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Abstract
In this paper we study a class of sum operator equation Ax + Bx + C(x, x) = x on
ordered Banach spaces, where A is an increasing operator, B is a decreasing operator,
and C is a mixed monotone operator. The existence and uniqueness of its positive
solution are obtained by using the properties of cone and fixed point theorems for
mixed monotone operators. As an application, we utilize the obtained results to study
the existence and uniqueness of positive solutions for nonlinear fractional differential
equation boundary value problems.
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1 Introduction
Over the past several decades, nonlinear functional analysis has been an active area of
research in mechanics, elasticity, fluid dynamics, and so on. As an important branch of
nonlinear functional analysis, the nonlinear operator theorem and its application in non-
linear differential equations have attracted much attention (see [–]). It is well known
that the existence and uniqueness of positive solutions to nonlinear operator equations
are very important in theory and applications. Many authors have studied this problem;
for a small sample of such work, we refer the reader to [–].

Reference [] has successively considered the sum operator equation Mx + Qx + Nx = x
on ordered Banach spaces, where M is an increasing, α-concave operator, Q is an increas-
ing sub-homogeneous operator, and N is a homogeneous operator. The existence and
uniqueness of its positive solutions are obtained by using the properties of cones and a
fixed point theorem for increasing general β-concave operators.

In [], the sum operator equation A(x, x) + Bx = x has been considered. A is a mixed
monotone operator and B is an increasing α-concave (or sub-homogeneous) operator. By
using the properties of cones and a fixed point theorem for mixed monotone operators,
respectively, the author established the existence and uniqueness of positive solutions for
the operator equation.
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In most of the literature, people pay more attention to the study of the increasing and
mixed-monotone operators. However, studying the decreasing operator is equality im-
portant. So inspired by [] and [], we study the following sum operator equations on
ordered Banach spaces in this paper:

Ax + Bx + C(x, x) = x, (.)

where A is an increasing α-concave (or sub-homogeneous) operator, B is a decreasing op-
erator, C is a mixed monotone operator. By using the properties of cones and the fixed
point theorem for mixed monotone operator, the existence and uniqueness of the posi-
tive solution are obtained. Our research methods are different from those in the related
literature. As an application, we utilize the obtained results to study the existence and
uniqueness of positive solutions for nonlinear fractional differential equation boundary
value problems. Our results extend and improve the related conclusions in the litera-
ture. Besides, it provides a new way to study the differential equations. To the best of our
knowledge, the fixed point results on the operator equation (.) with α-concave (or sub-
homogeneous) increasing, decreasing and mixed monotone operators are still very few.
So it is worthwhile to investigate the operator equation (.).

The content of this paper is organized as follows. In Section , we present some defini-
tions, lemmas and basic results that will be used in the proofs of our theorems. In Section ,
we consider the existence and uniqueness of positive solutions for the operator equation
(.). In Section , we utilize the results obtained in Section  to study the existence and
uniqueness of positive solutions for nonlinear fractional differential equation boundary
value problems.

2 Preliminaries
For convenience of the reader, we present here some definitions, lemmas, and basic results
that will be used in the proofs of our theorems.

Suppose that (E,‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E,
i.e., x ≤ y if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. By θ we
denote the zero element of E. Recall that a non-empty closed convex set P ⊂ E is a cone if
it satisfies (i) x ∈ P, λ ≥  ⇒ λx ∈ P; (ii) x ∈ P, –x ∈ P ⇒ x = θ .

Putting P̊ = {x ∈ P | x is an interior point of P}, a cone P is said to be solid if P̊ is
nonempty. Moreover, P is called normal if there exists a constant N >  such that, for
all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. In this case, N is called the normality constant
of P. If x, x ∈ E, the set [x, x] = {x ∈ E | x ≤ x ≤ x} is called the order interval between
x and x. We say that an operator A : E → E is increasing (decreasing) if x ≤ y implies
Ax ≤ Ay (Ax ≥ Ay).

For all x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such that
λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.d., h ≥ θ and h �= θ ), we
denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P.

Definition . ([]) An operator A : P → P is said to be sub-homogeneous if it is satisfies

A(tx) ≥ tAx, ∀t ∈ (, ), x ∈ P. (.)
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Definition . ([]) Let D = P or D = P̊ and α be a real number with  ≤ α < . An oper-
ator A : D → D is said to be α-concave if it satisfies

A(tx) ≥ tαAx, ∀t ∈ (, ), x ∈ D. (.)

