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1 Introduction

Rare B decays constitute one of the cornerstones in the search for physics beyond the Stan-

dard Model (SM). Among them, the semileptonic mode B → K∗(→ Kπ)µ+µ− represents

a particularly interesting channel as the measurement of the 4-body angular distribution

provides a plethora of information which can be used to probe and discriminate different

scenarios of New Physics (NP). In 2013, LHCb presented results of the measurement of an

optimized set {P (′)
i } of angular observables [1–5] based on 1 fb−1 data. These observables

are constructed in such a way that, to leading order in the strong coupling constant αs
and in the large-recoil expansion, non-perturbative form factors cancel in the region of

low squared invariant mass q2 of the dilepton pair, a unique and powerful feature in the

hadronic environment.

Experimental data showed several interesting tensions with respect to SM expecta-

tions [6]: most striking is the 4σ anomaly1 encountered in the observable P ′5 [4] in the

1In ref. [7] this discrepancy is quoted as a 3.7σ tension between the experimental result and the 68.3%

confidence level of the theoretical prediction, while we have quoted the tension between the experimental

result and the theoretical central value. Note also that using the updated predictions [8] for all observables,

including parametric and form factor errors, factorizable power corrections together with an estimate of

non-factorizable ones and charm-loop effects, the tensions with data, albeit slightly reduced, are still clearly

present.
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bin [4.3, 8.68] GeV2. The observable P2 [2, 3] further displayed a 2.9σ deviation in the

q2-bin [2, 4.3] GeV2. The position of its zero (q2
0 = 4.9 ± 0.9 GeV2), which is identical to

the zero of the forward-backward asymmetry AFB, is in agreement with the SM prediction

q2
0 ' 4 GeV2 but allows for higher values. It is remarkable that all these deviations point

to the same negative NP contribution CNP
9 to the Wilson coefficient of the semileptonic

operator O9, possibly accompanied by a NP contribution CNP
7 to the Wilson coefficient of

the magnetic operator O7. New Physics contributions to the Wilson coefficient C10, and,

in particular, to the coefficients C ′7,9,10 of the chirality-flipped operators are consistent with

zero already at 1σ. The full pattern, first pointed out in ref. [6] and obtained using all

available experimental bins in B → K∗µ+µ− together with data on B → K∗γ, B → Xsγ,

B → Xsµ
+µ− and Bs → µ+µ−, is given by the 1σ ranges

CNP
9 ∈ [−1.6,−0.9] , CNP

7 ∈ [−0.05,−0.01] , CNP
10 ∈ [−0.4, 1.0] ,

C ′NP
9 ∈ [−0.2, 0.8] , C ′NP

7 ∈ [−0.04, 0.02] , C ′NP
10 ∈ [−0.4, 0.4] , (1.1)

where the mild preference for a positive CNP
10 is mainly driven by Bs → µ+µ− data.

The large negative NP contribution to C9 was independently confirmed later on by

other groups, using different observables Si [9, 10] (relying on the single large-recoil bin

[1, 6] GeV2 and low recoil data), different statistical approaches [11] or form factor input

from lattice [12]. Although it had been shown in refs. [6, 13] that a large CNP
9 + C ′9 < 0

was preferred in order to explain the P ′5 anomaly, the possibility of a substantial positive

C ′9 enforcing CNP
9 + C ′9 ∼ 0 was discussed in refs. [10, 14], driven mainly by the 1 fb−1

data [15] on the charged B decay B+ → K+µ+µ− in the region of low hadronic recoil. The

situation has become more coherent recently as the latest 3 fb−1 data on B+ → K+µ+µ−

and B0 → K0µ+µ− provided by LHCb [16] is also in good agreement with the solution

CNP
9 + C ′9 < 0 [6], both in the region of large as well as low hadronic recoil [17, 18]. The

three modes thus seem to point to a consistent overall picture of NP in agreement with the

pattern given by eq. (1.1). Moreover, under the assumption that NP affects only muons

but not electrons, also the 2.6σ deviation measured by LHCb [19] in the observable

RK =
Br(B+ → K+µ+µ−)

Br(B+ → K+e+e−)
(1.2)

can be explained within the same scenario [20–22]. In order to be able to draw solid

conclusions and to see how this pattern evolves, it will be crucial to know the 3 fb−1 data

on the observables P
(′)
i in B → K∗µ+µ−.

In parallel, the question has been raised if the observed discrepancies between data

and SM predictions could be attributed to non-perturbative QCD effects [23], even though

hadronic form factors enter optimized observables P
(′)
i only at order αs or through cor-

rections breaking the large-recoil symmetries (factorisable power corrections). There exist

two different approaches to account for factorisable power corrections: they can either be

calculated (under certain modelling assumptions) within a non-perturbative framework like

light-cone sum-rules (LCSR) [10, 24], or they can be estimated exclusively on the basis of

dimensional arguments and fundamental model-independent relations [8, 23, 27]. While the
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first method with full correlations among the form factors is suitable in order to extract the

maximal information from a particular non-perturbative calculation, the second option in

which correlations are included via large-recoil symmetry relations reduces the dependence

on non-perturbative input to a minimum. The two approaches are thus complementary

and, because the large-recoil symmetries are expected to be the dominant source of corre-

lations, they should give similar results. Indeed, the resulting uncertainties obtained with

the first method in ref. [10] and with the second method in ref. [8] are of the same order of

magnitude (see also ref. [25]). Both these analyses find hadronic uncertainties from form

factors to be under control.2

As a different explanation of the anomaly, the possibility of a large non-perturbative

charm-loop contribution has been proposed [28], requiring a huge correction with respect

to theory predictions within the factorization approximation. The discussion in ref. [28]

relies on two model-dependent assumptions: first that the resonance structure obtained

from a fit to high-q2 data on the scalar mode B+ → K+µ+µ− can directly be transferred

to the vector mode B → K∗µ+µ−, and second that it can be extrapolated to low values of

q2. The only existing calculation [29] seems to be in contradiction with the low-q2 scenarios

of B → K∗µ+µ− obtained with this ansatz in ref. [28] as it finds a much smaller size for

the charm loop and, moreover, the opposite sign for its contribution in B+ → K+µ+µ− as

compared to B → K∗µ+µ+ (contrary to the assumption in ref. [28]). Furthermore, if the

2.6σ deviation in the observable RK persists, it poses a serious problem for the charm-loop

or any other low-energy QCD explanation which cannot generate effects violating lepton-

flavor universality. Also the observable P2 in B → K∗µ+µ+ can be instrumental in testing

the charm-loop hypothesis proposed in ref. [28] (see also [25]).

