh38 FASTA 100.0 1000.0 97,300,000,000 1,802,953,276 2

N. crassa FASTA 23.3 7778.3 22,808,741,626 21,769,513,655 95

A. thaliana FASTQ 72.7 4804.6 35,905,278,785 32,894,281,429 92

https://github.com/uni-halle/gerbil

Page 10 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

Table 3  Running times in the format mm:ss (the best performing in italics)

Data set k System one System two

Gerbil gGerbil KMC2 DSK Gerbil gGerbil KMC2 DSK

F. vesca 28 02:15 01:47 01:51 02:53 01:37 01:21 01:32 02:05

40 02:23 01:58 02:49 04:13 01:49 01:31 02:12 02:52

56 02:31 01:59 03:05 03:52 01:53 01:31 02:30 02:50

65 03:02 02:12 04:23 05:23 02:05 01:42 03:35 03:37

M. balbisiana 28 14:48 12:04 12:24 13:50 11:37 10:09 10:50 11:06

40 13:55 12:41 15:50 15:30 11:35 10:30 13:46 12:26

56 12:40 11:31 15:43 14:30 10:51 09:55 13:36 11:44

65 12:58 11:38 18:48 16:52 10:55 09:57 15:47 12:34

G. gallus 28 21:10 15:07 15:26 25:44 16:14 12:50 13:10 21:00

40 20:30 16:23 19:22 31:19 16:09 13:15 16:49 23:48

56 18:58 15:32 19:19 24:04 15:16 12:54 16:48 19:59

65 20:12 15:50 22:27 26:04 15:48 13:22 19:25 21:33

H. sapiens 28 46:41 32:04 31:24 66:16 33:54 25:18 26:44 50:15

40 50:14 37:59 44:06 102:48 34:30 26:40 35:59 54:21

56 44:05 34:21 43:56 60:29 34:30 26:40 35:25 45:32

65 43:32 35:46 53:31 96:31 32:01 26:21 42:19 47:50

H. sapiens 2 28 73:29 53:55 50:09 146:10 54:19 39:05 41:47 76:50

40 77:54 62:12 71:27 209:12 53:31 42:27 57:02 83:59

56 67:28 57:22 70:46 138:06 50:25 40:18 56:28 72:35

65 68:50 58:41 87:14 156:05 50:53 42:28 68:10 78:13

GRCh38 28 62:19 50:19 43:46 65:20 34:52 18:49 21:36 25:23

40 69:00 61:03 68:47 116:08 36:52 24:32 39:57 40:54

56 78:44 70:57 80:40 111:39 37:10 26:15 48:59 41:13

65 80:43 73:27 114:00 225:35 42:54 33:08 79:34 73:25

100 82:30 81:35 178:04 ME 45:34 38:43 136:20 114:09

125 79:55 77:42 226:02 ME 44:41 40:09 174:28 133:56

150 83:04 82:33 293:02 NS 49:03 45:23 TL NS

175 86:07 85:51 TL NS 53:14 50:35 TL NS

200 93:48 90:49 TL NS 60:03 56:25 TL NS

N. crassa 28 20:29 09:55 09:49 25:41 10:47 07:31 06:45 17:31

40 22:15 11:50 15:45 34:31 12:15 09:21 11:32 23:52

56 23:16 12:01 18:15 32:03 12:24 09:14 13:36 22:33

65 27:13 16:00 27:34 44:19 15:19 11:13 21:06 31:07

80 26:26 17:16 31:46 41:22 15:17 11:25 23:47 29:27

100 28:18 21:09 TL 74:57 17:39 13:28 36:45 37:05

125 28:56 22:37 TL 76:06 17:43 13:53 47:41 36:42

150 30:44 26:18 TL NS 18:49 15:30 TL NS

175 33:04 29:01 TL NS 20:26 17:43 TL NS

200 37:05 34:33 TL NS 21:48 19:51 TL NS

A. thaliana 28 33:53 19:09 19:41 43:00 22:38 16:14 15:00 32:48

40 42:41 25:24 28:27 55:14 26:30 19:14 22:11 40:27

56 43:59 27:53 33:48 52:06 26:52 19:36 25:29 39:07

65 48:22 34:05 TL 114:34 30:07 23:05 38:33 55:01

80 48:24 38:32 TL 109:43 30:42 23:25 43:06 54:06

100 51:01 42:37 TL 141:28 33:18 27:29 67:09 73:30

125 52:17 44:49 DS 148:44 33:31 28:11 TL 79:14

