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1 Introduction and summary

Much recent progress in understanding the structure of scattering amplitudes in field the-

ory has been based on understanding the analytic structure of loop corrections in terms

of the Hopf structure underlying the iterated integrals defining multiple polylogarithms.

Results along these lines have been obtained in [1–6], primarily based on using the sym-

bol [7–9] or motivic coaction [10–12] as a tool to perform analysis of the analytic structure

in an algebraic manner. While loop corrections in field theory quickly become rather com-

plicated, there is a similar problem in which a transcendental structure appears in a much

milder form, namely string theory scattering amplitudes at tree level. If one expands tree-

level string amplitudes in α′, the inverse string tension, one finds coefficients which contain

multiple zeta values, rather than multiple polylogarithms.

In [13] an intriguing pattern of multi-zeta values was found in the α′ expansion of the

open superstring amplitudes. The coefficients of all multiple zeta values of depth greater

than one are fixed in terms of those of depth one in a specific way, indicating that in the

case of superstring amplitudes, the Hopf structure is not just a tool that can be used to

analyse the results, but rather it is intrinsic to their structure.

The pattern among the multiple zeta values was expressed in [13] in terms of an auxil-

iary map φ which relates the (motivic) multi-zetas to a Hopf algebra of words endowed with

the shuffle product. The map was introduced in [11, 12] to help to explain the structure

of the space of motivic multi-zetas and to produce an efficient algorithm for fixing a basis
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and projecting a given multi-zeta value into that basis. As noted in [13] this pattern is

closely related to a representation of the identity operator on the Hopf algebra of words,

so that the pattern is something canonical. However the objects introduced to encode

the structure do depend on the choice of basis of multiple zeta values. In particular, the

isomorphism φ between the multi-zetas and the Hopf algebra of words is non-canonical in

that it depends on the basis of multi-zetas chosen. One of the aims of the present work

is to express this pattern purely in terms of the Hopf structure associated to multi-zeta

values, without introducing a basis.

Indeed we will see that we can rephrase the pattern found in [13] purely in terms of

the coaction on motivic multiple zetas, making the independence on the choice of basis

manifest. Following [14, 15] we express the colour-ordered open superstring amplitudes in

terms of a matrix R acting on a vector of independent colour-ordered super Yang-Mills

amplitudes,

Aopen = RAYM . (1.1)

The matrix R = 11+O(α′) encodes all the α′ corrections to the super Yang-Mills amplitudes.

In terms of the motivic coaction, the pattern found in [13] can be rephrased as follows,

∆Rm = Rm⊗̇Ra . (1.2)

The superscripts on R refer to the fact that all multi-zeta values should be replaced by

their motivic versions (so that the coaction is defined) and moreover that in the right-hand

factor we should work modulo ζm2 . The equation (1.2) implies that all coefficients of mul-

tiple zetas of depth greater than one are fixed in terms of those of depth one, in complete

agreement with the structure presented in [13].

Moreover the equation (1.2) is similar to a property obeyed by another object, the Drin-

fel’d associator Φ [16, 17], defined in terms of the Knizhnik-Zamolodchikov equation [20].

It is a form of universal monodromy for solutions of the KZ equation. The associator can

be written as a generating series for all (shuffle regularised) multiple zeta values,

Φ =
∑

w

wζ∐∐ (w) , (1.3)

where the w are words in two letters. Φ obeys the relation

∆Φm = Φm ⊳

⊗Φa , (1.4)

in complete analogy with (1.2), where ⊳ is the Ihara action [19, 30, 31] on group-like series

of words.

Indeed we will see in the simplest case (the four-point amplitude) that we can actually

identify the associator Φ with the matrix R appearing in the open superstring amplitude,

which actually allows one to fix also the coefficients of the zeta values of depth one.

The paper is organised as follows. We begin with a very brief review of superstring

amplitudes in section 2. We introduce multiple zeta values and the motivic coaction in

section 3. Then, in section 4 we describe the patterns in the α′ expansion of the amplitudes
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found in [13] and describe how they can be rephrased as in eq. (1.2). In section 5 we in-

troduce the associator and describe its properties under the motivic coaction. In section 6

we use the Knizhnik-Zamolodchikov equation to derive the form of the open superstring

four-point amplitude. In section 7 we make some remarks on the structure of closed super-

string amplitudes and the constraints on the multiple zeta values appearing in both closed

and open superstring amplitudes.

2 Tree-level open superstring scattering amplitudes

Let us begin with tree-level scattering amplitudes in gauge theory. The n-gluon amplitude

of a gauge theory can be decomposed as a sum over cyclic colour-ordered partial amplitudes,

Agauge =
∑

σ∈Sn/Cn

Agauge(σ(1), . . . , σ(n))Tr(T aσ(1) . . . T aσ(n)) . (2.1)

The tree-level open superstring amplitude Aopen of massless gauge bosons can similarly

be decomposed in terms of colour-ordered partial amplitudes Aopen. The superstring am-

plitudes depend on α′, the inverse string tension and in the limit α′ → 0 one recovers

the gauge theory amplitudes. All of these statements are independent of the number of

uncompactified dimensions in which one studies the scattering process.

The colour-ordered partial amplitudes in gauge theory obey certain relations. The

simplest among these are the cyclic and reflection identities. Then one has the photon

decoupling identity and Kleiss-Kuijf relations [21]. Finally there are the BCJ relations [22].

These relations among gauge theory partial amplitudes can be derived from the monodromy

properties of the open string theory partial amplitudes [23–25]. If one uses all these relations

to reduce the set of colour-ordered partial amplitudes to a minimal set, then (n−3)! partial

amplitudes remain. One may choose these partial amplitudes to be those obtained from all

permutations of the labels 2, . . . , n−2, keeping 1, (n−1) and n fixed. We may arrange these

remaining amplitudes into a vector which we denote by Agauge, or correspondingly, Aopen.