While the polluting effects from non-perturbative QCD have been studied in detail in

the literature, less attention has been paid to the so-called S-wave pollution, generated by

the background decay B → K∗0 (→ Kπ)µ+µ− where K∗0 is a broad scalar resonance. In

ref. [30] a detailed and complete calculation of the S-wave background was performed and

it was concluded that any observable will unavoidably suffer from its pollution. While this

conclusion is correct in the case of uniangular distributions, it does not apply to full or

folded distributions where the P- and the S-wave parts can be separated according to their

different angular dependence. As shown in ref. [31], S-wave pollution can be avoided for the

P
(′)
i observables if folded distributions are used instead of uniangular ones. A discussion

2Refs. [23, 27], on the other hand, quote much larger uncertainties. One of the reasons for that has

been identified in ref. [8]: the decomposition of a form factor into a leading-order part and a O(Λ/mb)

power correction is not unique but (as in any fixed-order calculation) introduces a scheme dependence of

observables at neglected higher orders in Λ/mb. As the observables are effectively calculated at leading order

(O(Λ/mb) effects are not calculated but only estimated), they exhibit a scheme dependence at O(Λ/mb)

implying a ∼ 100% scheme dependence of power corrections. In order to ensure predictivity of the method,

it is hence crucial to exploit the freedom of choosing a scheme to minimize the impact of the unknown power

corrections on the relevant observables (in the same way as in a fixed-order calculation in quantum field

theory the renormalization scheme is chosen such that neglected higher orders do not spoil the perturbative

expansion). It was demonstrated in ref. [8] that the sensitivity to factorizable power corrections of the

key observables like P ′5 is significantly reduced if a different scheme is chosen than the one employed in

refs. [23, 27].
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of the experimental implications of the S-wave contribution was presented in ref. [32] (see

also ref. [33]).

Experimental analyses of B → K∗µ+µ− rely on theoretical information regarding the

S-wave background. To this end, a set of model-independent bounds on the coefficients of

the S-wave part of the angular distribution was presented in ref. [5], derived from appli-

cation of the Cauchy-Schwarz inequality. On the other hand, it was shown in refs. [3, 34]

that the coefficients of the P-wave part are not independent parameters but that they are

correlated through the spin-symmetry of the angular distribution. In this work we transfer

this idea to the S-wave sector. We derive two relations which effectively reduce the num-

ber of free coefficients of the S-wave distribution from six to four. It is expected that the

inclusion of these relations into the data analysis can help to further improve the back-

ground estimation. We illustrate the effect of the correlations for the ratio of the S-wave

observables A4
S and A5

S and study implications at the position q2 = q2
1 of the maximum of

the observable P2. Moreover, we point out a relation between P ′4 and P ′5 at q2 = q2
1 and

suggest to use the maximum of P2 as a golden observable to probe right-handed currents

(for an explicit model generating right-handed currents see e.g. ref. [35]).

The outline of this paper is the following: in section 2 we discuss the spin-symmetry

of the differential B → K∗µ+µ− decay rate and determine the number of independent

observables in the P- and in the S-wave sector. In section 3 we derive the resulting symmetry

relations. Their phenomenological consequences are discussed in section 4. First, we study

the discriminating power of the maximum of P2 as a test for right-handed currents, then we

determine a relation between P ′4 and P ′5 at the position of the maximum of P2, and finally

we investigate constraints on the S-wave observables A
(i)
S and derive simple relations among

them at the position of the maximum and the zero of P2. Section 5 contains our conclusions.

In appendix A we present an explicit example of how to use the freedom introduced by

the symmetries to fix a possible convention for the amplitudes, while appendix B contains

details of the derivation of the bound on AS .

2 Spin symmetry of the differential decay rate

The differential decay rate of the full four-body decay B → Kπ`+`− receives contributions

from the P-wave decay B → K∗(→ Kπ)`+`− as well as from the S-wave decay B →
K∗0 (→ Kπ)`+`− with K∗0 being a broad scalar resonance. It can thus be decomposed into

a P-wave and an S-wave part,

d5Γ

dq2 dm2
Kπ d cos θK d cos θ` dφ

= WP +WS , (2.1)

with WP containing the pure P-wave contribution and WS containing the contributions

from pure S-wave exchange as well as from S-P interference. Here, q2 denotes the square

of the invariant mass of the lepton pair and mKπ the invariant mass of the Kπ system.

Further, θ`, θK are the angles describing the relative directions of flight of the final-state

particles, while φ is the angle between the dilepton and the dimeson plane (see ref. [34] for

exact definitions). Angular momentum conservation dictates the dependence of WP and
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WS on θ`, θK , φ to be

WP =
9

32π

[
J1s sin2 θK+J1c cos2 θK+(J2s sin2 θK+J2c cos2 θK) cos 2θl

+J3 sin2 θK sin2 θl cos 2φ+J4 sin 2θK sin 2θl cosφ+J5 sin 2θK sin θl cosφ

+(J6s sin2 θK+J6c cos2 θK) cos θl+J7 sin 2θK sin θl sinφ+J8 sin 2θK sin 2θl sinφ

+J9 sin2 θK sin2 θl sin 2φ
]

(2.2)

and

WS =
1

4π

[
J̃c1a + J̃c1b cos θK + (J̃c2a + J̃c2b cos θK) cos 2θ` + J̃4 sin θK sin 2θ` cosφ

+ J̃5 sin θK sin θ` cosφ+ J̃7 sin θK sin θ` sinφ+ J̃8 sin θK sin 2θ` sinφ
]
. (2.3)

The coefficients Ji and J̃i are functions of q2 and m2
Kπ.