150 53:47 49:00 TL NS 35:26 39:17 TL NS

175 58:55 53:37 TL NS 38:07 35:37 TL NS

200 66:42 62:31 TL NS 40:17 39:31 TL NS

Some runs were aborted after a time limit of 5 h (TL). In addition, some runs failed due to insufficient disk space (DS) or memory errors (ME). In addition, DSK simply
does not support values of k > 127 (NS). The label ‘gGerbil’ stands for Gerbil with activated GPU mode. Instead, standard ‘Gerbil’ does not use any GPU

Page 11 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

Table 4  Detailed running times (in format mm:ss) and maximal main memory and disk space consumption (in GB) for the
G. gallus instance

Each entry is the average of three runs

k System one System two

Gerbil gGerbil KMC DSK Gerbil gGerbil KMC DSK

Phase 1 28 10:04 10:03 10:51 10:22 09:49 09:49 09:52 09:30

Phase 2 28 10:26 06:20 04:46 16:00 06:25 03:01 03:16 11:01

Main memory 28 2.14 2.14 14.28 15.28 2.21 1.79 26.99 16.69

Disk space 28 23.66 23.66 24.86 37.30 23.66 23.66 24.86 37.30

Phase 1 56 10:01 10:06 10:40 10:26 09:49 09:49 09:47 09:30

Phase 2 56 08:56 05:25 09:08 13:13 05:27 03:05 06:59 10:00

Main memory 56 3.97 4.59 14.29 15.00 4.01 3.41 26.98 14.78

Disk space 56 16.25 16.25 17.02 57.20 16.25 16.25 17.02 57.20

k

R
un

ni
ng

 T
im

e
(M

in
ut

es
)

Gerbil
gGerbil
KMC2
DSK

k

R
un

ni
ng

 T
im

e
(M

in
ut

es
)

Gerbil
gGerbil
KMC2
DSK

k

R
un

ni
ng

 T
im

e
(M

in
ut

es
)

Gerbil
gGerbil
KMC2
DSK

20 30 40 50 60 70 80 50 100 150 200

50 100 150 200 50 100 150 200

0
5

10
15

20
25

0
50

10
0

20
0

30
0

0
10

20
30

40

0
20

40
60

80

k

R
un

ni
ng

 T
im

e
(M

in
ut

es
)

Gerbil
gGerbil
KMC2
DSK

Fig. 7  Running times on Test System Two. Top left: G. gallus, top right: GRCh38, bottom left: N. crassa, bottom right: A. thaliana

Page 12 of 12Erbert et al. Algorithms Mol Biol (2017) 12:9

the counter in a conventional 32-bit unsigned integer.
Examples (X is undefined bit):

• • 67 AACGTG ⇒ 01000011 00000110
1110XXXX

• • 345 TGGATC ⇒ 11111111 00000000
00000000 00000001 01011001 11101000
1101XXXX

When called with command line argument -x h, Ger-
bil additionally creates a human readable csv file that
includes a histogram of the k-mer counts, i.e. the num-
ber of occurrences of each count. This option can be used
to gain a general overview of the k-mer distribution of a
data set.

Additional file

	3.	 Sameith K, Roscito JG, Hiller M. Iterative error correction of long sequenc‑
ing reads maximizes accuracy and improves contig assembly. Brief
Bioinform. 2016;18:1–8. doi:10.1093/bib/bbw003.

	4.	 Erbert M, Rechner S, Müller-Hannemann M. Gerbil: a fast and memory-
efficient k-mer counter with gpu-support. In International workshop on
algorithms in bioinformatics. Berllin: Springer; 2016. p. 150–161.

	5.	 Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70.