Thus we have a vector of independent colour-ordered open superstring amplitudes

related to the corresponding field theory amplitudes via a matrix R,

Aopen = RAgauge . (2.2)

The matrix R has an expansion R = 11 + O(α′). In general, terms of order (α′)m contain

multi-zeta values of weight m. The detailed structure of the α′ corrections has been stud-

ied in [14, 15]. As one might expect it is given in terms of (n − 3)-fold integrals over the

positions of the vertex operators not fixed using conformal symmetry. Here we will outline

the simplest cases n = 4, 5.

The simplest case is n = 4 where the matrix R is therefore a (1 × 1) matrix. In this

case one has [26]

R =
Γ(1− s)Γ(1− t)

Γ(1− s− t)
. (2.3)

Here s = α′(p1 + p2)
2 and t = α′(p2 + p3)

2 are the two Mandelstam variables and we recall

that the momenta satisfy p2i = 0 since we are considering the on-shell scattering of mass-

less gauge bosons. If we expand the gamma functions as a series in s and t we find zeta
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values. Specifically, we can write R as the exponential of an infinite series of contributions

proportional to simple zeta values ζn = ζ(n),

R = exp
∑

n≥2

ζn
n
[sn + tn − (s+ t)n] . (2.4)

If we wish we may decompose the exponential into the contributions of even and odd zeta

values,

R = PE (2.5)

where

P = exp
∑

n≥1

ζ2n
2n

[s2n + t2n − (s+ t)2n] (2.6)

and

E = exp
∑

n≥1

ζ2n+1

2n+ 1
[s2n+1 + t2n+1 − (s+ t)2n+1] . (2.7)

For five-point amplitudes, R is a (2× 2) matrix,

R =

(

F1 F2

F̃2 F̃1

)

(2.8)

where we have

F1 = s12s34

∫ 1

0
dx

∫ 1

0
dyxs45ys12−1(1− x)s34−1(1− y)s23(1− xy)s24 ,

F2 = s13s24

∫ 1

0
dx

∫ 1

0
dyxs45ys12(1− x)s34(1− y)s23(1− xy)s24−1 . (2.9)

The five independent Mandelstam variables are chosen to be s12, s23, s34, s45, s24 with sij =

(pi + pj)
2. The functions F̃1 and F̃2 are given by F̃i = Fi|p2↔p3 . The integrals above can

be expressed in terms of hypergeometric functions and gamma functions [15, 27].

F1

s12s34
=

Γ(1 + s45)Γ(s12)Γ(s34)Γ(1 + s23)

Γ(1 + s45 + s34)Γ(1 + s12 + s23)

× 3F2(1 + s45, s12,−s24; 1 + s45 + s34, 1 + s12 + s23; 1) , (2.10)

F2

s13s24
=

Γ(1 + s12)Γ(1 + s23)Γ(1 + s34)Γ(1 + s45)

Γ(2 + s12 + s23)Γ(2 + s34 + s45)
,

× 3F2(1 + s12, 1 + s45, 1− s24; 2 + s12 + s23, 2 + s34 + s45; 1) . (2.11)

If we expand the above hypergeometric functions as a series in the Mandelstam vari-

ables we find multiple zeta values. Before discussing the patterns in the expansion found

in [13] we will give a short introduction to multiple zeta values and the Hopf structure of

their motivic counterparts.
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3 Multi-zeta values and their motivic counterparts

Multi-zeta values can be defined in terms of nested sums. Here we will use an iterated

integral representation. We consider iterated integrals of the following form,

I(a0; a1, . . . , an; an+1) =

∫

γ

dz1
z1 − a1

. . .
dzn

zn − an
(3.1)

where γ is a path from a0 to an+1 avoiding the poles at a1, . . . , an, and the integral is

performed so that a0, z1, . . . , zn, an+1 gives an ordering along the curve. If the poles coincide

with the endpoints the integral may require regularisation.

Sometimes we will use the notation I(a0;w; a1) where w is the word a1 . . . an. The

multi-zeta values are special cases where a0 = 0 and an+1 = 1, with γ being the path along

the real axis, and ai ∈ {0, 1} for 1 ≤ i ≤ n. There is a also a sign depending on the number

r of the ai equal to 1,

ζ(p1, . . . , pr) = (−1)rI(0; 10p1−1 . . . 10pr−1; 1) . (3.2)

We take pr ≥ 2 to ensure convergence of the integral. Very often we write ζp1,...,pr to save

a little space. Even more compactly we can write

ζ(w) = (−1)rI(0;w; 1) (3.3)

where w is a word built from the letters {0, 1}, beginning with a 1 and ending with a 0, and

r is the number of ones in w as before. The simplest example of a zeta value is given by

ζ2 = −I(0; 10; 1) = −

∫ 1

0

dt1
t1 − 1

∫ 1

t1

dt2
t2

. (3.4)

All even simple zeta values are rational multiples of powers of ζ2,

ζ2n = bnζ
n
2 , bn = (−1)n+1 1

2
B2n

(24)n

(2n)!
, (3.5)

where B2n denotes the Bernoulli numbers.

The iterated integrals obey a shuffle product relation,

I(a0;w1; an+1)I(a0;w2; an+1) = I(a0;w1∐∐w2; an+1) , (3.6)

where we recall that the shuffle product of two words w1∐∐w2 is a sum over all words given

by permutations of the elements of w1 and w2 which preserve the orderings within w1 and

w2. For a0 = 0 and an+1 = 1 this implies the shuffle relation for the multiple zeta values,

ζ(w1)ζ(w2) = ζ(w1∐∐w2) . (3.7)

We can use the above relation to define a regularised version of the multi-zeta values whose

words begin with 0 or end in a 1; we extract any leading zeros and trailing ones from a

given zeta using the shuffle relation and define ζ∐∐ (0) = ζ∐∐ (1) = 0.
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a0

ai1

ai2

ai3

ai4

an+1

Figure 1. A contribution to the motivic coaction for k = 4.