If not explicitly stated otherwise, we will neglect lepton masses in the following. Then,

the decays B → K∗`+`− and B → K∗0`
+`− are described by six complex amplitudes AL,R‖,⊥,0

and two complex amplitudes A′L,R0 , respectively, where the upper index L,R refers to the

chirality of the outgoing lepton current, while in the case of the P-wave the lower index

‖,⊥, 0 indicates the helicity of the K∗-meson.3 These amplitudes are multiplied by a Breit-

Wigner propagator BWi(m
2
Kπ) with i = K∗,K∗0 describing the propagation of the K∗ and

K∗0 meson, respectively. For the exact form of the Breit-Wigner functions BWi(m
2
Kπ) we

refer to ref. [30].

Since the final state is summed over the spins of the leptons, the obervables Ji and J̃i are

exclusively described in terms of spin-summed squared amplitudes of the form AL∗i ALj ±
AR∗i ARj .4 This pattern suggests to combine left- and right-handed amplitudes to two-

component complex vectors:

n‖ =

(
AL‖BWP

AR∗‖ BW ∗P

)
, n⊥ =

(
AL⊥BWP

−AR∗⊥ BW ∗P

)
, n0 =

(
AL0BWP

AR∗0 BW ∗P

)
, nS =

(
A′L0 BWS

A′R∗0 BW ∗S

)
.

(2.4)

Using this notation, the observables Ji and J̃i can be expressed in terms of scalar products

n†inj of these vectors. Neglecting lepton masses and presence of scalars we find

J1s =
3

4

(
|n⊥|2 + |n‖|2

)
, J1c = |n0|2, J2s =

1

4

(
|n⊥|2 + |n‖|2

)
,

J2c = −|n0|2, J3 =
1

2

(
|n⊥|2 − |n‖|2

)
, J4 =

1√
2

Re(n†0 n‖) ,

J5 =
√

2 Re(n†0 n⊥) , J6s = 2 Re(n†⊥ n‖) , J7 = −
√

2 Im(n†0 n‖) ,

J8 = − 1√
2

Im(n†0 n⊥) , J9 = − Im(n†⊥ n‖) , J6c = 0 , (2.5)

3In the case of non-vanishing lepton masses and of scalar operators coupling to the lepton pair, two

additional amplitudes At and AS have to be included.
4Interferences of different K∗ and K∗0 helicities i 6= j contribute, as these particles only appear as

unobserved intermediate states.
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and

J̃c1a = −J̃c2a =
3

8

(
|A′L0 |2 + |A′R0 |2

)
|BWS |2 =

3

8
|nS |2,

J̃c1b = −J̃c2b =
3

4

√
3 Re

[
(A′L0 A

L∗
0 +A′R0 A

R∗
0 )BWSBW

∗
P

]
=

3

4

√
3 Re(n†S n0) ,

J̃4 =
3

4

√
3

2
Re
[
(A′L0 A

L∗
‖ +A′R0 A

R∗
‖ )BWSBW

∗
P

]
=

3

4

√
3

2
Re(n†S n‖) ,

J̃5 =
3

2

√
3

2
Re
[
(A′L0 A

L∗
⊥ −A′R0 AR∗⊥ )BWSBW

∗
P

]
=

3

2

√
3

2
Re(n†S n⊥) ,

J̃7 =
3

2

√
3

2
Im
[
(A′L0 A

L∗
‖ −A

′R
0 A

R∗
‖ )BWSBW

∗
P

]
=

3

2

√
3

2
Im(n†‖ nS) ,

J̃8 =
3

4

√
3

2
Im
[
(A′L0 A

L∗
⊥ +A′R0 A

R∗
⊥ )BWSBW

∗
P

]
=

3

4

√
3

2
Im(n†⊥nS) . (2.6)

The fact that the Ji and J̃i observables involve a sum over the spins of the leptons

implies that they are not sensitive to the full information contained in the helicity ampli-

tudes AL,R‖,⊥,0, A′L,R0 . This can be easily seen from the notation in terms of the vectors ni.

As the Ji and J̃i observables are scalar products of the ni, they are invariant under a U(2)

rotation of these vectors. It is thus impossible to fully reconstruct the amplitudes from the

Ji, J̃i observables alone. If one wishes to extract the AL,R‖,⊥,0, A′L,R0 from experiment, it is

mandatory to fix a convention which resolves the ambiguity related to the U(2) symmetry.

A possible choice is presented in appendix A.

The number of independent observables that can be constructed from nA complex

amplitudes is given by 2nA. In presence of a symmetry S with ngen generators, there exist

nObs = 2nA − ngen (2.7)

independent observables which respect the symmetry S. The U(2) spin symmetry of the

Ji and J̃i observables with ngen = 4 generators thus leads to the following consequences:

• In the P-wave sector there are nPObs = 2 · 6 − 4 = 8 independent observables. This

observation implies the existence of a relation between the 9 non-trivially different

P-wave coefficients Ji. The corresponding relation has been derived in ref. [34] and

its phenomenological consequences have been discussed in ref. [36].

• In the S-wave sector there are nSObs = 2 · 8 − 4 − nPObs = 4 additional observables.

This observation implies the existence of two additional relations among the 6 S-wave

coefficients J̃i and the P-wave coefficients Ji. These relations will be derived in the

following section.

This parameter counting implies that a basis in the P-wave sector consists of 8 indepen-

dent observables, like the basis {Γ′, AFB or FL, P1, P2, P3, P
′
4, P

′
5, P

′
6} proposed in ref. [5].

In particular, the observables of this basis are not related among each other through a

symmetry, but they are connected to the observable P ′8. In the S-wave sector, a basis

consists of 4 independent observables. This means that from the complete set of S-wave

observables {FS , AS , A4
S , A

5
S , A

7
S , A

8
S} (see section 3 for their definition) a subset of four

has to be chosen as basis, while the remaining two are obtained from symmetry relations.