Definition . ([]) A : P × P → P is said to be a mixed monotone operator if A(x, y) is
increasing in x and decreasing in y, i.e., ui, vi (i = , ) ∈ P, u ≤ u, v ≥ v imply A(u, v) ≤
A(u, v). An element x ∈ P is called a fixed point of A if A(x, x) = x.

Lemma . (See Lemma . and Theorem . in []) Let P be a normal cone in E. Assume
that T : P × P → P is a mixed monotone operator and satisfies

(A) there exists h ∈ P with h �= θ such that T(h, h) ∈ Ph;
(A) for any u, v ∈ P and t ∈ (, ), there exists ϕ(t) ∈ (t, ] such that T(tu, t–v) ≥

ϕ(t)T(u, v).

Then
() T : Ph × Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v,

u ≤ T(u, v) ≤ T(v, u) ≤ v;
() T has a unique fixed point x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = T(xn–, yn–), yn = T(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

3 Main results
In this section we consider the existence and uniqueness of positive solutions for the op-
erator equation Ax + Bx + C(x, x) = x. We assume that E is a real Banach space with a
partial order introduced by a normal cone P of E. Take h ∈ E, h > θ , Ph is given as in the
preliminaries.

Theorem . Let α ∈ (, ). Suppose that A : P → P is an increasing sub-homogeneous
operator, B : P → P is a decreasing operator, C : P × P → P is a mixed monotone operator,
and that they satisfy the following conditions:

B
(
t–y

) ≥ tBy, C
(
tx, t–y

) ≥ tαC(x, y), ∀t ∈ (, ), x, y ∈ P. (.)

Assume that

(H) there is h ∈ Ph such that Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph;
(H) there exists a constant δ >  such that C(x, y) ≥ δ(Ax + By), ∀x, y ∈ P.

Then
() A : Ph → Ph, B : Ph → Ph, C : Ph × Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + Bv + C(u, v) ≤ Av + Bu + C(v, u) ≤ v;
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() the operator equation Ax + Bx + C(x, x) = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Byn– + C(xn–, yn–),

yn = Ayn– + Bxn– + C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → y∗ as n → ∞.

Proof From Definition . and (.), we have

A
(
t–x

) ≤ 
t

Ax, B(ty) ≤ 
t

By,

C
(
t–x, ty

) ≤ 
tα

C(x, y) for t ∈ (, ), x, y ∈ P.
(.)

First step: we will demonstrate A : Ph → Ph, B : Ph → Ph, C : Ph × Ph → Ph.
Since Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph there exist constants λ,λ,λ,ν,ν,ν > , such

that

λh ≤ Ah ≤ νh, λh ≤ Bh ≤ νh, λh ≤ C(h, h) ≤ νh.

From h ∈ Ph, there exists a constant t ∈ (, ) such that

th ≤ h ≤ 
t

h.

Combine (.), (.) with the increasing property of operator A and the decreasing prop-
erty of operator B, we have

Ah ≤ A
(


t

h

)
≤ 

t
Ah ≤ 

t
νh, Ah ≥ A(th) ≥ tAh ≥ tλh,

Bh ≤ B(th) ≤ 
t

Bh ≤ 
t

νh, Bh ≥ B
(


t

h

)
≥ tBh ≥ tλh.

For any x ∈ Ph, we can choose a sufficiently small number μ ∈ (, ) such that

μh ≤ x ≤ 
μ

h.

Then

Ax ≤ A
(


μ

h
)

≤ 
μ

· 
t

νh, Ax ≥ A(μh) ≥ μtλh,

Bx ≤ B(μh) ≤ 
μ

· 
t

νh, Bx ≥ B
(


μ

h
)

≥ μtλh.

Evidently, 
μt

ν, 
μt

ν,μtλ,μtλ > . Thus Ax ∈ Ph, Bx ∈ Ph; that is, A : Ph → Ph, B :
Ph → Ph. Also from (.), (.), and the properties of mixed monotone operator C, we



Wang and Zhang Boundary Value Problems  (2015) 2015:203 Page 5 of 16

have

C(h, h) ≤ C
(


t

h, th

)
≤ 

tα


C(h, h) ≤ ν

tα


h,

C(h, h) ≥ C
(

th,

t

h

)
≥ tα

 C(h, h) ≥ tα
 λh.

