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Abstract 

Background:  A basic task in bioinformatics is the counting of k-mers in genome sequences. Existing k-mer counting 
tools are most often optimized for small k < 32 and suffer from excessive memory resource consumption or degrad‑
ing performance for large k. However, given the technology trend towards long reads of next-generation sequencers, 
support for large k becomes increasingly important.

Results:  We present the open source k-mer counting software Gerbil that has been designed for the efficient count‑
ing of k-mers for k ≥ 32. Our software is the result of an intensive process of algorithm engineering. It implements 
a two-step approach. In the first step, genome reads are loaded from disk and redistributed to temporary files. In a 
second step, the k-mers of each temporary file are counted via a hash table approach. In addition to its basic function‑
ality, Gerbil can optionally use GPUs to accelerate the counting step. In a set of experiments with real-world genome 
data sets, we show that Gerbil is able to efficiently support both small and large k.

Conclusions:  While Gerbil’s performance is comparable to existing state-of-the-art open source k-mer counting tools 
for small k < 32, it vastly outperforms its competitors for large k, thereby enabling new applications which require 
large values of k.
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Background
The counting of  k-mers in genome reads is a common 
task in bioinformatics. The problem is to count the 
occurrences of all k-long substrings in a large amount of 
sequencing reads. Its most prominent application is de 
novo assembly of genome sequences. Although building 
a histogram of  k-mers seems to be quite a simple task 
from an algorithmic point of view, it has attracted a con-
siderable amount of attention in recent years. In fact, the 
counting of k-mers in large genome sequences becomes 
a challenging problem, if it has to be both resource- and 
time-efficient and therefore makes it an interesting object 
of study for algorithm engineering. Existing tools for  k-
mer counting are often optimized for  k < 32 and lack 
good performance for larger k. However, recent advances 
in technology towards larger read lengths are leading to 
the quest to cope with values of k exceeding 32. Studies 

elaborating on the optimal choice for the value of k rec-
ommend relatively high values for various applications 
[1, 2]. In particular, working with long sequencing reads 
helps to improve accuracy and contig assembly (with  k 
values in the hundreds) [3]. In this paper, we introduce a 
tool with a high performance for such large values of k. A 
preliminary version of this article has been published in 
the proceedings of WABI 2016 [4].

Related work
Among the first software tools that succeeded in count-
ing the k-mers of large genome data sets was Jellyfish [5], 
which uses a lock-free hash table that allows parallel inser-
tion. In the following years, several tools were published, 
successively reducing running time and required memory. 
BFCounter [6] uses bloom filters for k-mer counting to fil-
ter out rarely occurring k-mers stemming from sequenc-
ing errors. Other tools like DSK [7] and KMC [8] exploit 
a two-disk architecture and aim at reducing expensive IO 
operations. Turtle [9] replaces a standard Bloom filter by 
a cache-efficient counterpart. MSPKmerCounter [10] 
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introduces the concept of minimizers to the k-mer count-
ing, thus further optimizing the disk-based approach. The 
minimizer approach was later on refined to signatures 
within KMC2 [11]. Up to now, the two most efficient open 
source software tools that can work with small memory 
requirements have been KMC2 and DSK [12]. KMC2 uses 
a sorting based counting approach that has been opti-
mized for k < 32. However, its performance drops when k 
grows larger. Instead, DSK uses a single large hash table 
and is therefore efficient for large  k (but does not sup-
port  k > 127). However, for small  k, it is clearly slower 
than KMC2. A recently released  k-mer counting tool is 
KCMBT [13]. By the use of multiple burst trees, KCMBT 
is under some conditions even faster than KMC2. How-
ever, it is restricted to  k < 32 and its memory require-
ments vastly exceeds the available memory of typical 
desktop computers like our test systems. To the best of 
our knowledge, the only existing approach that uses GPUs 
for counting k-mers is the work by Suzuki et al. [14].

Contribution
In this article we present the open source k-mer counting 
tool Gerbil. Our software is the result of an extensive pro-
cess of algorithm engineering that tried to bring together 
the best ideas from the literature. The result is a  k-mer 
counting tool that is both time efficient and memory fru-
gal.1 In addition, Gerbil can optionally use GPUs to accel-
erate the counting step. Thus, Gerbil outperforms its 
strongest competitors both in efficiency and resource 
consumption.

The software is written in C++ and uses CUDA for 
GPU programming. It is freely available at https://github.
com/uni-halle/gerbil under MIT license.

Structure
In the next section we describe the general algorithmic 
work flow of Gerbil. In the main part of this article, we 
focus on algorithm engineering aspects that proved 
essential for high performance and describe details, 
like the integration of a GPU into the counting process. 
Afterwards, we evaluate Gerbil’s performance in a set of 
experiments and compare it with those of KMC2 and 
DSK. We conclude this article by a short summary and a 
glance on future work.