– 6 –
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3 P-wave and S-wave symmetry relations

The observables Ji and J̃i can be expressed in terms of scalar products n†inj . Since n‖ and

n⊥ span the space of complex 2-component vectors, the other two vectors can be expressed

as linear combinations of the former:

ni = ain‖ + bin⊥ , i = 0, S . (3.1)

Contracting with n‖ and n⊥ we get a system of linear equations

n†‖ni = ai|n‖|2 + bi(n
†
‖n⊥) ,

n†⊥ni = ai(n
†
⊥n‖) + bi|n⊥|2, (3.2)

which can easily be solved for ai, bi:

ai =
|n⊥|2(n†‖ni)− (n†‖n⊥)(n†⊥ni)

|n‖|2|n⊥|2 − |n
†
⊥n‖|2

, bi =
|n‖|2(n†⊥ni)− (n†⊥n‖)(n

†
‖ni)

|n‖|2|n⊥|2 − |n
†
⊥n‖|2

. (3.3)

Using the decomposition (3.1) of n0, nS in terms of n‖, n⊥ to calculate the scalar products

|n0|2, |nS |2, n†0nS , one finds

|ni|2 = ai(n
†
in‖) + bi(n

†
in⊥) , (i = 0, S)

n†0nS = aS(n†0n‖) + bS(n†0n⊥) . (3.4)

Reexpressed in terms of the coefficients Ji, J̃i of the angular distribution, this gives the

three symmetry relations:5

J2c

[
16J2

2s − (4J2
3 + J2

6s + 4J2
9 )
]

=

4
[
J6s(J4J5 + J7J8) + J9(J5J7 − 4J4J8)

]
− 2
[
(2J2s + J3)(4J2

4 + J2
7 ) + (2J2s − J3)(J2

5 + 4J2
8 )
]
, (3.5)

−9

2
J̃c1a
[
16J2

2s − (4J2
3 + J2

6s + 4J2
9 )
]

=

4
[
J6s(J̃4J̃5 + J̃7J̃8) + J9(J̃5J̃7 − 4J̃4J̃8)

]
− 2
[
(2J2s + J3)(4J̃2

4 + J̃2
7 ) + (2J2s − J3)(J̃2

5 + 4J̃2
8 )
]
, (3.6)

2J̃c1b
[
16J2

2s − (4J2
3 + J2

6s + 4J2
9 )
]

=

− 4
[
J6s(J4J̃5 + J5J̃4 + J7J̃8 + J8J̃7) + J9(J5J̃7 + J7J̃5 − 4J4J̃8 − 4J8J̃4)

]
+ 4
[
(2J2s + J3)(4J4J̃4 + J7J̃7) + (2J2s − J3)(J5J̃5 + 4J8J̃8)

]
. (3.7)

Eq. (3.5) had already been derived in ref. [34], determining explicitly the amplitudes in

terms of the Ji coefficients after fixing a “gauge convention” (see appendix A for a possible

5The same results are obtained if instead of {n‖, n⊥} a different subset {ni, nj} is chosen as basis and

the derivation is adjusted accordingly. In particular, the stated results are valid also for values of q2 for

which n‖ and n⊥ become aligned.
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gauge condition). Here, it has been obtained in a “gauge-independent” way. As a cross-

check, we have also rederived eqs. (3.6), (3.7) following the alternative procedure of ref. [34].

Of the two relations involving S-wave parameters, eq. (3.6) and eq. (3.7), the first one is

quadratic in the J̃i while the second one is linear. It is interesting to note that relation (3.6)

for the S-wave coefficients J̃4,5,7,8 has the same structure as the well-known relation (3.5)

for the P-wave coefficients J4,5,7,8, and further that the combination of the three equations

for J2c − 9
2 J̃

c
1a ∓ 2J̃c1b has exactly the same structure as eq. (3.5) substituting Ji → Ji ± J̃i

for i = 4, 5, 7, 8.

The S-wave observables are defined as

AS =
8

3

J̃c1b + ¯̃Jc1b

Γ′full + Γ
′
full

, ACP
S =

8

3

J̃c1b −
¯̃Jc1b

Γ′full + Γ
′
full

,

AiS =
4

3

J̃i + ¯̃Ji

Γ′full + Γ
′
full

, AiCP
S =

4

3

J̃i − ¯̃Ji

Γ′full + Γ
′
full

, (3.8)

where J̄i,
¯̃Ji and Γ

′
full denote the corresponding angular coefficients and differential de-

cay width for the CP-conjugated decays B̄ → K̄∗µ+µ− and B̄ → K̄∗0µ
+µ−. The total

differential decay width Γ′full is given by

Γ′full = Γ′K∗ + Γ′K∗0 , (3.9)

where in the limit of massless leptons

Γ′K∗ = 4J2s − J2c , Γ′K∗0 =
8

3
J̃c1a . (3.10)

Expressing eqs. (3.5)–(3.7) in terms of the S-wave observables A
(i)
S and

FS =
Γ′K∗0

+ Γ̄′K∗0
Γ′full + Γ̄′full

(3.11)

and the P-wave observables P
(′)
i and FT (as defined e.g. in ref. [5]) we obtain

kL
[
k2
T − P 2

1 − 4P 2
2 − 4P 2

3

]
=

− 4P2

[
P ′4P

′
5 + P ′6P

′
8

]
− 4P3

[
P ′5P

′
6 − P ′4P ′8

]
+ (kT + P1)

[
(P ′4)2 + (P ′6)2

]
+ (kT − P1)

[
(P ′5)2 + (P ′8)2

]
, (3.12)

kSFTFS(1− FS)
[
k2
T − P 2

1 − 4P 2
2 − 4P 2

3

]
=

− 8

3
P2

[
A4
SA

5
S +A7

SA
8
S

]
+

4

3
P3

[
A5
SA

7
S − 4A4

SA
8
S

]
+

1

3
(kT +P1)

[
4(A4

S)2+(A7
S)2
]

+
1

3
(kT−P1)

[
(A5

S)2+4(A8
S)2
]
, (3.13)

AS

√
FT

1− FT
[
k2
T − P 2

1 − 4P 2
2 − 4P 2

3

]
=

− 4P2

[
P ′4A

5
S + 2P ′5A

4
S − 2P ′6A

8
S − P ′8A7

S

]
+ 4P3

[
P ′5A

7
S − P ′6A5

S − 2P ′4A
8
S + 2P ′8A

4
S

]
+ 2(kT + P1)

[
2P ′4A

4
S − P ′6A7

S

]
+ 2(kT − P1)

[
P ′5A

5
S − 2P ′8A

8
S

]
, (3.14)
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with

kL = kT = kS = 1 . (3.15)

