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Abstract
Background: Mutations in the mitochondrial genome (mtgenome) have been associated with
cancer and many other disorders. These mutations can be point mutations or deletions, or
admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing
microarrays, which are more sensitive than other sequencing methods, could provide a strategy to
measure mutation loads in remote anatomical sites.

Methods: We determined the mtDNA mutation load in the entire mitochondrial genome of 26
individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without
cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from
each cancer patient and two matched specimens (blood and sputum) from smokers without cancer.
The inherited wildtype sequence in the blood was compared to the sequences present in the tumor
and body fluid, detected using the Affymetrix Genechip® Human Mitochondrial Resequencing Array
1.0 and supplemented by capillary sequencing for noncoding region.

Results: Using this high-throughput method, 75% of the tumors were found to contain mtDNA
mutations, higher than in our previous studies, and 36% of the body fluids from these cancer
patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A
statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to
both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood
of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%)
contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA
genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND
complex mutations was detected in tumors.
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Conclusion: Our findings indicate comprehensive mtDNA resequencing can be a high-throughput
tool for detecting mutations in clinical samples with potential applications for cancer detection, but
it is unclear the biological relevance of these detected mitochondrial mutations. Whether the
detection of tumor-specific mtDNA mutations in body fluidsy this method will be useful for
diagnosis and monitoring applications requires further investigation.

Background
The mitochondrial genome is well characterized and is
composed of 16,568 base pairs, harboring 37 densely
packed genes [1]. The mitochondrial genome has an
accelerated mutation rate in comparison to the nuclear
genome [2], and DNA repair is less efficient in the mito-
chondria than in the nuclear genome [3]. This high fre-
quency of mutation and the high copy number of
mitochondria per cell suggest that mtDNA mutations may
be useful markers for personalized assessment of cancer.
Since mitochondrial DNA lacks introns, mutations are
likely to accumulate in the coding regions and have bio-
logical consequences [4].

Mutations in mitochondrial DNA (mtDNA) have been
detected in colorectal, breast, cervical, ovarian, prostate,
liver, pancreatic, and lung cancers [5-22]. Recently, the
utility of a mtDNA deletion for molecular definition of
benign, malignant and proximal to malignant prostate
needle biopsies was reported [23]. These mitochondrial
mutations may be linked to a field effect [24], which sug-
gests that mutations in the mitochondrial genome may
represent sensitive markers for neoplastic transformation
[25]. In addition to cancer, mtDNA instabilities have been
reported in degenerative diseases [26-29], neurodegenera-
tive diseases [30,31], macular degeneration [32], aging
and longevity [28,33-36] and cardiovascular disease [37].

Body fluids such as urine, which can be obtained by non-
invasive techniques, are potential sources of biomarkers
that are complementary to traditional sources such as
serum or plasma [38]. Recent research demonstrated the
feasibility of whole mtgenome analysis using nipple aspi-
rate fluid (NAF) for breast cancer detection [39]. MtDNA
mutations in the D-loop were also detected in urine sedi-
ments from bladder cancer patients [40]. In some cases,
urine analysis for DNA mutations is more sensitive than
plasma analysis [41].

Using fluorescence-based capillary electrophoresis (CE)
sequencing of the full mitochondrial genome and rigor-
ous quality control procedures [42], we confirmed
mtDNA mutations in tumors of 5 of 11 (45%) lung cancer
patients [7]. However, traditional automated sequencing
is too laborious and lacks adequate resolution to detect
mtDNA heteroplasmy that may be required to detect
mtDNA from cancerous cells in the presence of normal

cells [43,44]. The Affymetrix Genechip® Human Mito-
chondrial Resequencing Array 1.0 (MitoChip) is faster,
less expensive and allows for better resolution of mixtures
than CE DNA sequencing. This microarray design pro-
vides replicate information within a single chip for the
mtDNA coding region, as both forward and reverse
strands are tiled in duplicate, resulting in a four-fold cov-
erage for each nucleotide position of the mitochondrial
genome. In this study, we compare the mtDNA from both
tumor and associated body fluid with respect to that iso-
lated from the patient's blood. mtDNA isolated from
blood provides the normal control or germ-line sequence.
To verify these results, CE DNA sequencing was per-
formed on the three matched specimens from a subset of
four patients.