One may lift iterated integrals I to their ‘motivic’ versions Im. These are defined as

abstract elements of an algebra HMT , graded by weight and obeying the shuffle product

relation (3.6). The motivic iterated integrals satisfy all known algebraic relations satisfied

by real iterated integrals and conjecturally capture all such relations. As special cases of

the motivic iterated integrals one has the motivic multiple zeta values ζm(w) = Im(0;w; 1).

Since all even simple zeta values are known to be rational multiples of powers of ζ2,

the element ζm2 plays a special role. It is convenient to introduce the quotient AMT =

HMT /ζm2 , whose elements are denoted Ia (or ζa when specialising to motivic MZVs).

Then AMT is a Hopf algebra and HMT is a trivial comodule over AMT which can be

non-canonically identified with Q[ζm2 ] ⊗ AMT . As an algebra it is commutative, with the

product being the shuffle product (3.6). The coaction ∆ : HMT −→ HMT ⊗ AMT is

defined on the motivic iterated integrals as follows [10–12].

∆Im(a0; a1, . . . , an; an+1) = (3.8)

=
∑

k

∑

i0<i1...ik<ik+1

Im(a0; ai1 , . . . , aik ; an+1)⊗

( k
∏

p=0

Ia(aip ; aip+1, . . . , aip+1−1; aip+1)

)

.

The terms in the above formula can be associated with polygons inscribed into the semi-

circle with (n + 1) marked points aj . Note we have reversed the order of the factors on

the r.h.s. with respect to [11, 12]. The above coaction specialises in the obvious way to the

algebra of motivic multiple zeta values, denoted by H.

The only primitive elements of H are the simple zeta values ζmn . Because of the fact

that one should mod out by ζm2 on the right-hand factor, the coaction looks different for

even and odd simple zetas,

∆ζm2n = ζm2n ⊗ 1, ∆ζm2n+1 = ζm2n+1 ⊗ 1 + 1⊗ ζa2n+1 . (3.9)
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4 Patterns in the α
′ expansion

In [13] the following pattern for R in the five-point case was found up to weight 16,

R = PQE (4.1)

where

P = 1 +
∑

ζ2nP2n , (4.2)

E =: exp
∑

ζ2n+1M2n+1 : (4.3)

and

Q = 1 +
∑

n≥8

Qn . (4.4)

The normal ordering symbol in E means that : MiMj := MjMi if i < j and : MiMj :=

MiMj otherwise. Alternatively one may write E as an ordered product of exponentials

E = (. . . eζ5M5eζ3M3). The matrices Qn contain multiple zeta values of higher depth and

are determined in terms of commutators of the M2n+1. Thus if all the Mn commute with

each other, as is the case for the four-point amplitude, the matrix Q reduces to the iden-

tity. The structure is therefore a generalisation of the one for the four-point amplitude to

non-commuting Mi.

Before we discuss in detail the structure from a Hopf algebraic point of view, let

us exhibit the first few terms in Q found in [13] in order to illustrate how the coef-

ficients of multiple zetas of higher depth are fixed in terms of those of depth 1. For

this we need to make our basis of multi zeta values explicit. Up to weight 12 we take

{ζ2, ζ3, ζ5, ζ7, ζ3,5, ζ9, ζ3,7, ζ11, ζ3,3,5, ζ3,9, ζ1,1,4,6} and all possible products of these elements.

In this basis the Qn found in [13] take the form,

Q8 =
1

5
ζ3,5[M5,M3] , (4.5)

Q9 = 0 , (4.6)

Q10 =

(

3

14
ζ25 +

1

14
ζ3,7

)

[M7,M3] , (4.7)

Q11 =

(

9ζ2ζ9 +
6

25
ζ22ζ7 −

4

35
ζ32ζ5 +

1

5
ζ3,3,5

)

[M3, [M5,M3]] , (4.8)

Q12 =

(

2

9
ζ5ζ7 +

1

27
ζ3,9

)

[M9,M3]

+
48

691

(

18

35
ζ32ζ

2
3 +

1

5
ζ22ζ3ζ5 − 10ζ2ζ3ζ7 −

7

2
ζ2ζ

2
5 −

3

5
ζ22ζ3,5 − 3ζ2ζ3,7

−
1

12
ζ43 −

467

108
ζ5ζ7 +

799

72
ζ3ζ9 +

2665

648
ζ3,9 + ζ1,1,4,6

)

(

[M9,M3]− 3[M7,M5]
)

(4.9)

To be completely explicit, let us expand the matrix R up to order (α′)10,

R = 1 + ζ2P2 + ζ3M3 + ζ4P4 + ζ5M5 + ζ2ζ3P2M3 +
1

2
ζ23M3M3 + ζ6P6
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+ ζ7M7 + ζ2ζ5P2M5 + ζ4ζ3P4M3 +
1

5
ζ3,5[M5,M3] + ζ5ζ3M5M3

+
1

2
ζ2ζ

2
3P2M3M3 + ζ8P8 + ζ9M9 +

1

6
ζ33M3M3M3 + ζ2ζ7P2M7

+ ζ4ζ5P4M5 + ζ6ζ3P6M3 +

(

3

14
ζ25 +

1

14
ζ3,7

)

[M7,M3] + ζ7ζ3M7M3

+
1

2
ζ25M5M5 +

1

5
ζ2ζ3,5P2[M5,M3] + ζ2ζ5ζ3P2M5M3

+
1

2
ζ4ζ

2
3P4M3M3 + ζ10P10 + . . . (4.10)

The fact that the coefficients of the higher depth multi zeta values are given in terms of

those of the simple zeta values can be explained in terms of the Hopf algebra structure

obeyed by the motivic multi zeta values. It is therefore useful to introduce the notation

Rm to denote the matrix R with the zeta values replaced by their motivic versions and Ra

to denote the same matrix modulo ζm2 .