These relations are valid up to terms which are quadratic in the CP-violating parameters

A
(i)CP
S , FCP

S , P
(′) CP
i and FCP

T . Exact versions of the equations can be obtained by the

replacements

P
(′)
i → P̄

(′)
i = P

(′)
i + P

(′) CP
i , A

(i) CP
S → Ā

(i)
S = A

(i)
S +A

(i) CP
S ,

ki → k̄i = 1 + FCP
i /Fi (i = L, T, S) , (3.16)

or

P
(′)
i → P̂

(′)
i = P

(′)
i − P

(′) CP
i , A

(i) CP
S → Â

(i)
S = A

(i)
S −A

(i) CP
S ,

ki → k̂i = 1− FCP
i /Fi (i = L, T, S) . (3.17)

In the form the equations are displayed, lepton masses are neglected. For the P-wave

observables, the full lepton-mass dependence can easily be restored by the replacements

P2 → βP2, P ′5 → βP ′5 and P ′6 → βP ′6 with β =
√

1− 4m2
`/q

2. In the following we will

typically suppress factors of β ≈ 1 and only restore them in final results. For the S-wave

observables, given their poor experimental precision, we will neglect any terms suppressed

by small lepton masses throughout the paper.

Note that eq. (3.12) is equivalent to eq. (4) of ref. [36], while eqs. (3.13), (3.14) involving

the S-wave parameters constitute the main result of the present work. The information

contained in the two S-wave relations is twofold. On the one hand, they can be used

to obtain independent bounds on the five S-wave observables AS , A4
S , A5

S , A7
S , A8

S . As

we will show, the resulting bounds are equivalent to the ones derived from the Cauchy-

Schwarz inequality in ref. [5]. On the other hand, the equations relate the six S-wave

observables AS , A4
S , A5

S , A7
S , A8

S and FS to each other, reducing the number of independent

observables effectively from six to four. These correlations should thus be implemented in

the experimental data analysis in order to improve the background estimation.

4 Phenomenological implications

4.1 Connecting P1 and P2: the maximum of P2 as a test for the presence of

RH currents

Before discussing the phenomenological consequences of eqs. (3.12)–(3.14), let us first have

a closer look at the observable

x = k2
T − P 2

1 − 4β2P 2
2 − 4P 2

3 (4.1)

appearing on the left-hand side of these equations. In eq. (4.1) we have reinstalled the

dependence on the lepton mass by means of the parameter β =
√

1− 4m2
`/q

2. Expressing

kT , P1,2,3 in terms of n‖ and n⊥ (and the respective vectors n̄‖ and n̄⊥ parametrising the

CP conjugated amplitude), it can easily be shown that x ≥ 0 up to terms quadratic in the

CP-violating observables6 FCP
T , PCP

1 , PCP
2 , PCP

3 . From this observation the upper bounds

6The observables x̄ and x̂ constructed from eq. (4.1) via the replacements (3.16) and (3.17), respectively,

fulfill x̄ ≥ 0 and x̂ ≥ 0 exactly.
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|P1| ≤ 1, |P2| ≤ 1/(2β) and |P3| ≤ 1/2 can be read off immediately. On the other hand, it

can be concluded that, if one of the three observables P1,2,3 saturates its bound at a point

q2 = q2
1, the other two observables have to vanish at this point. The experimental result

〈P2〉[2,4.3] = 0.50+0.00
−0.07 indeed suggests a quasi-saturation7 of the bound for the observable

P2 in the bin [2, 4.3] GeV2. Depending on how this result evolves with the new data, the

correlation with P1 via the positivity condition x ≥ 0 could be useful to constrain the less

precisely measured observable P1 in the respective bin.

In order to study the information encoded in the maximum of P2 and the relation with

the observable P1 in more detail,8 let us have a look at the expressions of these observables

in terms of the vectors n⊥ and n‖:

P1 =
|n⊥|2 − |n‖|2

|n⊥|2 + |n‖|2
, P2 =

1

2β

[
1−

(n⊥ − n‖)†(n⊥ − n‖)
|n⊥|2 + |n‖|2

]
. (4.2)

Obviously, P2 reaches the extreme value 1/(2β) at the position q2
1 of its maximum if and

only if n⊥(q2
1) = n‖(q

2
1), i.e. if AL⊥(q2

1) = AL‖ (q2
1) and AR⊥(q2

1) = −AR‖ (q2
1). At leading order,

the second of these two conditions is automatically fulfilled in the absence of right-handed

currents C ′7 = C ′9 = C ′10 = 0, while the first condition is fulfilled in this case (and neglecting

the small ImCeff
9 entering P2 quadratically) for

q2
1 =

2mbMBC
eff
7

C10 − ReCeff
9 (q2

1)
. (4.3)

From this observation we conclude that any CP-conserving new-physics contribution added

to the Wilson-coefficients C7,9,10 will shift the position q2
1 of the maximum of P2, while

maintaining its height at Pmax
2 ∼ 1/(2β). Compared to the SM-prediction q2

1 ≈ 2 GeV2,

the experimental result 〈P2〉[2,4.3] = 0.50+0.00
−0.07 prefers a larger value for q2

1, more to the center

of the bin [2, 4.3] GeV2. This pull to larger q2-values for the position of the maximum of

P2 is consistent with the pull to larger q2-values of its zero mentioned in the introduction.

From eq. (4.3) we see that a larger q2
1 can be obtained by a negative NP contribution to C9,

as required by the P ′5 anomaly, and/or by a positive contribution to C10. Notice further

that, while it was claimed in ref. [28] that charm-loop effects might affect the position of

the zero of P2, their impact on the position of the maximum is basically negligible for all

scenarios studied in ref. [28]. In general, the maximum of P2 probes the Wilson coefficient

Ceff
9 in a different region in q2 than the P ′5 anomaly or the zero of P2. While a potential NP

contribution to Ceff
9 is q2-independent and thus induces exactly related effects in the three

observables, a charm-loop contribution enters Ceff
9 as a non-trivial function of q2 which is

expected to decrease with increasing distance to the cc̄ resonance region. A measurement

of the maximum of P2 can thus help to discriminate between NP at high energies and

non-perturbative charm effects, and the upcoming data with smaller-sized bins will help

to determine it more precisely.