The majority of previous studies reported tumor mtDNA
mutations that were homoplasmic [45]. In contrast, the
heightened sensitivity of the MitoChip allows for the
detection of heteroplasmies (the condition where muta-
tions coexist with wild-type genomes). Several recent pub-
lications have estimated that more than half of mtDNA
sequence publications contain errors [46-48], some of
which result from mismatched specimens. Consequently,
we used STR analysis to ensure that the samples were accu-
rately matched

Most previous studies have examined tumor tissue for
mtDNA mutations, we extended this to evaluate the feasi-
bility of using body fluids in proximity to the tumor as a
non-invasive method to detect mtDNA mutations. Our
results also suggest that mtDNA mutations in body fluids
can partially distinguish lung cancer patients from heavy
smokers.

Methods
Study Subjects
Specimens were collected from 26 cancer patients from
Johns Hopkins University Hospital after informed con-
sent and IRB approval; and 24 non-cancer smoker con-
trols provided blood and sputum from New York
University after informed consent and IRB approval. All
DNA samples were prepared from cryostat sectioned fro-
zen cancer tissues, which had been freed of non-neoplas-
tic cells by microdissection. Portions of the primary tumor
tissue were routinely embedded in optimum cold temper-
ature medium and the frozen specimen block was then
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cut with a cryostat. Initially, two 5 um sections were
obtained for hematoxilyn staining and then examined by
light microscopy. Sections from the tumor were reviewed
carefully and the neoplastic cell content recorded as a per-
centage of the total cells on a section. Next several 10 um
sections are cut and placed in TE9 containing 1% SDS/
Protenase K overnight. Following overnight incubation,
DNA was extracted and precipitated as described previ-
ously [49]. Primary tumor samples containing less than
50% neoplastic cells were further microdissected to
enhance the neoplastic cell content. 80% ethanol was
placed over the lightly stained tissue on the slide and non-
neoplastic cell containing regions was dissected away
from the tumor cells with fine tissue forceps or a 30-gauge
needle using an inverted microscope. Free floating cells
are then washed off the slide with 80% alcohol and the
remaining regions of neoplastic cells scraped off and proc-
essed in buffer. Extracted DNA was stored at -20°C. DNA
from primary tumors, body fluids and blood was evalu-
ated. For the collection of the sputum, the study subjects
inhale normal saline mist and then cough up a specimen.
For the collection of the sputum, the study subjects inhale
normal saline mist and then cough up a specimen. The
sputum is from the airways and contains alveolar macro-
phages and bronchial epithelial cells. The sputum is proc-
essed for protein analysis and cells are separated by

centrifugation and then placed in TRIzol®. Bronchoalveo-
lar lavage (BAL) is a saline wash introduced into a wedged
bronchoscope and BAL cells retrieved in the saline. The
cells are spun down and the BAL fluid stored (it contains
1% of epithelial lining fluid). The BAL cells are kept in
TRIzol®. Both the sputum and BAL specimens contain
alveolar macrophages.

DNA Isolation
DNA from tumor sections was digested with 1% SDS/Pro-
teinase K, extracted by phenol, chloroform and ethanol
precipitated. Tumor samples were obtained from males
and females. Samples were collected primarily from early
stage (stage IA to IIB) tumors. We received DNA from 3
matched specimen samples from cancer patients. From 9
lung cancer patients, we received DNA from tumor,
blood, and BALs (washings). From 4 bladder cancer and
14 kidney cancer patients, we received DNA from tumor,
blood, and urine. Diagnosis and staging of patient tumors
is provided in Table 1. In one patient sample set, DNA
could not be amplified from the blood and the patient set
was removed from analysis

Control samples (blood and matched sputum) were from
12 smokers who did not have cancer. Note that the con-
trol population were heavy smokers with a subset (6 of