In [13], the structure underlying the matrix R was described by introducing an auxiliary

Hopf algebra U ′, following [11, 12]. The Hopf algebra U ′ is the commutative, graded Hopf

algebra of all non-commutative words in generators of each odd degree d ≥ 3, denoted by

{f3, f5, f7, f9, . . .}. These generators play the role of the simple zeta values. The product

on U ′ is the shuffle product; the coproduct is given by deconcatenation. The even zeta

values are taken into account by considering the trivial comodule

U = Q[f2]⊗ U ′ , (4.11)

where f2 is a generator of degree 2. The references [11, 12] show how to construct isomor-

phisms φB : H → U , depending on the choice of basis B of the motivic multi-zeta values

H. We describe the isomorphisms φB in more detail in the appendix, describing their basis

dependence.

Having introduced the isomorphisms φB associated to a given basis of H, we can now

state explicitly the structure found in [13] for the matrix R describing the open superstring

scattering amplitudes. After replacing all zeta values with their motivic versions in the

expansion of R, one finds the following simple pattern after applying the isomorphism φB,

φB(R
m) =

(

∑

fk
2P2k

)

∑

p

∑

i1,...,ip

Mi1 . . .Mipfi1 . . . fip . (4.12)

We remind the reader that both the matrices P and M and the map φB depend on the

choice of basis B forH, although we have not made explicit the dependence of Pr andMr on

B. The above structure (4.12) for the image of R under φB, however, does not depend on B.

Indeed, it was noted in [13] that (4.12) has the same form as the canonical element

of U ⊗ U∗. Let us introduce the operators ∂2r+1 which act from the right on a word built

from the fn so that ∂2r+1 removes the last letter of the word if it is f2r+1 or annihilates

the word otherwise. Thus ∂r1 . . . ∂rn is the dual basis element to fr1 . . . frn . Similarly we

can introduce operators ∂2r on the left which pick out the coefficient of f r
2 . Then replacing

P2k by ∂2k and M2r+1 by ∂2r+1, formula (4.12) turns into the canonical element of U ⊗U∗.

Thus the matrices P2k and M2k+1 represent the operators ∂r.

– 8 –
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In fact one may state the above rather more simply by saying that the matrices P and

M represent the duals of the primitive zeta values in a given basis B. Thus Rm is really

representing the canonical element of H⊗H∗. At this stage, no information is available on

what the representation is, other than by directly expanding the result for the amplitude.

We now observe that the above structure can be restated as the following property of R,

∆Rm = Rm⊗̇Ra . (4.13)

Here the symbol ⊗̇ means that the two factors of the tensor product are multiplied as ma-

trices. In addition to its compactness, the above expression makes manifest the fact that

the structure found in [13] is independent of any choice of basis for H. The relation (4.13)

for the coaction on Rm fixes all but the primitive elements, i.e. contributions proportional

to ζmn , corresponding to the matrices P2n and M2n+1 above. Another advantage to (4.13)

is that, in order to test it, one does not have to refer to the underlying algebra structure

of U or H. One simply computes the motivic coaction on Rm and compares with the r.h.s.

The equation (4.13) for Rm is equivalent to the fact that Rm represents the canonical

element R in H ⊗H∗. Indeed we have, in terms of a basis ei of H (and ẽk of A) and the

dual basis e∗i of H∗ (and ẽ∗k of A∗),

∆R = ∆
(

∑

i

ei ⊗ e∗i

)

=
∑

i,j,k

fjki(ej ⊗ ẽk)⊗ e∗i

= µ
∑

j

(ej ⊗ e∗j )⊗
∑

k

(ẽk ⊗ ẽ∗k) = R⊗̇R̃. (4.14)

Here ∆ei =
∑

j,k fjkiej ⊗ ẽk describes the coaction on H and µ(e∗j ⊗ ẽ∗k) =
∑

i fjkie
∗
i de-

scribes the action on the duals. We have checked explicitly that the expressions given

in [13] do indeed satisfy the relation (4.13) to weight 15.

The consequence of (4.13) is that the amplitude is completely determined in terms of

the matrices P2n and M2n+1. The matrices P2n and M2n+1 themselves are not determined.

This is already clear at the level of the four-point amplitude since any expression of the form

Rm = exp
{

∑

cnζ
m
n

}

(4.15)

will obey ∆Rm = Rm⊗Ra. One may ask if there is any connection to the Hopf structure of

zeta values which fixes the coefficients cn to be precisely those appearing in the four-point

amplitude.

5 Connection to the Drinfel’d associator

By comparing formulas appearing in [13] and [31] one can see that the structure of the ma-

trix R describing the open superstring amplitude mirrors closely the structure of another

object, the Drinfel’d associator [16, 17]. This is a form of universal monodromy for the

Knizhnik-Zamolodchikov equation.

The associator can be written as a generating function for all multi-zeta values,

Φ =
∑

w

wζ∐∐ (w) , (5.1)
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where the sum is over all words w in the alphabet {e0, e1} and the multi-zeta values are reg-

ularised using the shuffle product. The space of words on {e0, e1} can be identified with the

universal enveloping algebra U(g) of the free Lie algebra on two generators g = Lie[e0, e1] .