Work‑flow
Gerbil uses a two-disk approach that is similar to those 
of most contemporary  k-mer counting tools [7, 10, 11]. 
The first disk contains the input read data and is used to 
store the counted k-mer values. We call this disk input/

1  The tool is named Gerbil because of its modest resource requirements, 
which it has in common with the name-giving mammal.

output-disk. The second disk, which we call working 
disk, is used to store temporary files that are created and 
removed during runtime.

To make optimal use of the hardware, Gerbil is 
designed as a parallel program, with multiple threads 
running concurrently. Although the following descrip-
tion of the main work flow is presented sequentially, all 
of the steps are interleaved and therefore executed in 
parallel. This is done by a classical pipeline architecture. 
Each output of a step makes the input of the next. A cou-
ple of specialized buffers are used to connect the steps of 
the pipeline. Such buffers are designed for all combina-
tions of single or multiple producers (SP/MP) and single 
or multiple consumers (SC/MC). The actual number of 
parallel threads depends on the system and is determined 
by the software at runtime to achieve optimal memory 
throughput.

Gerbil is divided into two phases: distribution and 
counting. Next, we give a high-level description of both 
phases.

Distribution
Whole genome data sets typically do not fit into the main 
memory. Hence, the goal of the first phase is to split the 
input data into a couple of smaller temporary files. The 
key idea is to assure that the temporary files partition the 
input genome data in such a way, that all occurrences of 
a certain  k-mer are stored in the same temporary file. 
This way, one can simply count the  k-mers of the tem-
porary files independently of each other, with smaller 
main memory requirements. To split the genome data 
into temporary files, we make use of the minimizer 
approach that has been proposed by  [15] and later on 
refined by [11]: a genome sequence can be decomposed 
into a number of overlapping super-mers. A super-mer 
of a genome sequence is defined as a substring of maxi-
mal length such that all  k-mers on that substring share 
the same minimizer. Hereby, a minimizer of a  k-mer 
is defined as a substring of fixed length  m that is mini-
mal with respect to some total ordering on strings of 
length m. Thus, contiguous k-mers of a genome read are 
joined to a super-mer if they share the same minimizer. 
By storing super-mers with the same minimizer in the 
same temporary file, we guarantee that all occurrences of 
identical k-mers end up in the same temporary file.  See 
Fig. 1 for an example.

Similar to related approaches, Gerbil counts the canon-
ical representations of  k-mers. Since DNA is organized 
in double helix form, each  k-mer  x ∈ {A,C ,G,T }k cor-
responds to its reverse-complement y which is defined 
by reversing  x and replacing  A ⇔ T  and  C ⇔ G.  
Many applications do not distinguish between a  k-
mer and its reverse-complement. Thus, Gerbil uses the 

https://github.com/uni-halle/gerbil
https://github.com/uni-halle/gerbil
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lexicographically lesser of x and y as the canonical rep-
resentation of both. This reverse-complement normaliza-
tion can be turned off by command flag.

The work-flow of the first phase is described by the fol-
lowing steps. See Fig. 2 for a visualization.

1.	 A group of reader threads read the genome reads 
from the input disk into the main memory. For com-
pressed input, these threads also decompress the 
input.

2.	 A group of parser threads convert the read data from 
the input format into an internal read bundle format.

3.	 A group of splitter threads compute the minimizers 
of all k-mers of the reads. All subsequent substrings 
of a read that share the same minimizer are stored as 
a super-mer into an output buffer.

4.	 A single writer thread distributes the super-mers to 
one of multiple temporary files that are stored at the 
working disk. Hereby, all super-mers with the same 
minimizer are assigned to the same temporary file.

Counting
After the first phase has been completed, the tempo-
rary files are sequentially re-read from working disk. 
The counting of  k-mers is typically done by one of two 
approaches: Sorting and Compressing  [11] or using a 
hash table with k-mers as keys and counters as values [5, 
7]. The efficiency of the sorting approach typically relies 
on the sorting algorithm Radix Sort, whose running time 
increases with the length of k-mers. Since we aim at high 
efficiency for large k, we decided to implement the hash 
table approach. Therefore, we use a specialized hash table 
with  k-mers as keys and counters as values. We use a 
hash table that implements open addressing and solves 
collisions via quadratic hashing. Alg. 1 shows a high level 
description of the insertion method.

The number of probing operations during the inser-
tion of k-mers in a hash table has a crucial influence on 
the efficiency of the whole process. Experimentally, we 
observed that the average number of probings is quite 
small (about 1.5 probings per  k-mer in the F vesca data 
set.) However, a few k-mers may need a very high number 
of probings until a match or an empty entry is detected. 
Since these k-mers would slow down the whole process, 
we stop the probing of the hash table after a constant 
number imax of trials. To prevent k-mers from getting lost, 
Gerbil stores such k-mers in failure buffers that are repre-
sented by additional temporary files at the working disk. 