Table 1: Cancer cohort: characteristics and number of mtDNA mutations identified

Sample Age Diagnosis Stage Blood/Tumor Blood/Body Fluid*

Lung 1 54 SCC IA 6 1
Lung 2 51 Adenocarcinoma IA 3 n/a
Lung 3 72 Adenocarcinoma IA 2 (D-Loop) 0
Lung 4 70 BALV CA IA 2 0
Lung 5 77 SCC IA 3 0
Lung 6 61 Adenocarcinoma IIA 0 1
Lung 7 73 NSCLC IIB 0 0
Lung 9 64 Carcinoid Tumor IA 1 1
Bladder 1 86 TCC I 1 n/a
Bladder 2 53 SCC I 1 0
Bladder 3 62 Large Cell Undifferentiated CA I 1 0
Bladder 4 72 TCC II n/a 4
Kidney 1 74 Renal Cell CA II 3 0
Kidney 2 58 Renal Cell CA II/IV 2 n/a
Kidney 3 65 Renal Cell CA III 1 0
Kidney 4 72 Renal Cell CA III 2 0
Kidney 5 66 Renal Cell CA II 1 n/a
Kidney 6 52 Renal Cell CA II/III 2 1
Kidney 7 33 Renal Cell CA I n/a 0
Kidney 8 61 Renal Cell CA II 0 1
Kidney 9 75 Renal Cell CA II 1 0
Kidney 10 62 Renal Cell CA I 0 1
Kidney 11 21 Renal Cell CA II 0 0
Kidney 12 44 Renal Cell CA I 0 1
Kidney 13 59 Renal Cell CA II 1 0
Kidney 14 59 Renal Cell CA I 1 (D-Loop) 0

* all lung body fluids were pre-amplified by WGA
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12) having exposure to asbestos, (Table 2). Patients were
considered cancer free based upon spiral CT analysis.
DNA in TRIzol® Reagent was recovered using the manufac-
turer's protocol (Invitrogen Corp., Carlsbad, CA).

STR Genotyping
All samples were genotyped using the PowerPlex® 16 Sys-
tem (Promega Corp, Madison, WI) on a 3130xL genetic
analyzer with a 36 cm capillary array and POP4 polymer
and analyzed using GeneMapper® ID v3.2 (Applied Bio-
systems, Foster City, CA (ABI)). Samples were diluted to
0.5 – 1.0 ng/μL and 1 μL of sample was added to a 24 μL
reaction volume (18.2 μL H2O, 2.5 μL 10× buffer, 2.5 μL
PowerPlex® 16 10× primer pair mix, 0.8 μL (4 U) Ampli-
Taq Gold® DNA Polymerase (ABI)), then PCR amplified
using published conditions. 1 μL of ILS600 internal lane
standard and 9 μL of HiDi™ Formamide (ABI) were added
to 1 μL of reaction (or 1 μL Allelic Ladder Mix, one for
each run) then the mix was briefly denatured and chilled
to 95°C and placed on crushed ice for 3 minutes before
each sequencing run. Based on STR typing, two tumor iso-
lated mtDNA samples did not match the blood sample
from the same patient, and were excluded from the data
comparison.

PCR Amplification- Long PCR
Three primer sets resulting in amplicons of 5–6.1 kb in
length were used to amplify the DNA for hybridization
onto the Affymetrix Genechip® Human Mitochondrial
Resequencing Array 1.0 [50]. Together the primer sets
allowed for full coverage of the mitochondrial genome.
Due to low DNA quantity recovered from DNA isolation,
all 12 matched controls (bloods and sputums from non
cancer individials) and 8 BAL samples were pre-amplified
by Whole Genome Amplification as described in our pre-
vious study [51] prior to long PCR. Amplification was
conducted using the TaKaRa LA Taq™ Polymerase kit.
Briefly, for the MitoChip, the mtDNA template (up to 10