Thus Φ is an element of U(g) over the reals.

To express the associator it is useful to introduce derivations acting on U(g) as follows.

Given an element y of g we define (following [18, 19])

Dye0 = 0, Dye1 = [e1, y] , (5.2)

and extend Dy as a derivation to the whole of U(g). Given the derivations D above we can

define a right action of g on U(g) as follows,

x ◦ y = xy −Dyx, y ∈ g, x ∈ U(g) . (5.3)

The Ihara bracket is defined as its antisymmetrisation after restricting U(g) to g in the

natural way,

{x, y} = x ◦ y − y ◦ x = [x, y] +Dxy −Dyx , x, y ∈ g . (5.4)

Note that {x, y} is also an element of g (actually it is even an element of g′ = [g, g]). The

Ihara bracket is the Poisson bracket which arises through commutation of the derivationsD,

[Dx, Dy] = D{x,y} , (5.5)

and it therefore obeys the Jacobi identity.

By direct calculation one may compute the associator up to a given weight. We have

explicitly computed it up to weight 13 and expressed the result in terms of the same zeta-

values used in the previous section. Here we will display the expansion for the associator

up to weight 10,

Φ = 1 + ζ2p2 + ζ3w3 + ζ4p4 + ζ5w5 + ζ2ζ3(w2 ◦ w3) +
1

2
ζ23 (w3 ◦ w3) + ζ6p6

+ ζ7w7 + ζ2ζ5(p2 ◦ w5) + ζ4ζ3(p4 ◦ w3) +
1

5
ζ3,5{w5, w3}+ ζ5ζ3(w5 ◦ w3)

+
1

2
ζ2ζ

2
3 ((p2 ◦ w3) ◦ w3) + ζ8p8 + ζ9w9 +

1

6
ζ33 ((w3 ◦ w3) ◦ w3) + ζ2ζ7(p2 ◦ w7)

+ ζ4ζ5(p4 ◦ w5) + ζ6ζ3(p6 ◦ w3) +

(

3

14
ζ25 +

1

14
ζ3,7

)

{w7, w3}+ ζ7ζ3(w7 ◦ w3)

+
1

2
ζ25 (w5 ◦ w5) +

1

5
ζ2ζ3,5(p2 ◦ {w5, w3}) + ζ2ζ5ζ3((p2 ◦ w5) ◦ w3)

+
1

2
ζ4ζ

2
3 ((p4 ◦ w3) ◦ w3) + ζ10p10 + . . . (5.6)

Comparing to equation (4.10) we see the obvious similarity. Going from (5.6) to (4.10),

the words p2r are replaced by the matrices P2r, the words w2r+1 by the matrices M2r+1

and the product ◦ by the matrix product. The antisymmetrisation of the operation ◦ on

two elements of g is the Ihara bracket which is therefore replaced by matrix commutators.
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If we consider the coproduct ∆g on all words in the alphabet {e0, e1} defined by

demanding

∆g(ei) = ei ⊗ 1 + 1⊗ ei , (5.7)

∆g(w1w2) = ∆g(w1)∆g(w2) , (5.8)

we find Φ is group-like,

∆gΦ = Φ⊗ Φ . (5.9)

Thus log Φ is a Lie series. Moreover, since it contains no elements of length 1, it is a series

in g′ = [g, g].

The words p2r and w2r+1 are not quite on the same footing. The reason is that all

even simple zetas are related to powers of ζ2 via (3.5). Hence, while all the words w2r+1

are elements of g′ in accord with (5.9), this is not the case for the words p2r for r > 1. It

is therefore helpful to define the words w2r ∈ g′ via

w2 = p2 ,

w4 = p4 −
1

2b2
w2 ◦ w2 ,

w6 = p6 −
b2
b3
w4 ◦ w2 −

1

6b3
(w2 ◦ w2) ◦ w2 (5.10)

and so on so that log Φ is explicitly a Lie series,

log Φ = ζ2w2 + ζ3w3 + ζ4w4 −
1

2
ζ22Dw2w2 + ζ5w5 + ζ2ζ3

(

1

2
[w2, w3]−Dw3w2

)

+ ζ6w6 + ζ2ζ4

(

1

2
[w4, w2]−Dw2w4

)

−
1

6
ζ32

(

1

2
[Dw2w2, w2]−Dw2Dw2w2

)

+ . . . (5.11)

To be more concrete we give the explicit form of the first few words,

w2 = [e1, e0] (5.12)

w3 = [e0 − e1, [e0, e1]] (5.13)

w4 = −[e0, [e0, [e0, e1]]]−
3

2
[e1, [e0, [e1, e0]]] + [e1, [e1, [e1, e0]]] (5.14)

w5 = [e0, [e0, [e0, [e0, e1]]]]−
1

2
[e0, [e0, [e1, [e0, e1]]]]−

3

2
[e1, [e0, [e0, [e0, e1]]]]

+ (e0 ↔ e1) . (5.15)

We now introduce an exponentiated version of the action ◦, which we will denote

by ⊳. Given group-like series A and B in U(g), we define the action of B on A (follow-

ing [19, 30, 31]),

A ⊳ B = A(e0, Be1B
−1)B . (5.16)
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It is clear that the infinitesimal version of the action ⊳ defined above is ◦. Note that

1 ⊳ A = A ⊳ 1 = A and that ⊳ is associative since

(A ⊳ B) ⊳ C = (A(e0, Be1B
−1)B) ⊳ C

= A(e0, B(e0, Ce1C
−1)Ce1C

−1B(e0, Ce1C
−1)−1)B(e0, Ce1C

−1)C

= A(e0, (B ⊳ C)e1(B ⊳ C)−1)(B ⊳ C)

= A ⊳ (B ⊳ C) . (5.17)

Now we are in a position to compare to the relation obeyed by the matrix R in the

open string amplitude. By replacing all zeta values in the expansion of Φ with their motivic

versions, we obtain an element of U(g)⊗H which we call Φm. Calculating the coaction ∆,

one finds the following relation, completely analogous to (4.13),

∆Φm = Φm ⊳

⊗Φa . (5.18)

Here the symbol
⊳

⊗ indicates that the right-hand factor acts on the coefficient words of the

left-hand factor via the action ⊳,

Φm ⊳

⊗Φa =
∑

w

ζm∐∐ (w)⊗ w(e0,Φ
ae1(Φ

a)−1)Φa . (5.19)

This is a series of words with coefficients in H⊗A.