In contrast to C7,9,10, a new right-handed contribution to one of the Wilson coefficients

C ′7,9,10 will not only shift the position q2
1 of the maximum of P2 but will also lower its value

7Note that in practice a complete saturation cannot be accomplished due to the finite bin-size.
8We will assume real Wilson coefficients for all this discussion.
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Figure 1. Left: comparison of the P2-curves (central values) in the SM (green) and in two scenarios

of New Physics. The scenario NP (red) corresponds to CNP
9 = −1.5, the scenario RHC (blue)

corresponds to C ′9 = 1, C ′10 = 0.4, C ′7 = 0.06. Dashed lines represent the central value for the

integrated bin [2, 4.3] GeV2 of the respective curve, while the black cross indicates the measured

value in this bin. Right: the analogous curves for P1 with the black crosses representing the

measured values in the respective bins.

Pmax
2 , pushing it below 1/(2β) [2]. At leading order, this can be seen from the fact that

in the presence of right-handed currents the identity AR⊥ = −AR‖ does not hold anymore

for all q2 so that the two conditions AL⊥(q2
1) = AL‖ (q2

1) and AR⊥(q2
1) = −AR‖ (q2

1) required

for P2(q2
1) = 1/(2β) cannot be fulfilled at the same point q2

1. In general, right-handed

currents will cause |n⊥(q2
1)| 6= |n‖(q2

1)| and thus induce a substantial non-vanishing P1(q2
1),

preventing P2(q2
2) from reaching its absolute maximum 1/(2β).

In order to illustrate the discriminating power of the bin [2, 4.3] GeV2 of P2, we show

on the left-hand side of figure 1 the curve of P2 (central value) in the neighbourhood of

its maximum together with the integrated result for three different scenarios: the SM, a

new physics scenario NP with CNP
9 = −1.5, and a new physics scenario RHC with the

right-handed currents C ′7 = 0.06, C ′9 = 1, C ′10 = 0.4. In the scenario NP, the maximum

of P2 is not lowered but its position is shifted to a higher q2-value leading to a better

agreement of the integrated result with the measured value. In the scenario RHC, on the

other hand, the height of the maximum is lowered resulting in a stronger deviation of the

integrated result from the measured value compared to the SM case. The scenario RHC

has been chosen in such a way that the central values for all low-q2 bins of P1 fall within

the experimental 1σ regions, as demonstrated in the plot on the right-hand side of figure 1.

It thus constitutes an illustrative example of a setup with new right-handed currents to

which the maximum of P2 exhibits a stronger sensitivity than the observable P1.

4.2 Relation between P ′
4 and P ′

5 at the position of maximum and at the zero

of P2

Eq. (3.12) is quadratic in the parameters P ′4, P ′5, P ′6, P ′8. The requirement of real solu-

tions for these observables constrains the allowed ranges of possible values. For example,
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demanding a real solution for P ′4 from eq. (3.12) implies

0 ≤ ∆(P ′4) = −4x(P ′5)2− 4x(P ′8)2− 4
[
(kT +P1)P ′6− 2P2P

′
8− 2P3P

′
5

]2
+ 4xkL(kT −P1) ,

(4.4)

with x defined in eq. (4.1) and fulfilling x ≥ 0. Hence, the first three terms in eq. (4.4)

are negative definite and each of them has thus to be smaller in absolute value than the

positive fourth term. From this observation we can directly read off constraints on |P ′5| and

|P ′8|, while constraints on |P ′4| and |P ′6| can for example be obtained by considering ∆(P ′5).

The total set of constraints is given by

|P ′4| ≤
√
kL(kT − P1) , |P ′5| ≤

1

β

√
kL(kT + P1) ,

|P ′6| ≤
1

β

√
kL(kT − P1) , |P ′8| ≤

√
kL(kT + P1) . (4.5)

As before, these bounds (with the reinstalled β-dependence for P ′5 and P ′6) are valid up

to quadratic terms in CP-violating coefficients, while exact versions can be obtained via

the replacement rules (3.16) and (3.17). The constraints are obtained for x > 0 and thus

are valid for any q2 except for the single point where x reaches its minimum value x = 0.

Continuity of the P ′i then implies the bounds to be valid also for x = 0.

In the limit x→ 0 the third term in eq. (4.4) has to vanish in order to render P ′4 real.

Proceeding in the same way for the other ∆(P ′5,6,8) we obtain four relations at q2 = q2
1 with

x(q2
1) = 0: [

(kT + P1)P ′6 − 2P2P
′
8 − 2P3P

′
5

]
q21

= 0 ,[
(kT − P1)P ′8 − 2P2P

′
6 + 2P3P

′
4

]
q21

= 0 ,[
(kT + P1)P ′4 − 2P2P

′
5 + 2P3P

′
8

]
q21

= 0 ,[
(kT − P1)P ′5 − 2P2P

′
4 − 2P3P

′
6

]
q21

= 0 . (4.6)

Neglecting P3P
′
6,8 � P2P

′
4,5 and including the β-factor for P ′5, the last two equations

reduce to

P ′4(q2
1) =

[
βP ′5

√
kT − P1

kT + P1

]
q21

. (4.7)

This relation is valid at the zero q2
1 of x where P2 =

√
k2
T − P 2

1 /2β. For P1 � 1, which is

an excellent approximation in the absence of new right-handed currents, q2
1 coincides with

the position of the maximum Pmax
2 ≈ kT /(2β) of P2, and eq. (4.7) becomes

P ′4(q2
1) = β(q2

1)P ′5(q2
1) . (4.8)

While eq. (4.7) is model-independent, eq. (4.8) only applies if there are no new right-handed

currents. Its experimental validation therefore provides a test on the size of right-handed

currents.
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Figure 2. Illustration of the relations (4.8) and (4.9) between the observables P ′4 and P ′5 (central

values) at the position of the maximum and the zero of P2. Left: SM. Right: scenario NP with

CNP
9 = −1.5.