Noting that ν
tα

, tα
 λ > , we can get C(h, h) ∈ Ph. An application of Lemma . implies that

C : Ph × Ph → Ph. So the conclusion () is true.
The second step is to demonstrate the conclusions ()-() are correct.
Now we define an operator T = A + B + C by T(x, y) = Ax + By + C(x, y) for A(x, y) = Ax,

B(x, y) = By. Then T : P × P → P is a mixed monotone operator and T(h, h) ∈ Ph. In the
following, we show that there exists ϕ(t) ∈ (t, ] with respect to t ∈ (, ) such that

T
(
tx, t–y

) ≥ ϕ(t)T(x, y), ∀x, y ∈ P.

From (H), we have

C(x, y) ≥ Ax + By + C(x, y)
 + δ– =

T(x, y)
 + δ– , ∀x, y ∈ P.

Also from (.), (.), we can obtain

T
(
tx, t–y

)
– tT(x, y) = A(tx) + B

(
t–y

)
+ C

(
tx, t–y

)
– tAx – tBy – tC(x, y)

≥ (
tα – t

)
C(x, y) ≥ tα – t

 + δ– T(x, y), ∀x, y ∈ P, t ∈ (, ).

Consequently, for any x, y ∈ P, t ∈ (, ),

T
(
tx, t–y

) ≥ tT(x, y) +
tα – t
 + δ– T(x, y) =

(
t +

tα – t
 + δ–

)
T(x, y).

Let

ϕ(t) = t +
tα – t
 + δ– , t ∈ (, ).

Then ϕ(t) ∈ (t, ] and T(tx, t–y) ≥ ϕ(t)T(x, y) for any t ∈ (, ) and x, y ∈ P. Hence the
condition (A) in Lemma . is satisfied. An application of Lemma . implies: (c) there
exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v, u ≤ T(u, v) ≤ T(v, u) ≤ v;
(c) the operator T has a unique fixed point x∗ in Ph; (c) for any initial values x, y ∈ Ph,
constructing successively the sequences

xn = T(xn–, yn–), yn = T(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞. That is, the conclusions ()-() hold. �

From the proof of Theorem ., we can easily prove the following conclusion.
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Corollary . Let α ∈ (, ). Suppose that A : Ph → Ph is an increasing sub-homogeneous
operator, B : Ph → Ph is a decreasing operator, C : Ph × Ph → Ph is a mixed monotone
operator, assume that (.) and (H) hold. Then the conclusions ()-() of Theorem .
hold.

Corollary . Let α ∈ (, ). Suppose that A : P → P is an increasing sub-homogeneous
operator, C : P × P → P is a mixed monotone operator and satisfies C(tx, t–y) ≥ tαC(x, y),
∀t ∈ (, ), x, y ∈ P. Assume that

(H) there is h ∈ Ph such that Ah ∈ Ph, C(h, h) ∈ Ph;
(H) there exists a constant δ >  such that C(x, y) ≥ δAx, ∀x, y ∈ P.

Then
() A : Ph → Ph, C : Ph × Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + C(u, v) ≤ Av + C(v, u) ≤ v;

() the operator equation Ax + C(x, x) = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + C(xn–, yn–), yn = Ayn– + C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → y∗ as n → ∞.

Corollary . Let α ∈ (, ). Suppose that B : P → P is a decreasing operator, C : P×P → P
is a mixed monotone operator and satisfy (.). Assume that

(H) there is h ∈ Ph such that Bh ∈ Ph, C(h, h) ∈ Ph;
(H) there exists a constant δ >  such that C(x, y) ≥ δBy, ∀x, y ∈ P.

Then
() B : Ph → Ph, C : Ph × Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Bv + C(u, v) ≤ Bu + C(v, u) ≤ v;

() the operator equation Bx + C(x, x) = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Byn– + C(xn–, yn–), yn = Bxn– + C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → y∗ as n → ∞.

Corollary . Let α ∈ (, ). Suppose that C : P × P → P is a mixed monotone operator,
and satisfies C(tx, t–y) ≥ tαC(x, y), ∀t ∈ (, ), x, y ∈ P. Assume that there is h > θ , such
that C(h, h) ∈ Ph hold. Then

() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ C(u, v) ≤ C(v, u) ≤ v;
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() the operator equation C(x, x) = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = C(xn–, yn–), yn = C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → y∗ as n → ∞.

Remark . Corollaries ., ., . which have been studied in [, , ] are special
cases of Theorem .. In this sense, our results extend and supplement the results in [,
, ].

Theorem . Let α ∈ (, ). Suppose that A : P → P is an increasing sub-homogeneous
operator, B : P → P is a decreasing operator, C : P × P → P is a mixed monotone operator,
and satisfy

B
(
t–y

) ≥ tαBy, C
(
tx, t–y

) ≥ tC(x, y), ∀t ∈ (, ), x, y ∈ P. (.)