μL), 0.75 μL each of forward and reverse primer (10 μM
each), 0.5 μL polymerase (2.5 U), 5 μL LA PCR Buffer with
MgCl2, 8 μL dNTP mix (2.5 mM each dNTP) and 25 μL of
H2O were mixed for a total reaction volume of 50 μL.
Thermal cycling conditions were as follows: pre-amplifi-
cation denaturation: (1 cycle), 94°C for 2 min; amplifica-
tion (30 cycles): 94°C for 15 sec; annealing and
elongation, 68°C for 7 min; final elongation (1 cycle),
68°C for 12 min; 4°C hold. None of the bodily fluid sam-
ples could be amplified using the three primer pairs, pre-
sumably due to quality and/or quantity of mtDNA
obtained from these samples. They were successfully
amplified using the nine primer pairs previously validated
for fluorescent DNA sequencing to provide full sequence
coverage of the mitochondrial genome [42]. This required
a slight modification in the pooling step of the MitoChip
protocol to accommodate nine instead of three ampli-
cons. Each PCR product was visualized on an agarose gel
and analyzed for quality and quantity as previously
described [17] or by spectrophotometric methods as
described in The GeneChip® CustomSeq® Resquencing
Array Protocol Version 2.0.

PCR Cleanup: MitoChip
PCR clean up was conducted using the QIAquick 96 well
vacuum plate manifold and protocol [52]. DNAs were
eluted in 65 μL of DNAse/RNAse free water.

MitoChip protocol
The GeneChip® CustomSeq® Resquencing Array Protocol
Version 2.0 was used with a few modifications. Briefly,
either three or nine amplicons representing the patient
and normal control mitochondrial genomes were sepa-
rately pooled at equi-molar concentrations. Three ampli-
cons were generated from primers provided by JHMI and
nine from our previous publication [50]. The PCR ampli-
fication products were pooled, fragmented, labeled,
hybridized, washed, and scanned. The total quantity of
DNA applied to the array was 0.62 μg. Fragmentation of
the pooled DNAs was conducted using 0.15 units of Frag-
mentation reagent (0.033 μL) per sample at 37°C for 15
minutes followed by 95°C for 15 minutes to inactivate.
The fragments were labeled with 30 units of TdT at 37°C
for 90 minutes followed by 95°C for 15 minutes. The
hybridization cocktail, including the separately prepared
control fragments, was hybridized for 16 to 18 hours at
45°C rotating at 60 rpm. Arrays were scanned on a Gene-
Array® 2500 Scanner or a GeneChip® Scanner 3000G7
Scanner, and analyzed with GeneChip® DNA analysis
(GDAS) and GSEQ softwares.

MitoChip Sequence Interpretation
Final analysis of all data was conducted using Affymetrix
software GCOS v1.4 and GSEQ v4.0. The probe intensities
for each mutation reported by the software were exam-

Table 2: Control cohort: characteristics and number of mtDNA 
mutations identified

Sample Age Pack-years Asbestos Blood*/Sputum*

Control 1 53 40 7 0
Control 2 61 72 35 0
Control 3 53 76 33 0
Control 4 43 27 10 0
Control 5 67 40 24 3
Control 6 37 24 0 0
Control 7 59 32.25 0 1
Control 8 49 72 0 0
Control 9 33 29.75 0 0
Control 10 45 52 0 0
Control 11 51 97.5 0 0
Control 12 53 37 4 0

* all control bloods and sputums were pre-amplified by WGA
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ined on the forward and reverse stands for every instance
of that base position on the chip. Heteroplamy was iden-
tified as 2 bases with probe intensities at least 1.75× the
intensity of background for a sequence position. Muta-
tions are defined as instances where the mitochondrial
population in the blood for an individual differs from
that of the matched sample at a sequence position, such
that the base identified in the matched sample is unique
and not found as part of the blood mitochondrial popu-
lation. Mutations (both homoplasmic and heteroplas-
mic) were confirmed and only reported when the
mutation was seen on both strands for locations tiled
once on the MitoChip array, and 3 of 4 strands for loca-
tions that appear on the chip twice.

PCR Amplification: NIST Fluorescent Sequencing Protocol
Twelve samples (3 matched specimens from 4 cancer
patients) were sequenced by fluorescent sequencing.
Amplification was performed in two steps using two dif-
ferent sets of primers (9 matched and 28 matched sets).
The second set was needed to obtain amplicons suitable
in length for automated fluorescent sequencing. Mito-
chondrial DNA amplification using the primary (nine
primer sets) and the secondary (28 primer sets) nested
PCR was previously described [42].