Thus we would like to identify the matrix R appearing in the open superstring ampli-

tude with Φ, with the matrix multiplication being a representation of the Ihara action ⊳.

In the next section we will show that the associator can be used to reproduce the four-point

amplitude by following this logic.

6 The four-point amplitude from the associator

The form (5.1) allows us to explicitly expand the associator, at least up to weights where

(conjecturally) all relations between multiple zeta values are explicitly known [29]. We

would like to ask if we can understand how to extract the matrices M2n+1 and P2n from

the form of the words w2n+1 and p2n. We will examine the simplest case, namely the

four-point amplitude, where we will in fact be able to identify P and M to all orders.

Since the matrix R is a (1× 1) matrix in the four-point case, we need a commutative

realisation of the Ihara action. In other words we need a representation where the Ihara

brackets {wr, ws} vanish. This will guarantee that all multiple zeta values of depth greater

than one will disappear.

Now we observe that for words wr and ws in g′, the Ihara bracket {wr, ws} is an

element of g′′ = [g′, g′]. This can be seen as follows. First we note that if we work modulo

g′′ then all elements of g′ can be written as a linear combination of the basis elements

ukl = adk0ad
l
1[e0, e1] , (6.1)

where adix = [ei, x] and the two adjoint actions commute. We recall that the Ihara bracket

takes the form

{wr, ws} = [wr, ws] +Dwrws −Dwswr . (6.2)
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For wr, ws ∈ g′ the first term on the r.h.s. is clearly in g′′. On the basis elements (6.1) we

have Dukl
uk′l′ = uk+k′+1,l+l′+1 modulo g′′ and so the final two terms on the r.h.s. of (6.2)

cancel modulo g′′. Hence the Ihara brackets vanish in g′/g′′ as required.

In this approximation, the associator in has been calculated in [17]. For completeness

we give a derivation in appendix B, starting from the Knizhnik-Zamolodchikov equation.

The result is

log Φ =
1

uv

[

Γ(1− u)Γ(1− v)

Γ(1− u− v)
− 1

]

[e0, e1], (6.3)

where u = −ad0 and v = ad1 and again we work modulo g′′.

From the above result we deduce that

Φ = 1 +
1

uv

[

Γ(1− u)Γ(1− v)

Γ(1− u− v)
− 1

]

[e0, e1] mod (g′)2. (6.4)

If we now think of Φ acting on U(g′)/(g′)2 via the Ihara action, we find that it is represented

by the multiplicative operator (i.e. a (1× 1) matrix),

R(u, v) =
Γ(1− u)Γ(1− v)

Γ(1− u− v)
, (6.5)

which, if we interpret the variables u and v as being the Mandelstam variables, is pre-

cisely the four-point amplitude R, with the coefficients Pn and Mn fixed to their correct

functional forms.

We emphasise here that we have derived only the simplest superstring amplitude, the

four-point one, which can of course be derived simply from many approaches. Ultimately,

given the form of the worldsheet integrals describing the amplitudes, it is not surprising

that it can be related to monodromies of the Knizhnik-Zamolodchikov equation [32]. How-

ever the approach we have outlined shows that the relation between the associator and the

amplitude guarantees that the relation (4.13) holds. Moreover, one can obtain more than

just the fact that the coefficients of the multiple zetas of higher depth are fixed in terms

of the M2n+1 and P2n; one can also fix the M2n+1 and P2n themselves.

7 Closed strings and constrained multiple zeta values

By employing the Kawai-Lewellen-Tye relations [33] one may obtain tree-level amplitudes

for closed strings from the ordered partial amplitudes for open strings [25],

Aclosed = (Aopen)tSAopen . (7.1)

Here S is a (n − 3)! × (n − 3)! matrix consisting of particular sin factors. It obeys the

important relation [13],

P tSP = S0, (7.2)

where S0 is the α′ → 0 limit of S, a matrix of homogeneous rational functions of the

Mandelstam variables.

The coefficients of odd zetas, the matrices Mn, obey (see also [13])

Mn = S−1
0 M t

nS0 , (7.3)
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implying that nested commutators Q(r) = [Ms1 , [Ms2 , [. . . [Msr−1 ,Msr ] . . .]]] obey

Q(r) = (−1)r+1S−1
0 Qt

(r)S0 . (7.4)

Since the nested commutators are the coefficients of specific multiple zeta values as dictated

by (4.13), it follows that Aclosed gets contributions from only certain specific combinations

of multiple zeta values. For example there are no linear contributions of multiple zeta

values of even depth. This has important consequences for the closed IIB superstring

effective action. Since the IIB theory has an SL(2,Z) duality symmetry, the axion and

dilaton appear in the effective action through specific modular forms. At tree level these

modular forms reproduce the zeta values. The restriction of the kinds of multiple zeta

values appearing at tree level will have some interplay with the possible kinds of modular

forms appearing. It would be interesting to investigate this point further.