Assume that

(H′
) there is h ∈ Ph such that Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph;

(H′
) there exists a constant δ >  such that Ax + C(x, y) ≤ δBy, ∀x, y ∈ P.

Then the conclusions ()-() of Theorem . hold.

Proof According to Definition . and (.), we obtain

A
(
t–x

) ≤ 
t

Ax, B(ty) ≤ 
tα

By,

C
(
t–x, ty

) ≤ 
t

C(x, y) for t ∈ (, ), x, y ∈ P.
(.)

Similarly to the proof of Theorem ., we have A : Ph → Ph, B : Ph → Ph, C : Ph × Ph → Ph.
In the following, we will prove the conclusions ()-() are true. Define an operator T =

A + B + C by T(x, y) = Ax + By + C(x, y). Then T : P × P → P is a mixed monotone operator
and T(h, h) ∈ Ph. Next, we show that there exists ϕ(t) ∈ (t, ] with respect to t ∈ (, ) such
that

T
(
tx, t–y

) ≥ ϕ(t)T(x, y), ∀x, y ∈ P.

From (H′
), we have

By ≥ Ax + By + C(x, y)
 + δ

=
T(x, y)
 + δ

, ∀x, y ∈ P.

Also from (.), (.), we have

T
(
tx, t–y

)
– tT(x, y) = A(tx) + B

(
t–y

)
+ C

(
tx, t–y

)
– tAx – tBy – tC(x, y)

≥ (
tα – t

)
By ≥ tα – t

 + δ
T(x, y), ∀x, y ∈ P, t ∈ (, ).
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Consequently, for any x, y ∈ P, t ∈ (, ),

T
(
tx, t–y

) ≥ tT(x, y) +
tα – t
 + δ

T(x, y) =
(

t +
tα – t
 + δ

)
T(x, y).

Let

ϕ(t) = t +
tα – t
 + δ

, t ∈ (, ).

Then ϕ(t) ∈ (t, ] and T(tx, t–y) ≥ ϕ(t)T(x, y) for any t ∈ (, ) and x, y ∈ P. Hence the
condition (A) in Lemma . is satisfied. As an application of Lemma ., we can get the
conclusions ()-(). �

Theorem . Let α ∈ (, ). Suppose that A : P → P is an increasing α-concave operator,
B : P → P is a decreasing operator, C : P × P → P is a mixed monotone operator, and they
satisfy

B
(
t–y

) ≥ tBy, C
(
tx, t–y

) ≥ tC(x, y), ∀t ∈ (, ), x, y ∈ P. (.)

Assume that

(H′′
 ) there is h ∈ Ph such that Ah ∈ Ph, Bh ∈ Ph, C(h, h) ∈ Ph;

(H′′
) there exists a constant δ >  such that By + C(x, y) ≤ δAx, ∀x, y ∈ P.

Then the conclusions ()-() of Theorem . hold.

Proof By Definition . and (.), we have

A
(
t–x

) ≤ 
tα

Ax, B(ty) ≤ 
t

By,

C
(
t–x, ty

) ≤ 
t

C(x, y) for t ∈ (, ), x, y ∈ P.
(.)

Similarly to the proof of Theorem ., we have A : Ph → Ph, B : Ph → Ph, C : Ph × Ph → Ph.
Now we define an operator T = A + B + C by T(x, y) = Ax + By + C(x, y) for A(x, y) = Ax,

B(x, y) = By. Then T : P × P → P is a mixed monotone operator and T(h, h) ∈ Ph. In the
following, we show that there exists ϕ(t) ∈ (t, ] with respect to t ∈ (, ) such that

T
(
tx, t–y

) ≥ ϕ(t)T(x, y), ∀x, y ∈ P.

By (H′′
), we can obtain

Ax ≥ Ax + By + C(x, y)
 + δ

=
T(x, y)
 + δ

, ∀x, y ∈ P.

Also from (.), (.), we have

T
(
tx, t–y

)
– tT(x, y) = A(tx) + B

(
t–y

)
+ C

(
tx, t–y

)
– tAx – tBy – tC(x, y)

≥ (
tα – t

)
Ax ≥ tα – t

 + δ
T(x, y), ∀x, y ∈ P, t ∈ (, ).
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So, for any x, y ∈ P, t ∈ (, ),

T
(
tx, t–y

) ≥ tT(x, y) +
tα – t
 + δ

T(x, y) =
(

t +
tα – t
 + δ

)
T(x, y).

Let

ϕ(t) = t +
tα – t
 + δ

, t ∈ (, ).