PCR Cleanup: Fluorescent Sequencing
An enzymatic PCR cleanup protocol was optimized for
high-throughput sequencing by enzymatic cleanup using
Exonuclease I and Shrimp Alkaline Phosphotase (SAP)
(GE Healthcare, Fairfield, CT). To each sample, 1.5 μL of
Exonuclease I (1 U/uL) and 1.5 μL of SAP (10 U/uL) was
added, then incubated at 37°C for 90 min followed by 15
min at 72°C with a 4°C hold. Samples were subsequently
quantified using the Caliper AMS 90 protocol previously
described [42].

Fluorescent DNA Sequencing
The non-coding region (~1000 nt) for each sample was
sequenced using CE DNA sequencing, as the MitoChip
contains only the coding region. The PCR amplification
conditions were as published [42]. PCR amplification
primers selected were reported previously to specifically
amplify mitochondrial encoded DNA sequences
[42,53,54]. Primers contained M13 tags to facilitate DNA
sequencing with M13 forward and reverse sequences.
Briefly, the blood, tumor, urine, BAL, and sputum mtD-
NAs were sequenced using the Big Dye™ Terminator
(BDT) version 3.1 cycle sequencing kit (ABI). A one eighth
cycle sequencing reaction was used for all sequencing.
Each reaction contained 1 μL of each of the following rea-
gents: BDT reagent, DNA (3–6 ng/μL), M13 primer (for-
ward or reverse; 5 pmol/μL), 5× Dilution Buffer (ABI),
and dH2O to a final volume of 5 μL. Cycling sequencing
conditions for forward primers were as follows: (40

cycles): 96°C for 10 sec; annealing, 50°C for 5 sec; elon-
gation, 60°C for 4 min; 4°C hold. Reverse primers were
sequenced using the same protocol, but the annealing
temperature was lowered to 37°C.

The Montage™ SEQ96 plate (Millipore Corp., Billerica,
MA) was used for cleanup following cycle sequencing.
Thirty microliters of Wash Solution (Millipore) was added
to each well of the cycle sequencing plate. The samples
were transferred to the clean-up plate and placed on the
vacuum manifold for 5 to 20 minutes or until the wells
were dry. A second wash of 30 μL Wash Solution was
added and vacuumed dry for an additional 5 to 30 min-
utes. Once dry, 20 μL of Injection Solution (Millipore)
was added to each well and the plate was mixed vigor-
ously on a plate shaker for 10 minutes.

Resuspended samples were transferred to a 3100 Optical
Plate and diluted with 15 μl of HI-DI Formamide (ABI).
All separations were performed using the ABI 3130xL
Genetic Analyzer using an 80 cm capillary and POP7 pol-
ymer system. Samples were electrokinetically injected (30
seconds, 1 kV) and separated at 14.6 kV. Sequences were
aligned using the DNA Star SeqMan II (5.05) program and
scanned for polymorphisms and sequence variants.

Statistical Analysis
To determine the statistical significance of mutation and
heteroplasmy rates, probability estimates were compared.
To test for equivalence the confidence intervals were eval-
uated for equality at 95% confidence. Distribution of
mutations with respect to gene length was tested by Chi
square.

Results
In this study, we evaluated the performance of the Affyme-
trix Genechip® Human Mitochondrial Resequencing Array
1.0 for detecting mutations present in both tumors and
body fluids. Sequence differences between the tumor and
the germline (blood) and between body fluid and the
germline (blood) were reported as mutations. Sequence
differences between the germline and the mtDNA refer-
ence sequence tiled on the microarray were considered
polymorphisms The microarray software used in this
study "learns" as the data set increases, allowing for more
statistically significant differentiation between "normal"
and "mutant" mitochondrial genotypes [55].