Fig. 1  Minimizers and super-mers of the DNA string CAAGAACA-
GTG. Here, k = 4 and m = 3. For each k-mer, the bold part is its mini‑
mizer. The example uses the lexicographic ordering on 3-mers based 
on A < C < G < T . The sequence is divided into the five super-mers 
CAAGA, AGAA, GAACA, ACAG, and CAGTG that would be stored in 
temporary files

Algorithm 1 Insert a k-mer into a hash table.
1: procedure Insert(x)
2: Input: k-mer x
3: Data: table entries T , threshold imax
4: i ← 0 is the number of probing steps
5: while i < imax do
6: p ← hash(x, i)
7: if Tp = (x, c) then -mer x is stored at position p with current value c
8: Tp ← (x, c+ 1) increment counter
9: return
10: else if Tp is empty then -mer x has not been inserted yet
11: Tp ← (x, 1) insert x at position p with value 1
12: return
13: else position p is occupied by a different k-mer
14: i ← i+ 1 reprobe another table position
15: end if
16: end while
17: store x in failure buffer start failure handling
18: end procedure
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The value imax is supposed to be roughly log2 n, where n is 
the total number of k-mers in a data set. Thus, the whole 
insertion process has a running time of O(n log n). Since 
n is in the order of several billions in most real-world data 
sets, we found that  imax = 30 works well in most cases. 
Figure 3 visualizes the work-flow of the second phase. The 
following steps are executed for each temporary file.

1.	 A single reader thread reads the super-mers from the 
temporary file and stores them in main memory.

2.	 A group of splitter threads split the super-mers 
into k-mers. Each k-mer is distributed to one of mul-
tiple hasher threads by considering the hash value of 
each k-mer. This ensures that multiple occurrences of 
the same k-mer are assigned to the same hasher thread.

3.	 A group of hasher threads insert the k-mers into their 
thread-own hash tables. Thus, every hasher thread 
maintains its own hash table. After a temporary file 
has been completely processed, each hasher thread 
sends the content of its hash table to an output buffer.

4.	 A single writer thread writes the final k-mer counts 
to the output disk.

Algorithm engineering
In this section, we want to point out several details on the 
algorithm engineering process that were essential to gain 
high performance. Since the more delicate problems are 

located in the counting step, most of these details refer to 
the second phase.

Hash functions
The efficiency of the hash table approach relies on a 
well-chosen hash function that maps k-mers to integers. 
Gerbil uses two different hash functions for different 
purposes. In general, the combination of two independ-
ent hash functions leads to a more uniform distribution 
of  k-mers.  The first hash function hash(x,  i) is used 
for the probing of the hash table (see Alg. 1). Since the 
hash table has a large and variable number of entries, 
the function needs to cover a large range of values to 
reach every table position. In contrast, we use a sec-
ond hash function partHash for assigning  k-mers to 
hasher threads. This function is designed to map k-mers 
to a small range of values with very little computational 
effort. Alg.  2 shows the C++ implementation of both 
hash functions in a slightly simplified manner. A major 
difference between the implementations of hash and 
partHash is the number of bases that is considered. 
While hash uses blocks of 32 bases (64 bits) in each 
step, the function partHash uses smaller blocks of 8 
bases (16 bits). A second difference is the running time 
of both functions. Whereas the running time of par-
tHash is constant, the running time of hash grows lin-
early with k.

Fig. 3  Work flow of Phase Two

Fig. 2  Work flow of Phase One
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Hash table size
A key aspect for an efficient implementation is the eco-
nomic use of main memory. Therefore, we aim at esti-
mating the expected size of each hash table as closely 
as possible. An economic use of main memory ensures 
that the operating system can use the free main mem-
ory as cache for the buffering of expensive disk opera-
tions. To find a economic size of our hash tables, we 
first approximate the number  d of distinct  k-mers in a 
temporary file.

Approximation
Since  d is not known before processing the temporary 
file, we estimate this quantity using a simple linear model. 
In contrast to the number of distinct  k-mers, the total 
number n of k-mers in a temporary file is already known 
from the first phase. To find an estimation for d, we mul-
tiply n with a variable α that describes the estimated ratio 
between distinct k-mers and the total number of k-mers 

in the current file. Since we assume that the values of α 
do not deviate much between different temporary files, 
we initialize α with the value α′ of the temporary file that 
has been processed previously and adjust it at runtime. 
Figure  4 shows the distribution of α for one of our test 
data sets.