Then ϕ(t) ∈ (t, ] and T(tx, t–y) ≥ ϕ(t)T(x, y) for any t ∈ (, ) and x, y ∈ P. Hence the con-
dition (A) in Lemma . is satisfied. An application of Lemma ., we see the conclusions
()-() hold. �

4 Applications
Fractional differential equations arise in many field, such as physics, mechanics, chemistry,
engineering and biological sciences, etc. In recent years, many authors have investigated
the existence of positive solutions for nonlinear fractional differential equation boundary
value problems (see [–]). However, there are few papers concerned with the unique-
ness of positive solutions. In this section, we only apply the results in Section  to study
nonlinear fractional differential equation boundary value problems. We study the exis-
tence and uniqueness of positive solutions for the following nonlinear fractional differen-
tial equation boundary value problem:

⎧
⎨

⎩
–Dν

+ u(t) = f (t, u(t), u(t)) + g(t, u(t)) + q(t, u(t)),  < t < ,  < ν ≤ ,

u() = u′() = u′′() = u′′() = .
(.)

Here Dα
+ is the Riemann-Liouville fractional derivative of order ν > , defined by

Dν
+ u(t) =


	(n – ν)

(
d
dt

)n ∫ t


(t – τ )n–ν–u(τ ) dτ ,

where n = [ν] + . [ν] denotes the integer part of the number ν ; see []. f (t, u, v) : [, ] ×
[, +∞) × [, +∞) → [, +∞) is continuous, and g(t, u), q(t, v) : [, ] × [, +∞) → [, +∞)
are continuous.

In our considerations we will work in the Banach apace E = C[, ] = {x : [, ] →
R is continuous} with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [, ]}. Notice that this space
can be equipped with a partial order given by

x, y ∈ C[, ], x ≤ y ⇔ x(t) ≤ y(t) for all t ∈ [, ].

Set P = {x ∈ C[, ] | x(t) ≥ , t ∈ [, ]}, the standard cone. It is clear that P is a normal
cone in C[, ] and the normality constant is .

Definition . ([]) The integral

Iν
+ f (x) =


	(ν)

∫ x



f (t)
(x – t)–ν

dt, x > ,
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where ν > , is called the Riemann-Liouville fractional integral of order ν and 	(ν) is the
Euler gamma function defined by

	(ν) =
∫ +∞


tν–e–t dt, ν > .

Lemma . ([, ]) Let ν >  and u ∈ C(, ) ∩ L(, ). The fractional differential equa-
tion

Dν
+ u(t) = 

has

u(t) = ctν– + ctν– + · · · + cntν–n, ci ∈ R, i = , , . . . , n, n = [ν] + ,

as unique solution.

Lemma . ([, ]) Assume that u ∈ C(, )∩L(, ) with a fractional derivative of order
ν >  that belongs to C(, ) ∩ L(, ). Then

Iν
+ Dν

+ u(t) = u(t) + ctν– + ctν– + · · · + cntν–n

for some ci ∈ R, i = , , . . . , n, n = [ν] + .

Lemma . If f (t, u(t), u(t)) + g(t, u(t)) + q(t, u(t)) ≥ , then the fractional boundary value
problem (.) has a unique positive solution

u(t) =
∫ 


G(t, s)

[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s)

)
+ q

(
s, u(s)

)]
ds,

where

G(t, s) =


	(ν)

⎧
⎨

⎩
tν–( – s)ν– – (t – s)ν–,  ≤ s ≤ t ≤ ,

tν–( – s)ν–,  ≤ t ≤ s ≤ .
(.)

Proof Lemma . and Definition . imply that

u(t) = ctν– + ctν– + ctν– + ctν–

–
∫ t



(t – s)ν–

	(ν)
[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s)

)
+ q

(
s, u(s)

)]
ds.

From (.), we know that c = c = c =  and

c =


	(ν)

∫ t


( – s)ν–[f

(
s, u(s), u(s)

)
+ g

(
s, u(s)

)
+ q

(
s, u(s)

)]
ds.
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Then the unique solution of (.) is given by

u(t) =
∫ 



tν–( – s)ν–

	(ν)
[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s)

)
+ q

(
s, u(s)

)]
ds

–
∫ t



(t – s)ν–

	(ν)
[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s)

)
+ q

(
s, u(s)

)]
ds

=
∫ 


G(t, s)

[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s)

)
+ q

(
s, u(s)

)]
ds.