In fact there are also restrictions on the kinds of multiple zeta values that can enter the

open superstring amplitude. For a given number of external particles there are relations

among the different commutators of the Mn simply due to the fact that they are finite ma-

trices. A very strong restriction appears at four points where, since the matrices are (1×1),

they all commute, i.e. [Mr,Ms] = 0. This is linked to the fact that no multiple zeta values

appear in the four-particle amplitude. At higher points the restrictions become successively

weaker. For example, at five points the matrices are (2× 2) and according to (7.3) above

they are conjugate to symmetric matrices. This implies that the commutators [Mr,Ms] are

conjugate to antisymmetric matrices, but since there is a unique (2×2) antisymmetric ma-

trix up to rescaling, the commutators commute with each other [[Mr,Ms], [Mt,Mu]] = 0.

Note that these constraints imply [Mr, [Ms, [Mt,Mu]]] = [Ms, [Mr, [Mt,Mu]]] and that such

relations were useful in [13] in establishing that the matrix Q takes an exponential form

up to weight 18 in the case of the five point amplitude. Relations such as these imply that

only specific linear combinations of multiple zeta values appear in the n-point amplitude

for fixed n. The constraints become weaker and weaker in the sense that more and more

linearly independent combinations of multiple zeta values appear as n grows.
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A Isomorphisms between H and U

In [13], the structure underlying the matrix R was described by introducing an auxiliary

Hopf algebra U ′, following [11, 12]. This Hopf algebra is the commutative Hopf algebra of

all words constructed from the alphabet {f3, f5, f7, f9 . . .}, i.e. the alphabet with a gener-

ator of every odd degree, r ≥ 3. The Hopf algebra product is the shuffle product ∐∐ and
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the coproduct is given by deconcatenation,

∆fa1 , . . . , fan =
∑

i

fa1 . . . fai ⊗ fai+1 . . . fan . (A.1)

By analogy with the structure of H above we define a trivial comodule over U ′ by

U = Q[f2]⊗ U ′ , (A.2)

where f2 is of degree 2. We can think of f2 as a letter which commutes with all of the

f2r+1. For convenience we will introduce the symbols f2n in analogy with (3.5) for the even

zeta values,

f2n = bnf
n
2 . (A.3)

Now one may construct many isomorphisms φB between H and U as described in [11].

The map φB depends on the choice of basis of H and is constructed as follows. First

one introduces an infinitesimal version of the coproduct (3.8) encapsulated by operators

Dr : H −→ H ⊗ L for r odd and r ≥ 3 and where L is H modulo ζm2 and modulo all

non-trivial products. Explicitly we have

DrI
m(a0; a1, . . . , an; an+1) =

=
n−r
∑

p=0

Im(a0; a1, . . . , ap, ap+r+1, . . . , an; an+1)⊗ IL(ap; ap+1, . . . , ap+r; ap+r+1) . (A.4)

This is the coproduct ∆, restricted so that the right-hand factor is taken modulo non-trivial

products.

Now we construct the map φB by assuming that our basis contains ζm2 and all the

ζm2n+1 and their products and imposing

φB(ζ
m
n ) = fn, n = 2, 3, 5, 7, 9, . . . (A.5)

Furthermore we impose that it is a homomorphism for the shuffle product on U ′, i.e.

φB(xy) = φB(x)∐∐φB(y) . (A.6)

Then for all non-trivial elements in the basis, i.e. the multi-zetas of higher depth, we impose

recursively that

φB(x) = µ
∑

r

(φB ⊗ π2r+1 ◦ φB)D2r+1(x) , (A.7)

where π2r+1 is the projection in U ′
2r+1 onto the word f2r+1 of length 1 and µ is simply

concatenation (not the shuffle) of words in U , treating f2 as commutative.

Let us look at weight 8 as an example. A basis of words in U at weight 8 is given by

{f4
2 , f2f3∐∐ f3, f3∐∐ f5, f3f5}. The first three elements are the result of applying φB to

the products ζ42 , ζ2ζ
2
3 , ζ3ζ5. To obtain the remaining word at weight 8 we can, for example,

include ζ3,5 in the basis B. Applying the operators D3 and D5 to ζ3,5 one finds

D3ζ3,5 = 0 , D5ζ3,5 = −5ζ3 ⊗ ζ5 (A.8)
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and hence φB(ζ3,5) = −5f3f5. Having fixed the basis at a given weight, one may express

all multi-zetas of that weight in terms of the basis. To decompose a particular multi-zeta

value one applies the same recursive algorithm to obtain its image under φB, except that

now one allows an arbitrary amount of the unique primitive element fn of the given weight

in the result. For example one finds

φB(ζ5,3) = 6f3f5 + f5f3 + af8 . (A.9)

Thus we conclude that

ζ5,3 = −ζ3,5 + ζ3ζ5 + aζ8 . (A.10)

By numerical evaluation (or in this case simply application of the stuffle relation ζ(p)ζ(q) =

ζ(p, q) + ζ(q, p) + ζ(p+ q)) one concludes that a = −1 . Had we chosen instead a different

basis B′ where ζ5,3 was included as a basis element we would have found

φB′(ζ5,3) = 6f3f5 + f5f3, φB′(ζ3,5) = −5f3f5 + f8 , (A.11)

Thus φB and φB′ define different isomorphisms between H and U . Note that the first time

one has an ambiguity involving an odd primitive zeta value is at weight 11 where different

choices of the depth 3 element to be included in the basis result in different coefficients

of f11 in the application of φB to a given multi-zeta value. Many more examples on the

definition and application of φB are given in [11, 13].