Fill level
The probing of the hash table becomes more expen-
sive as the number of inserted elements grows. At a 
high fill level, most entries are occupied by non-match-
ing k-mers and thus, a high number of reprobing opera-
tions is needed to insert a k-mer. To care for this effect, 
we initialize our tables to total size of |T | = α · n · β−1 
for β < 1 . Thus, after the k-mers of a temporary file have 
been inserted, the tables have an expected fill level of 
about β. The advantage of this strategy is a small num-
ber of probing operations during the insertion process at 
expense of unused main memory. Experiments showed 
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Fig. 4  Left The number of k-mers and distinct k-mers of 511 temporary files that have been created while processing the F vesca data set for k = 
28. A single temporary file is not shown since it contains far more k-mers than the other files. Right Distribution of the ratio between the number of 
distinct k-mers and the total number of k-mers for the temporary files of the F vesca data set and k = 28

Algorithm 2 Hash Functions hash and partHash.
template<int k> uint64_t
hash(const Kmer& x, const int i) {

// interpret x as sequence of 32 bases
uint64_t* data = (uint64_t*) &x;

uint64_t res = 0; // hash value

// for each block of 32 bases
for(int c = 0; c < (k+31)/32; ++c)

res += 453569 * res + data[c];

return res + 5696063 * i*i;
}

template<int k> uint64_t
partHash(const Kmer& x) {

// interpret x as sequence of 8 bases
uint16_t* data = (uint16_t*) &x;

uint64_t res = 0; // hash value

// for the first 8 blocks of 8 bases
for(int c = 0; c < min(8,k/8); ++c)

res += 453569 * res + data[c];

return res;
}
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that a fill level of about β = 40% seems to balance both 
aspects best.

Multiple passes
In its first phase, Gerbil divides the genome sequences 
into temporary files. Since a single temporary file is far 
smaller than the original genome data, it can be pro-
cessed efficiently. However, it is still possible that the 
number of  k-mers in a single temporary file exceeds 
the maximal capacity |Tmax| of our hash tables, which is 
given by available main memory. In such a case, the set 
of k-mers that do not fit into the hash tables would be 
transfered into failure buffers and stored in additional 
temporary files by Gerbil’s failure handling. This behav-
iour is not optimal in cases where the size of a tempo-
rary file vastly exceeds the capacity of our hash tables. 
This is because in contrast to regular temporary files 
that contain super-mers, the additional files contain 
single  k-mers. Since this would be an inefficient way 
to store large amounts of  k-mers, we apply a different 
approach. For each temporary file, we first consider the 
number  n of  k-mers. Should this number exceed the 
maximal total capacity  |Tmax|, we run multiple passes 
over the file. The total number of passes  p is calcu-
lated by  p = ⌈n/|Tmax|⌉ . In each pass, Gerbil considers 
a subset of the k-mers by evaluating the hash function 
partHash on each k-mer. In the i-th pass, it considers 
only those k-mers for which partHash(x) ≡ i mod p.  
Thus, after  p passes, all  k-mers are guaranteed to be 
processed.

Load balancing
Gerbil has multiple hasher threads, each maintaining 
its own hash table. This has several advantages. One 
major advantage is the distribution of the hash tables 
to separated memory spaces like main memory and 
GPU memory. Here, we discuss the problem of assign-
ing  k-mers to the hasher threads. Gerbil uses the value 
of partHash of each  k-mer to determine the id tid of 
a hasher thread. In the most simple form, the  k-mers 
could be distributed uniformly to all hasher threads by 
selecting  tid(x) = partHash(x) mod N , where  N is 
the number of hasher threads. However, as shown by 
experiments, GPU hasher threads are often far more 
efficient than CPU hasher threads. A uniform distribu-
tion of  k-mers between all hasher threads is therefore 
not desirable. A better approach is to assign a num-
ber of  k-mers to each thread that is proportional to its 
throughput. Thus, more work is assigned to GPU hasher 
threads. To do so, we constantly measure the throughput 
of each hasher thread, i. e. the time needed to insert and 
extract a fixed number of k-mers. Whenever a new tem-
porary file is loaded from disk, we re-balance the number 

of  k-mers that are assigned to each hasher thread, con-
sidering the throughput and capacity of each hash table. 
By that, we automatically determine a good division of 
work between hasher threads without the need of careful 
hand-tuning.

GPU integration
Gerbil can use GPUs to speed-up the counting step by 
enabling additional GPU hasher threads. To integrate 
one or more GPUs into the process of  k-mer counting, 
several problems have to be dealt with. Typically, a GPU 
performs well only if it deals with data in a highly paral-
lel manner. In addition, memory bound tasks (i. e.  tasks 
that do not require a lot of arithmetic operations) like the 
counting of  k-mers require a carefully chosen memory 
access pattern to minimize the number of accesses to the 
GPU’s global memory. We decided to transfer the hash 
table based counting approach to the GPU. When com-
piled and executed with GPU support, Gerbil automati-
cally detects CUDA capable GPUs. For each GPU, Gerbil 
adds a GPU hasher thread which maintains its own hash 
table in GPU memory. Each GPU hash table is similar in 
function to a traditional hash table. However, there are 
two major differences in design.