This completes the proof of Lemma .. �

Lemma . Let  < ν ≤ . Then the function G(t, s) defined by (.) satisfies the following
conditions:

() G(t, s) ≥ , (t, s) ∈ [, ] × [, ];
() 

	(ν) s( – s)( – s)ν–tν– ≤ G(t, s) ≤ 
	(ν) ( – s)ν–tν– for t, s ∈ [, ].

Proof For the condition (), when  ≤ t ≤ s ≤  it is obvious that

G(t, s) =
tν–( – s)ν–

	(ν)
≥ .

In the case  ≤ s ≤ t ≤  (s �= ), we have

G(t, s) =


	(ν)

[
tν–( – s)ν–

( – s) – (t – s)ν–
]

≥ 
	(ν)

[
tν–( – s)ν– – (t – s)ν–]

=


	(ν)
[
(t – ts)ν– – (t – s)ν–] ≥ .

Moreover, as G(t, ) = , then we conclude that G(t, s) ≥  for all (t, s) ∈ [, ] × [, ]. So
the condition () is true.

For the condition (), first we prove the left inequality. If  ≤ s ≤ t ≤ , then we have
 ≤ t – s ≤ t – ts = ( – s)t, and thus

(t – s)ν– ≤ ( – s)ν–tν–.

Hence,

G(t, s) =


	(ν)
[
( – s)ν–tν– – (t – s)ν–] ≥ 

	(ν)
[
( – s)ν–tν– – ( – s)ν–tν–]

=


	(ν)
[
( – s)ν– – ( – s)ν–]tν– =


	(ν)

s( – s)( – s)ν–tν–.

If  ≤ t ≤ s ≤ , then we have

G(t, s) =


	(ν)
( – s)ν–tν– ≥ 

	(ν)
s( – s)( – s)ν–tν–.
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So the left inequality holds. Evidently, the right inequality also holds. The proof is com-
pleted. �

Theorem . Let  < ν ≤ . Assume that

(L) f : [, ] × [, +∞) × [, +∞) → [, +∞) is continuous, and g, q : [, ] × [, +∞) →
[, +∞) are continuous with g(t, ) �≡ , q(t, ) �≡ , and f (t, , ) �≡ ;

(L) f (t, u, v) is increasing in u ∈ [, +∞) for fixed t ∈ [, ] and v ∈ [, +∞), decreasing in
v ∈ [, +∞) for fixed t ∈ [, ] and u ∈ [, +∞), and g(t, u) is increasing in u ∈ [, +∞)
for fixed t ∈ [, ], and q(t, v) is decreasing in v ∈ [, +∞) for fixed t ∈ [, ];

(L) g(t,λu) ≥ λg(t, u) for λ ∈ (, ), t ∈ [, ], u ∈ [, +∞), and q(t,λ–v) ≥ λq(t, v) for
λ ∈ (, ), t ∈ [, ], v ∈ [, +∞), and there exists a constant α ∈ (, ) such that
f (t,λu,λ–v) ≥ λαf (t, u, v), ∀t ∈ [, ], λ ∈ (, ), u, v ∈ [, +∞);

(L) there exists a constant δ >  such that f (t, u, v) ≥ δ(g(t, u) + q(t, v)), t ∈ [, ], u, v ≥ .

Then
() there exists u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v and

⎧
⎨

⎩
u(t) ≤ ∫ 

 G(t, s)[f (s, u(s), v(s)) + g(s, u(s)) + q(s, v(s))] ds, t ∈ [, ],

v(t) ≥ ∫ 
 G(t, s)[f (s, v(s), u(s)) + g(s, v(s)) + q(s, u(s))] ds, t ∈ [, ],

where h(t) = tν–, t ∈ [, ];
() the problem (.) has a unique positive solution u∗ in Ph;
() for any x, y ∈ Ph, constructing successively the sequences

⎧
⎨

⎩
xn+(t) =

∫ 
 G(t, s)[f (s, xn(s), yn(s)) + g(s, xn(s)) + q(s, yn(s))] ds, n = , , , . . . ,

yn+(t) =
∫ 

 G(t, s)[f (s, yn(s), xn(s)) + g(s, yn(s)) + q(s, xn(s))] ds, n = , , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞.

Proof To begin with, from Lemma ., problem (.) has an integral formation given by

u(t) =
∫ 


G(t, s)

[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s)

)
+ q

(
s, u(s)

)]
ds.

Define three operators A : P → E; B : P → E; C : P → E by

(Au)(t) =
∫ 


G(t, s)g

(
s, u(s)

)
ds, (Bv)(t) =

∫ 


G(t, s)q

(
s, v(s)

)
ds,

C(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), v(s)

)
ds.