An analogous relation between P ′4 and P ′5 at the position q2 = q2
0 of the zero of P2

was derived and discussed in ref. [36]. We reproduce it here for completeness. Dropping

quadratic terms in P3, P6,8 and in the PCP
i it reads[

P4
′2 + β2P ′25

]
q20

= 1− η(q2
0) , (4.9)

where η(q2
0) = [P1

2 + P1(P4
′2 − β2P5

′2)]q20 is completely negligible (of order η(q2
0) ∼ 10−3)

in the absence of new right-handed currents. Let us assume that, as data seem to suggest,

the zero q2
0 of P2 would be larger than predicted by the SM. In this case, eq. (4.9) forces

the absolute value of P ′5(q2
0) to be smaller than in the SM, in agreement with the anomaly.

In figure 2 we show central values of the theory predictions for the two functions

P ′4 − βP ′5 and (P ′4)2 + β2(P ′5)2 − 1 for the SM and the new-physics scenario NP with

CNP
9 = −1.5. The zeros of the corresponding curves at q2 = q2

1 and q2 = q2
0, respectively,

demonstrate that the relations (4.8) and (4.9) are indeed fulfilled to excellent precision.

4.3 Constraints on the A
(i)
S and relations at the position of the maximum and

the zero of P2

Eq. (3.13) is quadratic in the parameters A4
S , A5

S , A7
S , A8

S . The requirement of real solu-

tions for these observables constrains the allowed ranges of possible values. Following the

procedure described in section 4.2 for the P ′i , we find in a completely analogous manner

the bounds

|A4
S | ≤

1

2

√
3kSFTFS(1−FS)(kT−P1) , |A5

S | ≤
√

3kSFTFS(1−FS)(kT +P1) ,

|A7
S | ≤

√
3kSFTFS(1−FS)(kT−P1) , |A8

S | ≤
1

2

√
3kSFTFS(1−FS)(kT +P1) . (4.10)

Combining further the eqs. (3.12)–(3.14), one obtains a similar bound on AS (see ap-

pendix B for a detailed derivation):

|AS | ≤ 2
√

3kLkSFS(1− FS)(1− FT ) (4.11)

The constraints (4.10) and (4.11) are identical to the ones given in eq. (51) of ref. [5] up

to the Breit-Wigner factor F = Z/
√
XY present in the latter. The results of ref. [5] were
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derived using a different method based on the Cauchy-Schwartz inequality. The factor F

is a consequence of the implicit assumption of a narrow S-wave resonance made in ref. [5],

and it has to be replaced by its upper limit Fmax = 1 in the general case. This subtlety

has little impact on the numerical results given in ref. [5] as the phenomenological analysis

there was performed taking F = 0.9 ≈ 1. We further note that once again the stated results

in eqs. (4.10) and (4.11) are valid up to quadratic terms in CP-violating coefficients, with

exact versions being obtained via the replacements (3.16) and (3.17).

Proceeding in an analogous way as in the P-wave case in section 4.2, we find also for

the S-wave parameters relations at the position q2 = q2
1 of the zero of the observable x.

The corresponding equations read

[
(kT + P1)A7

S − 4P2A
8
S + 2P3A

5
S

]
q21

= 0 ,[
(kT − P1)A8

S − P2A
7
S − 2P3A

4
S

]
q21

= 0 ,[
(kT + P1)A4

S − P2A
5
S − 2P3A

8
S

]
q21

= 0 ,[
(kT − P1)A5

S − 4P2A
4
S + 2P3A

7
S

]
q21

= 0 , (4.12)

and simplify to

2A4
S(q2

1) =

[
A5
S

√
kT − P1

kT + P1

]
q21

and A7
S(q2

1) =

[
2A8

S

√
kT − P1

kT + P1

]
q21

(4.13)

under the assumption of P3A
i
S � P2A

j
S . For P1 � 1, one obtains at the position q2

1 of the

maximum of P2:

2A4
S(q2

1) = A5
S(q2

1) and A7
S(q2

1) = 2A8
S(q2

1) . (4.14)

The symmetry relation (3.13), together with the implicitly contained rela-

tions (4.13), (4.14) at the zero q2
1 of x, imposes correlations among the AiS implying con-

straints that go beyond the individual bounds given in eqs. (4.10), (4.11). To illustrate

this, we assume that a measurement gives A7,8
S � A4,5

S . In this case, the symmetry rela-

tion (3.13) implies a direct correlation between A4
S and A5

S . If for example A5
S is measured

to be A5
S = αP ′5 where α =

√
3FTFS(1− FS)kS/kL, A4

S is completely fixed to A4
S = α

2P
′
4.

This scenario is illustrated in figure 3 for constant FS ' 6%. The orange dashed curves in

the plots on the left are obtained for SM values of P ′4,5, while the red dashed curves in the

plots on the right correspond to the presence of CNP
9 = −1.5 (in addition the SM curve

is shown also in the plots on the right to visualize the shift between the two curves). If

one of the curves is measured for A5
S , the corresponding curve for A4

S is predicted by the

symmetry relation, and vice versa. Note that also the blue bands corresponding to the

uncorrelated bounds from eq. (4.10) are slightly different in the SM and in the NP case.
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Figure 3. Illustration of the constraints on A4,5
S obtained from relation (3.13) in the SM (left

two plots) and in the presence of CNP
9 = −1.5 (right two plots). Blue bands correspond to the

uncorrelated bounds from eq. (4.10). Dashed lines illustrate the correlation between A4
S and A5

S

obtained from relation (3.13) for the scenario described in the text (orange for the SM, red for

CNP
9 = −1.5).

As in the previous section for the P-wave observables, we give also for the S-wave ob-

servables simplified versions of the symmetry relations at the zero q2 = q2
0 of P2. Neglecting

the small P3, P ′6,8 terms, eqs. (3.13) and (3.14) simplify to[
(4A4 2

S +A7 2
S )(1+P1)+(A5 2

S +4A8 2
S )(1−P1)

]
q20

=3
[
(1−FS)FSFT (1−P 2

1 )
]
q20
, (4.15)

AS(q20)=

[
2
√

1−FT

(
2A4

S(1+P1)P ′4+A5
S(1−P1)P ′5

)
√
FT (1−P 2

1 )

]
q20

.