1.	 Unlike the CPU hasher thread approach, a GPU 
hasher thread adds a large number of k-mers in par-
allel. Therefore, the insertion procedure is slightly 
changed. First, a bundle of several thousand  k-mers 
is copied to the GPU global memory space. The set 
of k-mers is divided into bundles of nearly equal size. 
Then, we launch a large number of CUDA blocks, 
each consisting of 32 or more threads. Each CUDA 
block is responsible for the insertion of one  k-mer 
bundle into a common GPU hash table.

	 In contrast to the CPU hasher threads, the GPU 
hasher threads do not probe a single position of the 
hash table in each step. When probing a table posi-
tion  p, a GPU hasher thread additionally scans 
adjacent table positions in a range of 128 bytes (see 
Fig. 5). Due to the architecture of a GPU, this can be 
done within the same global memory access. Thus, 
we scan up to 16 table entries in parallel, thereby 
reducing the number of accesses to a GPU’s global 
memory. In addition, the total number of probing 
operations is drastically reduced. To eliminate race 
conditions between CUDA blocks, we synchronize 
the probing of the hash table by using atomic opera-
tions to lock and unlock hash table entries. Since 
such operations are efficiently implemented in hard-
ware, a large number of CUDA blocks can be exe-
cuted in parallel.
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2.	 A second difference to CPU hasher threads is failure 
handling. Instead of directly evacuating failed k-mers 
into failure buffers, GPU hasher threads use free GPU 
memory to store  k-mers that could not be inserted 
after the maximal number of trials. After all k-mers 
of a temporary file have been processed, the k-mers 
in this area are counted via sorting and compres-
sion. A problem occurs when the GPU memory is 
exhausted. In such cases, Gerbil copies the  k-mers 
back to main memory and stores them in failure buff-
ers, similarly to CPU hasher threads.

Length of minimizers
The length m of minimizers is a parameter that has to be 
chosen with care. However, we can consider a basic rule: 
The larger  m is chosen, the less likely it becomes that 
consecutive k-mers share the same minimizer. Therefore, 
the number of super-mers increases with growing m. An 
advantage of a large number of super-mers is that the set 
of super-mers can be distributed to temporary files more 
uniformly, which results in temporary files of approxi-
mately uniform size. However, a major drawback of a large 
number of super-mers is the increased total size of all 
temporary files. Thus, a smaller m results in a better data 
compression. In our experiments, we found that choosing 
minimizer length m = 7 is efficient for most data sets.

Total ordering on minimizers
The choice of a total ordering has large effects on the size 
of temporary files and thus, also on the performance. To 
find a good total ordering, we have to balance various 
aspects. On the one hand, the total number of resulting 
super-mers are to be minimized to reduce the total size 
of disk memory that is needed by temporary files. On the 
other hand, the maximal number of distinct k-mers that 
share the same minimizer should not be too large since 
we want an approximately uniform distribution of k-mers 
to the temporary files. An “ideal” total ordering would 
have both a large total number of super-mers and a small 
maximal number of distinct k-mers per minimizer. Since 
these requirements contradict each other, we experi-
mentally evaluated the pros and cons of various ordering 
strategies.

• • CGAT: the lexicographic ordering of minimizers 
based on C < G < A < T .

• • Roberts et  al.   [16]: they propose the lexico-
graphic ordering of minimizers with respect 
to C < A < T < G. Furthermore, within the mini-
mizer computation all bases at even positions are to 
be replaced by their reverse complement. Thus, rare 
minimizers like CGCGCG are preferred.

• • KMC2: the ordering that is proposed by [11] is a lexi-
cographic ordering with A < C < G < T  and some 
built-in exceptions to eliminate the large number of 
minimizers that start with AAA or ACA.

• • Random: a random order of all strings of fixed 
length m is unlikely to have both a small number of 
super-mers and a highly imbalanced distribution of 
distinct k-mers. It is simple to establish, since we do 
not need frequency samples or further assumptions 
about the distribution of minimizers.

• • Distance from Pivot (dfp(p)): to explain this strategy, 
consider the following observations: Ascendingly 
sorting the minimizers by their frequency favors 
rare minimizers. As a consequence, the maximal 
number of distinct  k-mers per minimizer is small. 
However, the total number of super-mers can be 
very large. Similarly, an descendingly sorted order-
ing results in quite the opposite effect. To find a 
compromise between both extremes, we initially 
sort the set of minimizers by their frequency. Since 
the frequencies depend on the data set, we approxi-
mate them by taking samples during runtime. We fix 
a pivot factor 0 ≤ p ≤ 1 and re-sort the minimizers 
by the absolute difference of their initial position to 
the pivot position 4mp. The result is an ordering that 
does neither prefer very rare nor very common mini-
mizers and therefore makes a good compromise.