It is easy to prove that u is the solution of problem (.) if and only if u = Au + Bu + C(u, u).
From (L), we know that A : P → P, B : P → P, C : P × P → P. In the sequel, we check that
A, B, C satisfy all the assumptions of Theorem ..

First, we prove that C is a mixed monotone operator, A is increasing and B is decreas-
ing.
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In fact, for ui, vi ∈ P, i = ,  with u ≥ u, v ≤ v, we know that u(t) ≥ u(t), v(t) ≤ v(t),
t ∈ [, ], and by (L) and Lemma .

C(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), v(s)

)
ds

≥
∫ 


G(t, s)f

(
s, u(s), v(s)

)
ds = C(u, v)(t).

That is, C(u, v) ≥ C(u, v). Similarly, it follows from (L) and Lemma . that A is in-
creasing and B is decreasing.

Second, we show that B, C satisfies the condition (.) and A is sub-homogeneous op-
erator.

For any λ ∈ (, ) and u, v ∈ P, by (L) we have

B
(
λ–v

)
(t) =

∫ 


G(t, s)q

(
s,λ–v(s)

)
ds

≥ λ

∫ 


G(t, s)q

(
t, v(s)

)
ds = λBv(t),

C
(
λu,λ–v

)
(t) =

∫ 


G(t, s)f

(
s,λu(s),λ–v(s)

)
ds

≥ λα

∫ 


G(t, s)f

(
s, u(s), v(s)

)
ds = λαC(u, v)(t),

that is, B(λ–v) ≥ λBv for λ ∈ (, ), u ∈ P, C(λu,λ–v) ≥ λαC(u, v) for λ ∈ (, ), u, v ∈ P.
So, the operators B, C satisfy (.). Also, for any λ ∈ (, ), u ∈ P, from (L) we know that

A(λu)(t) =
∫ 


G(t, s)g

(
s,λu(s)

)
ds ≥ λ

∫ 


G(t, s)g

(
s, u(s)

)
ds = λAu(t),

that is, A(λu) ≥ λAu for λ ∈ (, ), u ∈ P. So, the operator A is sub-homogeneous.
Third, we show that Ah ∈ Ph, Bh ∈ Ph, and C(h, h) ∈ Ph.
In fact, from (L), (L) and Lemma ., for any t ∈ [, ], we have

C(h, h)(t) =
∫ 


G(t, s)f

(
s, h(s), h(s)

)
ds =

∫ 


G(t, s)f

(
s, sν–, sν–)ds

≥ 
	(ν)

h(t)
∫ 


s( – s)( – s)ν–f (s, , ) ds,

C(h, h)(t) =
∫ 


G(t, s)f

(
s, h(s), h(s)

)
ds =

∫ 


G(t, s)f

(
s, sν–, sν–)ds

≤ 
	(ν)

h(t)
∫ 


( – s)ν–f (s, , ) ds,

from (L), (L), we have

f (s, , ) ≥ f (s, , ) ≥ .
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Since f (t, , ) �≡ , we get

∫ 


f (s, , ) ds ≥

∫ 


f (s, , ) ds > ,

and in consequence

l =


	(ν)

∫ 


s( – s)( – s)ν–f (s, , ) ds > ,

l =


	(ν)

∫ 


( – s)ν–f (s, , ) ds > .

So, lh(t) ≤ C(h, h)(t) ≤ lh(t), t ∈ [, ], and hence we have C(h, h) ∈ Ph. Similarly,


	(ν)

h(t)
∫ 


s( – s)( – s)ν–g(s, ) ds ≤ Ah(t) ≤ 

	(ν)
h(t)

∫ 


( – s)ν–g(s, ) ds,


	(ν)

h(t)
∫ 


s( – s)( – s)ν–q(s, ) ds ≤ Bh(t) ≤ 

	(ν)
h(t)

∫ 


( – s)ν–q(s, ) ds,

from g(t, ) �≡ , q(t, ) �≡ , we easily prove Ah ∈ Ph, Bh ∈ Ph. Hence the condition (H) of
Theorem . is satisfied.

Lastly, we show the condition (H) of Theorem . is satisfied.
For u, v ∈ P and any t ∈ [, ]. From (L)

C(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), v(s)

)
ds

≥ δ

∫ 


G(t, s)

(
g
(
s, u(s)

)
+ q

(
s, v(s)

))
ds

= δ

[∫ 


G(t, s)g

(
s, u(s)

)
ds +

∫ 


G(t, s)q

(
s, v(s)

)
ds

]

= δ
[
(Au)(t) + (Bv)(t)

]
,

then we get C(u, v) ≥ δ(Au + Bv) for u, v ∈ P.
So the condition of Theorem . follows from Theorem .. �

By using Theorem ., we can easily prove the following conclusion.