We assessed the DNA mutation spectrum of the entire
mitochondrial genome from 72 samples obtained from
26 individuals with different early stage cancers (Table 1).
Three matched samples from blood, tumor and body
fluid were analyzed from each patient. Six specimens were
excluded from comparison due to insufficient sample
quantity to perform sequencing (BAL 2, bladder urine 1),
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insufficient sample to perform the genotyping analysis
(kidney urines 2 and 5) or genotypes that could not con-
firm the specimen to be from the same patient as the
blood (bladder tumor 4 and kidney tumor 7); these are
designated n/a in Table 1. For the lung cancers, we ana-
lyzed mtDNA from primary tumor, brochoalveolar lav-
age, and blood. For bladder and kidney cancers, we
analyzed mtDNA from tumor, urine, and blood. Control
samples (blood and matched sputum) were from 12
smokers who were considered cancer free based upon spi-
ral CT analysis. There is overlap in the alveolar macro-
phages obtained from the sputum and BALs. As reported
previously, the long PCR products required for our Mito-
Chip protocol could not be obtained from many of the
clinical samples [50]. We therefore used multiple strand
displacement amplification to produce sufficient quanti-
ties of DNA for application to the arrays. As reported, the
amplified material was not altered during multiple strand
displacement amplification, retaining the identical heter-
oplasmic and homoplasmic sequence variants detected in
the clinical specimen.

Mutations detected
MitoChip analysis of the coding region combined with CE
analysis of D-loop regions revealed mutations in tumor
and body fluid specimens. Tumor samples revealed 18 of
24 speciemens with mutations (6/8 lung [79%]; 3/3 blad-
der [100%] 9/13 kidney [69%]), for a preliminary sensi-
tivity of 75%. This is significantly higher than observed in
prior studies [7]. These data also identified mutations in
patient bodily fluids that differed from peripheral blood
in 8 of 22 cancer patients; 3/7 BALs, 1/3 bladder urine and
4/12 kidney urine specimens (Table 1). Samples con-
tained one or more mutation. Two of the twelve (17%)
sputum specimens from heavy smokers without cancer
contained one or more mitochondrial mutations (Table
2); a preliminary specificity of 83%. One specimen con-
tained 3 mutations and the other contained one muta-
tion. Three of these mutations are silent.

A total of 34 mutations were detected in the tumor speci-
mens. Three of the mutations occurred in the D-loop,
while the majority of the mutations were spread through-
out the coding region. To evaluate whether statistically
significant clustering of mutations was found, Chi square
values were calculated to compare the location of muta-
tions with the gene targets represented as a proportion of
the entire mtDNA genome. For tumor mutations in all
genes a nonrandom clustering was suggested for tRNAs
and the ND complex genes. The percentages of mutations
found within a gene in relation to the percentage of the
genome occupied by that gene are; ND complex: 33.4% of
the mtgenome and 47.1% of the mutations, tRNA genes:
9.1% of the mtgenome and 17.6% of the mutations, rRNA
genes: 15.2% of the mtgenome and 20.6% of the muta-

tions, D-loop: 6.8% of the mtgenome and 8.8% of the
mutations, CO: 20.8% of the mtgenome and 2.9% of the
mutations, and CytB: 6.9% of the mtgenome and 2.9% of
the mutations. There were no mutations detected in the
ATPase genes which account for 5.1% of the mtgenome.
Thus, mutations more frequently occurred in specific
genes, and were statistically rare in the CO genes. Eleven
mutations were detected in the body fluids, and the
majority of these were heteroplasmic with all mutations
occurring in the coding region. The entire list of mutations
detected in this study is shown in Table 3, with only
purine and pyrimidine heteroplasmies found.

Heteroplasmy
The reported limit of detecting mixed bases or heteroplas-
mies in solid tumors and body fluids using the MitoChip
approaches 2% [50]. We examined the frequency of heter-
oplasmy in specimens from cancer patients and a control
cohort. A total of 202 sequence variants (with respect to
the reference sequence) were identified in the mitochon-
dria from the blood of 12 heavy smokers without cancer
(Table 4); only 7 of these (3.5%) were heteroplasmic. All
seven of these were detected in both blood and sputum
and are not haplotype markers. Overall, the rate of heter-
oplasmy in the control population was quite low; 7 nucle-
otides in 185,412 nucleotides sequenced, or 0.0038%.
The rate of heteroplasmic calls was highest in the tumor
DNAs, where 10.5% of all sequence variants detected (43
in 411) were heteroplasmic. In the cancer population,
mtDNA heteroplasmies were detected in the blood of 18
of the 26 samples (69.2%) a statistically significantly
higher heteroplamy rate than observed in, control blood
samples where only 4 of the 12 (33.3%) contained one or
more heteroplasmies (Table 4).