(4.16)

5 Conclusions

In this article we have exploited the spin symmetry of the angular distribution of the decay

B → K∗µ+µ−, both in the P-wave as well as in the S-wave sector. We have shown that

the symmetry reduces the number of independent S-wave observables from six to four,

implying two non-trivial relations among the observables FS , AS , A4
S , A5

S , A7
S and A8

S

which we derived explicitly. The relations allowed us to obtain individual bounds on the

A
(i)
S which agree with the ones determined in ref. [5] via the Cauchy-Schwartz inequality.

However, the constraining power of the symmetry relations goes beyond these individual

bounds as they correlate the S-wave observables among each other. The implementation of

these correlations into the experimental data analysis is expected to reduce the background

from S-wave pollution. As an example, we have shown how for A7,8
S � A4,5

S the correlations

fix A4
S from a measurement of A5

S and FS (or A5
S from a measurement of A4

S and FS) in

the whole range of the of the squared dilepton invariant mass q2. We further showed that

A4
S/A

5
S and A7

S/A
8
S are completely fixed at a point q2 = q2

1 where q2
1 coincides with the

position of the maximum of the P-wave observable P2 in the absence of new right-handed

currents.

We also pointed out the strong potential of the maximum of P2 for probing NP beyong

the SM, in particular the presence of new right-handed currents, in a region far away from

charm resonances. We have shown that a shift of the position of the maximum of P2

compared to its SM expectation, with the height of the maximum Pmax
2 kept at the SM
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value 1/(2β), would be a signal of a NP contribution to the SM-like Wilson coefficients C7,

C9, C10. A maximum value Pmax
2 < 1/(2β), on the other hand, would detect the presence

of new right-handed currents and thus complement information from the (currently not

very precisely measured) observable P1. We have further proven and illustrated that for

C ′7 = C ′9 = C ′10 = 0 the angular observables P ′4 and P ′5 fulfill P ′4 = βP ′5 at the position

of the maximum of P2, so that any deviation from this relation would equally signal the

presence of new right-handed currents.
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A Gauge conditions for the amplitudes

All the angular observables studied by the LHCb experiment are invariant under a U(2)

rotation of the vectors ni defined in eq. (2.4). As a consequence, the amplitudes AL,Ri
cannot be determined unambigously from experiment. In order to arrive at a one-to-

one correspondence between the experimental observables and the theoretical amplitudes,

one has to fix a convention which picks for every class of U(2)-related amplitudes a certain

representant (similar to “fixing the gauge”). One convenient choice that has been proposed

and is used by the Imperial group of the LHCb experiment [37, 38] consists in requiring

ReAR0 = 0 , ImAR0 = 0 , ImAL0 = 0 , ImAR⊥ = 0 .

This choice is not unique, several combinations are possible (see ref. [34] for a different

choice). Starting from an arbitrary amplitude, one arrives at the above configuration by

means of the U(2) transformation

ni →
[
eiφL 0

0 e−iφR

][
cos θ − sin θ

sin θ cos θ

][
cosh iθ̃ − sinh iθ̃

− sinh iθ̃ cosh iθ̃

]
ni ,

with

tan 2θ̃ = 2
ImAR0 ReAL0 + (L↔ R)

|AR0 |2 − |AL0 |2
,

tan θ =
ReAR0 + ImAL0 tan θ̃

−ReAL0 + ImAR0 tan θ̃
,

tanφL =
ImAL0 + ImAR0 tan θ − (ReAR0 − ReAL0 tan θ) tan θ̃

−ReAL0 + ReAR0 tan θ + (ImAR0 + ImAL0 tan θ) tan θ̃
,

tanφR =
ImAR⊥ + ImAL⊥ tan θ − (ReAL⊥ − ReAR⊥ tan θ) tan θ̃

−ReAR⊥ + ReAL⊥ tan θ + (ImAL⊥ + ImAR⊥ tan θ) tan θ̃
.
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B Derivation of the bound on AS

In this appendix we present an explicit derivation of the constraint on the S-wave observ-

able AS given in eq. (4.11). Combining the relations (3.12)–(3.14) as a2 (3.12) +3b2 (3.13)

+ab (3.14) with arbitrary real coefficients a, b, one obtains an equation for linear combi-

nations aP ′i ± (2)bAiS of P- and S-wave observables which has the same structure as the

individual P ′i - and AiS-relations (3.12) and (3.13):

Y (a, b)
[
k2
T−P 2

1 −4P 2
2 −4P 2

3

]
= −4P2

[
(aP ′4+2bA4

S)(aP ′5+bA5
S)+(aP ′6−bA7

S)(aP ′8−2bA8
S)
]

− 4P3

[
(aP ′5+bA5

S)(aP ′6−bA7
S)−(aP ′4+2bA4

S)(P ′8−2bA8
S)
]

+ (kT +P1)
[
(aP ′4+2bA4

S)2+(aP ′6−bA7
S)2
]

+ (kT−P1)
[
(aP ′5+bA5

S)2+(aP ′8−2A8
S)2
]
, (B.1)

with

Y (a, b) = a2kL + 3b2kSFTFS(1− FS) + abAS

√
FS

1− FS

= kL

[
a+

b

2kL
AS

√
FT

1− FT

]2

+
b2

4kL

FT
1− FT

[
12kLkSFS(1− FS)(1− FT )−A2

S

]
.

(B.2)

Requiring ∆(aP ′4 +2bA4
S) ≥ 0 in analogy to eq. (4.4) in order to ensure that the observable

aP ′4 + 2bA4
S is real, one finds that Y (a, b) ≥ 0. This condition has to be fulfilled for any

possible linear combination, i.e. for any value of a, b, which according to eq. (B.2) enforces

AS to respect the constraint (4.11):

|AS | ≤ 2
√

3kLkSFS(1− FS)(1− FT ) . (B.3)
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[27] S. Jäger and J. Martin Camalich, Reassessing the discovery potential of the B → K∗`+`−

decays in the large-recoil region: SM challenges and BSM opportunities, arXiv:1412.3183

[INSPIRE].

[28] J. Lyon and R. Zwicky, Resonances gone topsy turvy — the charm of QCD or new physics in

b→ s`+`−?, arXiv:1406.0566 [INSPIRE].

[29] A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.M. Wang, Charm-loop effect in

B → K(∗)`+`− and B → K∗γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].
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