	6.	 Melsted P, Pritchard JK. Efficient counting of k-mers in DNA
sequences using a bloom filter. BMC Bioinform. 2011;12(1):1–7.
doi:10.1186/1471-2105-12-333.

	7.	 Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory
usage. Bioinformatics. 2013;29(5):652–3.

	8.	 Deorowicz S, Debudaj-Grabysz A, Grabowski S. Disk-based
k-mer counting on a PC. BMC Bioinform. 2013;14(1):1–12.
doi:10.1186/1471-2105-14-160.

	9.	 Roy RS, Bhattacharya D, Schliep A. Turtle: identifying frequent k-mers
with cache-efficient algorithms. Bioinformatics. 2014;30(14):1950–7.
doi:10.1093/bioinformatics/btu132.

	10.	 Li Y, et al. MSPKmerCounter: a fast and memory efficient approach for
k-mer counting. arXiv preprint arXiv:1505.06550; 2015.

	11.	 Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics. 2015;31(10):1569–76.
doi:10.1093/bioinformatics/btv022.

	12.	 Pérez N, Gutierrez M, Vera N. Computational performance assessment of
k-mer counting algorithms. J Comput Biol. 2016;23(4):248–55.

	13.	 Mamun AA, Pal S, Rajasekaran S. Kcmbt: a k-mer counter based on multi‑
ple burst trees. Bioinformatics. 2015;345:2783–90.

	14.	 Suzuki S, Ishida T, Akiyama Y. Masanori Kakuta: accelerating identification
of frequent k-mers in DNA sequences with GPU. In: GTC; 2014.

	15.	 Roberts M, Hunt BR, Yorke JA, Bolanos RA, Delcher AL. A preprocessor for
shotgun assembly of large genomes. J Comput Biol. 2004;11(4):734–52.

	16.	 Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage
requirements for biological sequence comparison. Bioinformatics.
2004;20(18):3363–9. doi:10.1093/bioinformatics/bth408.

	17.	 Kim KE, Peluso P, Babayan P, Yeadon PJ, Yu C, Fisher WW, Chin CS, Rapica‑
voli NA, Rank DR, Li J, et al. Long-read, whole-genome shotgun sequence
data for five model organisms. Sci Data. 2014;1:140045.

Additional file 1. The additional file contains links to all test data sets
used in the experiments of the paper.

Received: 23 December 2016 Accepted: 23 February 2017

References
	1.	 Xavier BB, Sabirova J, Pieter M, Hernalsteens J-P, de Greve H, Goossens

H, Malhotra-Kumar S. Employing whole genome mapping for optimal
de novo assembly of bacterial genomes. BMC Res Notes. 2014;7(1):1–4.
doi:10.1186/1756-0500-7-484.

	2.	 Chikhi R, Medvedev P. Informed and automated k-mer size selection
for genome assembly. Bioinformatics. 2014;30(1):31–7. doi:10.1093/
bioinformatics/btt310.

http://dx.doi.org/10.1186/s13568-017-0358-5
http://dx.doi.org/10.1093/bib/bbw003
http://dx.doi.org/10.1186/1471-2105-12-333
http://dx.doi.org/10.1186/1471-2105-14-160
http://dx.doi.org/10.1093/bioinformatics/btu132
http://arxiv.org/abs/1505.06550
http://dx.doi.org/10.1093/bioinformatics/btv022
http://dx.doi.org/10.1093/bioinformatics/bth408
http://dx.doi.org/10.1186/s13568-017-0358-5
http://dx.doi.org/10.1186/1756-0500-7-484
http://dx.doi.org/10.1093/bioinformatics/btt310
http://dx.doi.org/10.1093/bioinformatics/btt310

	Gerbil: a fast and memory-efficient k-mer counter with GPU-support
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Related work
	Contribution
	Structure

	Work-flow
	Distribution
	Counting

	Algorithm engineering
	Hash functions
	Hash table size
	Approximation
	Fill level
	Multiple passes

	Load balancing
	GPU integration
	Length of minimizers
	Total ordering on minimizers

	Results
	Experimental setup
	Data sets
	Running time
	Memory and disk space

	Conclusions
	Authors’ contributions
	References