MitoChip compared with CE DNA Sequencing
The MitoChip sequencing results were compared to bi-
directional fluorescent CE DNA sequencing for the 3
matched specimens from 4 patients, a total of 12 samples
(Table 5). The MitoChip and CE DNA sequencing results
were 99.996% identical (8 differences in 198,816 nt). The
percent sequence coverage for the MitoChip was 95.8%
(+/-1.4), and the percent sequencing coverage for fluores-
cent CE sequencing was 97.5% (+/-1.2). Due to Mito-
Chip's increased sensitivity, more mutations were
identified by this method than by CE DNA sequencing.
All of the 8 differences were heteroplasmic, and 7 of these
were detected by the MitoChip and not CE sequencing.
The 7 heteroplasmies detected by the MitoChip were in
the following gene complexes: 1 CO I, 1 ATPase, 1 ND (all
3: Thr→Ala), 2 tRNA, and 2 silent mutations. The one het-
eroplasmy detected only by CE DNA sequencing was a
silent mutation.
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Discussion
Mitochondrial genomes of 26 cancer patients, mostly
with early stage (Stage I or II) disease, and 12 heavy smok-
ers without cancer were fully sequenced using the Mito-

Chip and additionally fluorescent CE sequencing for the
D-loop region only. DNAs isolated from blood, primary
tumor, and BAL for lung cancer patients, from blood, pri-
mary tumor, and urine for bladder and kidney cancer

Table 3: Cancer cohort mutations detected

MitoMap Position Blood Tumor Body Fluid Gene amino acid/location

Lung 1 1719 G * r * 16S rRNA -
2312 A * * r 16S rRNA -
3385 A g r g ND1 Ile>Val
3450 C t y t ND1 Pro>Pro
3480 A * r * ND1 Lys>Lys
4901 A g r g ND2 Gln>Gln
5773 G a r a tRNACys T arm

2 3450 C * y n/a ND1 Pro>Pro
4580 G a r n/a ND2 Met>Met
4901 A * r n/a ND2 Gln>Gln

3 16162 A * g * D-Loop -
16284 A * g * D-Loop -

4 10245 T * y * ND3 Leu(2)>Leu(1)
13856 T * y * ND5 Leu2>Pro

5 10427 G * r * tRNAArg anticodon arm
10885 T * y * ND4 Phe>Phe
11083 A * r * ND4 Met>Met

6 8705 T * * y ATPase 6 Met>Thr
7 - - - - - -
9 6413 T c c y COI Asp>Asp

11072 T * y * ND4 Ser(1)>Pro
Bladder 1 12236 G * r n/a tRNASer -

2 12477 T * y * ND5 Ser(2)>Ser(2)
3 1193 T * y * 12S rRNA -
4 5169 T * n/a y ND2 Trp>Arg

6483 C * n/a y COI Leu(2)>Phe
10668 G * n/a r ND4L Ala>Thr
12714 T * n/a y ND5 Ile>Ile

Kidney 1 841 A * r * 12S rRNA -
2731 T * y * 16S rRNA -

12139 T * y * tRNAHis acceptor arm
2 1816 G * r n/a 16S rRNA -

3454 G * r n/a ND1 Ala>Thr
3 12477 T * y * ND5 Ser(1)>Ser(2)
4 841 A * r * 12S rRNA -

11394 T * y * ND4 Leu(1)>Pro
5 12148 T * y n/a tRNAHis D arm
6 1074 G * r * 12S rRNA -

3244 G * r * tRNALeu D arm
14766 C t t * CytB Ile>Thr

7 - - n/a - - -
8 6800 A * * g COI Val>Val
9 15283 T * y * CytB Phe>Phe
10 12471 T * * y ND5 Ile>Ile
11 - - - - - -
12 12714 T * * y ND5 Ile>Ile
13 7148 T * y * CO I Thr>Thr
14 72 T * a * D-Loop -

* : sequence identical to reference sequence
n/a : no data available due to insufficient DNA quantity or STR genotyping results
- : no sequence differences between samples or unknown change to gene
r: purine heteroplasmy (A + G)
y: pyrimidine heteroplasmy (C + T)
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patients and blood and sputum from smokers without
cancer were sequenced; in total 96 mtDNA sequences
were determined. All samples were genotyped then subse-
quently haplotyped to ensure that samples sets from the
same patient were matched (data not shown).