Theorem . Let  < ν ≤ . Assume that (L) and (L) hold and satisfy the following con-
ditions:

(L) f (t,λu,λ–v) ≥ λf (t, u, v), ∀t ∈ [, ], λ ∈ (, ), u, v ∈ [, +∞) and g(t,λu) ≥ λg(t, u)
for λ ∈ (, ), t ∈ [, ], u ∈ [, +∞), and there exists a constant α ∈ (, ) such that
q(t,λ–v) ≥ λαq(t, v) for λ ∈ (, ), t ∈ [, ], v ∈ [, +∞);

(L) there exists a constant δ >  such that g(t, u) + f (t, u, v) ≤ δq(t, v), t ∈ [, ], u, v ≥ .

Then the conclusions ()-() of Theorem . hold.

By using Theorem ., we can easily prove the following conclusion.
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Theorem . Let  < ν ≤ . Assume that (L) and (L) hold and satisfy the following con-
ditions:

(L) f (t,λu,λ–v) ≥ λf (t, u, v), ∀t ∈ [, ], λ ∈ (, ), u, v ∈ [, +∞) and there exists a con-
stant α ∈ (, ) such that g(t,λu) ≥ λαg(t, u) for λ ∈ (, ), t ∈ [, ], u ∈ [, +∞), and
q(t,λ–v) ≥ λq(t, v) for λ ∈ (, ), t ∈ [, ], v ∈ [, +∞);

(L) there exists a constant δ >  such that q(t, v) + f (t, u, v) ≤ δg(t, u), t ∈ [, ], u, v ≥ .

Then the conclusions ()-() of Theorem . hold.

Example . Consider the following problem:

⎧
⎨

⎩
–D




+ u(t) = u 
 (t) + u– 

 (t) + u–(t) + u(t)
+u(t) m(t) + a(t) + b,  < t < ,

u() = u′() = u′′() = u′′() = ,
(.)

where b >  is a constant, a, m : [, ] → [, +∞] are continuous with m �= .
In this example, we have ν = 

 . Take  < c < b and let

f (t, x, y) = x

 + y– 

 + a(t) + c, g(t, x) =
x

 + x
m(t) + b – c, q(t, y) =


y

+ a(t) + c,

α =



, mmax = max
{

m(t) : t ∈ [, ]
}

, amax = max
{

a(t) : t ∈ [, ]
}

.

Obviously, mmax > , amax > . f : [, ] × [, +∞] × [, +∞] → [, +∞], and g, q : [, ] ×
[, +∞] → [, +∞] are continuous. f (t, x, y) is increasing in x ∈ [, +∞) for fixed t ∈ [, ]
and y ∈ [, +∞), decreasing in y ∈ [, +∞) for fixed t ∈ [, ] and x ∈ [, +∞), and g(t, x)
is increasing in x ∈ [, +∞) for fixed t ∈ [, ], and q(t, y) is decreasing in y ∈ [, +∞) for
fixed t ∈ [, ]. g(t, ) = b – c > , q(t, ) =  + a(t) + c > , f (t, , ) =  + a(t) + c > . Besides,
for λ ∈ (, ), t ∈ [, ], x ∈ [, +∞), y ∈ [, +∞), we have

f
(
t,λx,λ–y

)
= (λx)


 +

(
λ–y

)– 
 + a(t) + c ≥ λ



(
x


 + y– 

 + a(t) + c
)

= λαf (t, x, y),

g(t,λx) =
λx

 + λx
m(t) + b – c ≥ λx

 + x
m(t) + λ(b – c) = λg(t, x),

q
(
t,λ–y

)
=

(
λ–y

)– + a(t) + c ≥ λ
(
y– + a(t) + c

)
= λq(t, y).

Moreover, if we take δ ∈ (, c
mmax+b+amax

], then we obtain

f (t, x, y) = x

 + y– 

 + a(t) + c ≥ c + y– =
c

mmax + b + amax
(mmax + b + amax) + y–

≥ δ

[
x

 + x
m(t) + b – c + a(t) + c +


y

]
= δ

[
g(t, x) + q(t, y)

]
.

Hence all the conditions of Theorem . are satisfied. An application of Theorem .
implies that problem (.) has a unique positive solution in Ph, where h(t) = tν– = t 

 ,
t ∈ [, ].
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