B Associator from the KZ equation

Here we provide a derivation of the form of the associator used in section 6. The asso-

ciator can be obtained as a regularised limit as z → 1 of the solution of the Knizhnik-

Zamolodchikov equation,
d

dz
L(z) = L(z)

(

e0
z

+
e1

1− z

)

, (B.1)

given by a formal sum over all harmonic polylogarithms,

L(z) =
∑

w

wH(w̃; z) , (B.2)

where w̃ is the word w (with e0 treated as 0 and e1 as 1) reversed. This reversal is needed

simply because of a difference of ordering conventions between [11, 12] and [28]. The

solution L(z) is the unique one obeying the boundary condition,

L(z) ∼ ze0 as z → 0 . (B.3)

One can likewise define the unique solution obeying

L1(z) ∼ (1− z)−e1 as z → 1 . (B.4)

The Drinfel’d associator can be identified with the connection relating the two solutions,

ΦL1(z) = L(z) . (B.5)

– 16 –



J
H
E
P
0
8
(
2
0
1
3
)
1
3
5

From the fact that both L and L1 are solutions of the KZ equation and are invertible one

concludes that Φ above is a constant series.

The solution L(z) is divergent at z = 0 and z = 1 as can be seen by expanding,

L(z) = 1 + e0H0(z) + e1H1(z) + . . . = 1 + e0 log z − e1 log(1− z) + . . . . (B.6)

We regularise to obtain a quantity finite at these points,

L̂(z) = z−e0L(z)(1− z)e1 . (B.7)

The regularised solution obeys the following equation

d

dz
L̂(z) = L̂(z)(1− z)−e1 e0

z
(1− z)e1 −

e0
z
L̂(z) . (B.8)

We can rewrite the first term on the r.h.s. in terms of the adjoint action of e1 on e0 leading to

z
d

dz
L̂(z) = L̂(z)(1− z)−ad1(e0)− e0L̂(z) , (B.9)

where adi(x) = [ei, x].

Now since L(z) is group-like,

∆eL(z) = L(z)⊗ L(z) , (B.10)

and L̂(z) differs from L(z) only by multiplication of group-like elements (1 − z)e1 and

z−e0 then L̂(z) is also group-like. This means that it is the exponential of a Lie series in

g = Lie[e0, e1]. In fact the regularised solution L̂(z) actually contains no words of length 1

(they were removed by the regularisation) so we actually know that it is the exponential

of a Lie series in g′ = [g, g],

L̂(z) = expL(z), L(z) ∈ g′ . (B.11)

In the first instance we are looking for a representation of the Ihara action which is

given by (1 × 1) matrices of multiplicative operators. To this end we will simplify the

problem and work modulo any products in g′ so that we can actually write

L̂(z) = 1 + L(z) modulo products. (B.12)

This approximation has the result that the words wn corresponding to the coefficients of

the primitive elements ζn survive (they are elements of g′) but that any Ihara brackets are

killed since they are all actually elements of g′′ = [g′, g′]. Thus we already know that no

multiple zeta values will survive in this approximation.

The differential equation (B.9) above is not quite suitable for simplification since the

unit term in L̂(z) means that the whole of the factor (1−z)ad1(e0) contributes, even modulo

products. However we can improve the situation by taking a second derivative,

(

d

dz
+z

d2

dz2

)

L̂(z) =
d

dz
L̂(z)(1−z)−ad1(e0)+L̂(z)

ad1
1− z

(1−z)−ad1(e0)−e0
d

dz
L̂(z) . (B.13)
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In the first term on the r.h.s. we can now replace (1− z)−ad1(e0) by e0 if we work modulo

products in g′. This term then combines neatly with the last term to −ad0L̂
′(z). In the

second term on the r.h.s. we can pull out a total adjoint action ad1 and subtract the action

on L̂(z) and then use the first-order equation (B.9) to rewrite the result in terms of the

derivative L̂′(z),

L̂(z)ad1(1− z)−ad1(e0) = ad1[L̂(z)(1− z)−ad1(e0)]− ad1L̂(z)(1− z)−ad1(e0) , (B.14)

= ad1

[

z
d

dz
L̂(z) + e0L̂(z)

]

−ad1L̂(z)(1− z)−ad1(e0) . (B.15)

As above, we can replace the factor (1− z)−ad1(e0) by e0 and combine the final two terms

into an adjoint action of e0 on ad1L̂(z) plus a term [e1, e0]. Finally combining everything

we have

(1− z)z
d2

dz2
L̂(z) +

[

(1− z)(1 + ad0)− zad1
] d

dz
L̂(z)− ad0ad1L̂(z) + [e0, e1] = 0 . (B.16)

Now, working modulo products in g′ means replace the non-commuting variable L(z) =

L̂(z)− 1 with a function of two commuting variables ad0 = −u and ad1 = v,

L(z) = L(u, v, ; z)[e0, e1] (B.17)

We can represent a general word in U(g′) modulo (g′)2 as a function of u and v as follows

(see also the discussion around eq. (6.1)),

w = c0 +
∑

cklad
k
0ad

l
1[e0, e1] −→ c0 +

∑

cklu
k+1vl+1 . (B.18)

In this representation the second order equation above becomes the hypergeometric equa-

tion with a constant inhomogenous term,

(1− z)z
d2

dz2
L(z;u, v) +

[

(1− z)(1− u)− zv
] d

dz
L(z;u, v) + uvL(z;u, v) + 1 = 0 . (B.19)

The solution obeying the relevant boundary conditions is

L(z;u, v) =
2F1(−u, v, 1− u; z)− 1

uv
. (B.20)

The logarithm of the associator is this solution evaluated at z = 1 (applied to [e0, e1])

log Φ =
1

uv

[

Γ(1− u)Γ(1− v)

Γ(1− u− v)
− 1

]

[e0, e1] mod g′′. (B.21)
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