See Fig.  6. The value on the  x-axis corresponds to the 
expected temporary disk memory, whereas the value on 
the y-axis is correlated with the maximal main memory 
consumption of our program. A perfect strategy would 
be located at the bottom left corner. Several strategies 
seem to be reasonable choices. We evaluated each strat-
egy and found that a small number of super-mers is more 
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Fig. 5  GPU memory access pattern. The figure shows the memory area that is being scanned while probing a hash table entry that is stored at 
memory address p. In this example, k = 3 and each table entry needs four bytes for the key and four bytes for the counter. Therefore, 16 entries can 
be loaded from global memory within one step and are scanned in parallel
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important than a small maximal number of  k-mer per 
minimizer for most data sets. As a result, we confirm that 
the total ordering that is already been used by KMC2 is a 
good choice for most data sets. Therefore, Gerbil uses the 
strategy from KMC2 for its ranking of minimizers.

Results
Experimental setup
We tested our implementation in a set of experiments. 
For each of our test data sets we counted the k-mers for 
a set of different  k and compared Gerbil’s running time 
with those of KMC2 in version 2.3.0 and DSK in version 
2.0.7. To judge performance on various types of hard-
ware, we executed the experiments on two different desk-
top computers. See Table 1 for details about the hardware 
configuration of the test systems.

Data sets
To get a fair comparison to KMC2 and DSK, we used the 
same set instances as Deorowicz et al. [11]. To test our tool 
for large  k, we used additional genome reads with long 
read length  [17]. In addition, we used a synthesized test 
set GRCh38, created from Genome Reference Consor-
tium Human Reference 38, from which we uniformly sam-
pled k-mers of size 1000. The purpose of these data sets is to 
have longer reads allowing to test the performance for larger 
values of k. Table 2 gives an overview of all test data sets.

Running time
 Table 3 and Fig. 7 show the results of the performance 
evaluation. We want to point out several interesting 
observations.

• • Gerbil with GPU support (gGerbil) is the most effi-
cient tool in almost all cases. Exceptions occur for 
small  k = 28, where the sorting based approach 
KMC2 is sometimes slightly more efficient.

• • For data sets with small read length like G gallus, 
the running time of each tool decreases with grow-
ing k (see top left part of Fig. 7). In addition, one can 
observe the erratic increase of running time near k = 
32 and  k = 64 for all tools, due to a change of the 
internal k-mer representation.

• • When k grows, KMC2 becomes more and more inef-
ficient, while Gerbil stays efficient. When counting 
the 200-mers in the GRCh38 data set, KMC2 did not 
finish within 20 h, whereas Gerbil finishes in about 
1 h. The running time of DSK grows similarly fast as 
that of KMC2. Recall that DSK does not support val-
ues of k > 127 (see top right part Fig. 7).

• • For small  k, the use of a GPU improves the run-
ning time by a significant amount of time. However, 
with growing k, the data structure that stores k-mers 
grows larger. Therefore, the number of table entries 
that can be scanned in parallel decreases. Thus, the 
load balance will distribute less  k-mers to a GPU. 
Experimentally, we found that the GPU induced 
speedup nearly vanishes when k exceeds 150.

Memory and disk space
We gain some additional interesting insights when we 
take a closer look into Table 4 that shows detailed infor-
mation on running time and memory usage of each tool.

• • The use of a GPU accelerates Gerbil’s second phase 
by up to a factor of about two. However, since a GPU 
only affects the second phase, the overall speedup is 
moderate.

• • All tools were called with an option that sets the 
maximal memory size to 14  GB on test system one 
and 30 GB on test system two. However, Gerbil typi-
cally uses much less memory due to its dynamic 
prediction of the hash table size. In contrast, both 
KMC2 and DSK use a significantly larger amount of 
main memory.

• • Gerbil’s disk usage is comparable to KMC2’s disk 
usage, whereas the disk usage of DSK is much larger.

• • Gerbil’s frugal use of disk- and main memory is a 
main reason for its high performance. The use of lit-
tle main memory gives the operating system oppor-
tunity to use the remaining main memory for buffer-
ing disk operations. A small disk space consumption 
is essential since disk operations are far more expen-
sive than the actual counting.

Conclusions
We introduced the  k-mer counting software Gerbil 
that uses a hash table based approach for the counting 
of  k-mers. For large  k, a use case that becomes impor-
tant for long reads, we are able to clearly outperform 
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the state-of-the-art open source  k-mer counting tools, 
while using significantly less resources. We showed that 
Gerbil’s running time can be accelerated by the use of 
GPUs. However, since this only affects the second phase, 
the overall additional speedup is moderate. As future 
work, we plan to optimize the processing of compressed 
genome sequences. Another option for further speed-up 
would be to give up exactness by using bloom filters.
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Appendix
Details on DNA sequence handling
We want to give some details on general aspects of our 
handling of DNA sequences.

Undetermined bases
DNA reads typically contain bases that could not been 
identified correctly during the sequencing process. Usu-
ally, such bases are marked  N in FASTQ input files. In 
accordance with established  k-mer counting tools, we 
ignore all k-mers that contain an undetermined base.

Input formats
Gerbil supports the following input formats of genome 
read data: FASTQ, FASTA, staden, as well as compressed 
files of these formats. To process multiple files, it can 
also process simple text files that contain paths to one or 
more input files, with one path per line.

Output format
Gerbil uses a binary output format that is easy to parse 
and requires little space. The counter of each occuring k-
mer is stored in binary form, followed by the correspond-
ing byte-encoded k-mer. Each four bases of a k-mer are 
encoded in one single byte. We encode A with 00, C with 
01, G with 10 and T with 11. Most counters of k-meres 
are slightly smaller than the coverage of the genome data. 
We exploit this property by using only one byte for coun-
ters less than 255. A counter greater than or equal to 255 
is encoded in five bytes. In the latter case, all bits of the 
first byte are set to 1. The remaining four bytes contain 

Table 1  Test systems

System one System two

CPU Intel Core-i5 2550k Intel Xeon(R) E3-1231v3

Threads 4 8

RAM 16 GB DDR3 32 GB DDR3

GPU GeForce GTX 970 GeForce GTX TITAN X

Working-disk 256 GB Crucial M550 2x Samsung 850 EVO 500 GB (RAID-0)

OS Ubuntu 16.04 LTS Ubuntu 16.04 LTS

In/out-disk Transcend StoreJet 35T3 USB 3.0 (External HDD) Transcend StoreJet 35T3 USB 3.0 (External HDD)

Table 2  Data sets (Additional file 1)

 The rightmost column ’Ratio‘ describes the ratio between the number of distinct 28-mers and the total number of 28-mers

Data set Format Size (GB) ∅ Read length # 28-mers # Distinct 28-mers Ratio (%)

F. vesca FASTQ 10.2 352.1 4,134,078,256 632,436,468 15

M . balbisiana FASTQ 98.6 100.0 20,531,572,597 965,691,662 4

G. gallus FASTQ 115.9 100.0 25,337,974,831 2,727,529,829 11

H. sapiens FASTQ 223.3 100.0 62,739,461,708 6,336,805,684 10

H. sapiens 2 FASTQ 339.5 100.0 98,892,620,173 6,634,382,141 7

GRCh38 FASTA 100.0 1000.0 97,300,000,000 1,802,953,276 2

N. crassa FASTA 23.3 7778.3 22,808,741,626 21,769,513,655 95

A. thaliana FASTQ 72.7 4804.6 35,905,278,785 32,894,281,429 92

https://github.com/uni-halle/gerbil
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Table 3  Running times in the format mm:ss (the best performing in italics)

Data set  k System one System two

Gerbil gGerbil KMC2 DSK Gerbil gGerbil KMC2 DSK

F. vesca 28 02:15 01:47 01:51 02:53 01:37 01:21 01:32 02:05

40 02:23 01:58 02:49 04:13 01:49 01:31 02:12 02:52

56 02:31 01:59 03:05 03:52 01:53 01:31 02:30 02:50

65 03:02 02:12 04:23 05:23 02:05 01:42 03:35 03:37

M. balbisiana 28 14:48 12:04 12:24 13:50 11:37 10:09 10:50 11:06

40 13:55 12:41 15:50 15:30 11:35 10:30 13:46 12:26

56 12:40 11:31 15:43 14:30 10:51 09:55 13:36 11:44

65 12:58 11:38 18:48 16:52 10:55 09:57 15:47 12:34

G. gallus 28 21:10 15:07 15:26 25:44 16:14 12:50 13:10 21:00

40 20:30 16:23 19:22 31:19 16:09 13:15 16:49 23:48

56 18:58 15:32 19:19 24:04 15:16 12:54 16:48 19:59

65 20:12 15:50 22:27 26:04 15:48 13:22 19:25 21:33

H. sapiens 28 46:41 32:04 31:24 66:16 33:54 25:18 26:44 50:15

40 50:14 37:59 44:06 102:48 34:30 26:40 35:59 54:21

56 44:05 34:21 43:56 60:29 34:30 26:40 35:25 45:32

65 43:32 35:46 53:31 96:31 32:01 26:21 42:19 47:50

H. sapiens 2 28 73:29 53:55 50:09 146:10 54:19 39:05 41:47 76:50

40 77:54 62:12 71:27 209:12 53:31 42:27 57:02 83:59

56 67:28 57:22 70:46 138:06 50:25 40:18 56:28 72:35

65 68:50 58:41 87:14 156:05 50:53 42:28 68:10 78:13

GRCh38 28 62:19 50:19 43:46 65:20 34:52 18:49 21:36 25:23

40 69:00 61:03 68:47 116:08 36:52 24:32 39:57 40:54

56 78:44 70:57 80:40 111:39 37:10 26:15 48:59 41:13

65 80:43 73:27 114:00 225:35 42:54 33:08 79:34 73:25

100 82:30 81:35 178:04 ME 45:34 38:43 136:20 114:09

125 79:55 77:42 226:02 ME 44:41 40:09 174:28 133:56

150 83:04 82:33 293:02 NS 49:03 45:23 TL NS

175 86:07 85:51 TL NS 53:14 50:35 TL NS

200 93:48 90:49 TL NS 60:03 56:25 TL NS

N. crassa 28 20:29 09:55 09:49 25:41 10:47 07:31 06:45 17:31

40 22:15 11:50 15:45 34:31 12:15 09:21 11:32 23:52

56 23:16 12:01 18:15 32:03 12:24 09:14 13:36 22:33

65 27:13 16:00 27:34 44:19 15:19 11:13 21:06 31:07

80 26:26 17:16 31:46 41:22 15:17 11:25 23:47 29:27

100 28:18 21:09 TL 74:57 17:39 13:28 36:45 37:05

125 28:56 22:37 TL 76:06 17:43 13:53 47:41 36:42

150 30:44 26:18 TL NS 18:49 15:30 TL NS

175 33:04  29:01 TL NS 20:26 17:43 TL NS

200 37:05 34:33 TL NS 21:48 19:51 TL NS

A. thaliana 28 33:53 19:09 19:41 43:00 22:38 16:14 15:00 32:48

40 42:41 25:24 28:27 55:14 26:30 19:14 22:11 40:27

56 43:59 27:53 33:48 52:06 26:52 19:36 25:29 39:07

65 48:22 34:05 TL 114:34 30:07 23:05 38:33 55:01

80 48:24 38:32 TL 109:43 30:42 23:25 43:06 54:06

100 51:01 42:37 TL 141:28 33:18 27:29 67:09 73:30

125 52:17 44:49 DS 148:44 33:31 28:11 TL 79:14

150 53:47 49:00 TL NS 35:26 39:17 TL NS

175 58:55 53:37 TL NS 38:07 35:37 TL NS

200 66:42 62:31 TL NS 40:17 39:31 TL NS

Some runs were aborted after a time limit of 5 h (TL). In addition, some runs failed due to insufficient disk space (DS) or memory errors (ME). In addition, DSK simply 
does not support values of k > 127 (NS). The label ‘gGerbil’ stands for Gerbil with activated GPU mode. Instead, standard ‘Gerbil’ does not use any GPU
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Table 4  Detailed running times (in format mm:ss) and maximal main memory and disk space consumption (in GB) for the 
G. gallus instance

Each entry is the average of three runs

k System one System two

Gerbil gGerbil KMC DSK Gerbil gGerbil KMC DSK

Phase 1 28 10:04 10:03 10:51 10:22 09:49 09:49 09:52 09:30

Phase 2 28 10:26 06:20 04:46 16:00 06:25 03:01 03:16 11:01

Main memory 28 2.14 2.14 14.28 15.28 2.21 1.79 26.99 16.69

Disk space 28 23.66 23.66 24.86 37.30 23.66 23.66 24.86 37.30

Phase 1 56 10:01 10:06 10:40 10:26 09:49 09:49 09:47 09:30

Phase 2 56 08:56 05:25 09:08 13:13 05:27 03:05 06:59 10:00

Main memory 56 3.97 4.59 14.29 15.00 4.01 3.41 26.98 14.78

Disk space 56 16.25 16.25 17.02 57.20 16.25 16.25 17.02 57.20
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the counter in a conventional 32-bit unsigned integer. 
Examples (X is undefined bit):

• • 67 AACGTG ⇒ 01000011 00000110 
1110XXXX

• • 345 TGGATC  ⇒ 11111111 00000000 
00000000 00000001 01011001 11101000 
1101XXXX

When called with command line argument -x h, Ger-
bil additionally creates a human readable csv file that 
includes a histogram of the k-mer counts, i.e. the num-
ber of occurrences of each count. This option can be used 
to gain a general overview of the k-mer distribution of a 
data set.

Additional file
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