Twenty-three of twenty-six (7/8 lung cancer [88%]; 4/4
bladder cancer [100%] 12/14 kidney cancer [86%])
patients were found to have mtDNA mutations in either
the tumor or body fluid or in both, for an overall inci-
dence of 89%. Three of seven (43%) BALs from patients
with lung cancer and 2 of 12 (17%) sputums from con-
trols (heavy smokers without cancer) had mtDNA
sequence variants, which may result from their heavy
smoking [56].

It is interesting to note that the body fluid specimens from
the cancer patient population contained fewer mutations
overall with respect to the tumors (Table 3). However, it
was noted that a heteroplasmic mutation was detected in

3 BALand 3 urine specimens that was not present in the
tumor. Additional comparisons between specimens was
hampered by the exclusion of sample results due to insuf-
ficient sample quality to perform sequencing, insufficient
sample to perform the genotyping analysis or genotyping
results indicating that the samples were not from the same
individual.

The patient cohorts represent a small study and the bio-
logical conclusions are therefore provisional pending
analysis of larger populations. With regard to incidence of
mtDNA mutations in all solid tumors, a greater propor-
tion of lung cancer patients showed a mutation in the
tumor compared with kidney and bladder tumor patients.
Furthermore, lung cancer patients also showed the highest
incidence of mtDNA mutations in bodily fluids (broncho-
alveolar lavage), although at a lower incidence than their
lung tumors.

An overall summary of the heteroplasmic variation is
shown in Table 4. After statistical analysis of these results,
it was determined that the tumor samples presented with
statistically significantly more heteroplasmies than any of
the other populations, including the body fluids from the
same cancer patients. Additionally cancer patient blood
samples presented with statistically significantly more
heteroplasmies than blood from non cancer controls. This
suggests the blood samples from these cancer patients do
not reflect purely the germline sequence, as heteroplasmic
variation has increased in this sample population.

The increase in heteroplasmy is statistically significant,
and not considered sample mixup or an artifact in the
MitoChip assay. First, as we reported, all samples were ini-
tially genotyped then additionally confirmed to be
matched after sequencing by mitochondrial haplotyping.
Studies conducting MitoChip analysis on manually mixed
samples in a dilution series shows the MitoChip assay
able to detect sample mixtures without additional false
positives in 10% mixtures and down to 2% [43,50]. As the
control samples and BALs were pre amplified by Whole

Table 4: Percent of heteroplasmy calls out of total number of sequence variants.

Genomes sequenced Number of sequence variants Number (%) of heteroplsmy 
sequence variants

Number (%) of specimens with 
heteroplasmy

Blood from patients with cancer – 
26

391 27 (6.9%)* 18 (69.2%)*

Tumor – 24 411 43 (10.5%)* 18 (75.0%)*
BF from patients with cancer – 22 293 11 (3.8%) 7 (31.8%)
Blood from individuals without 
cancer -12

202 7 (3.5%) 4 (33.3%)

Sputum from individuals without 
cancer – 12

206 11 (5.3%) 5 (41.7%)

*: Statistically significant difference from non-cancer population and BF

Table 5: Nucleotide differences between CE and MitoChip 
microarray sequencing.

MitoMap Position Mitochip CE Conflicts

Lung 5 Blood 6050 T y * 1
10427 G r *

Tumor 10885 T y * 3
11083 A r *

Bal 6050 T y * 1
7 Blood 10398 A r * 2

12406 G * r
Tumor - - - -

Bal - - - -
Kidney 3 Blood - - - -

Tumor 12477 T y * 1
Urine - - - -

14 Blood - - - -
Tumor - - - -
Urine - - -

* represents the same base as the reference sequence base
- represents no base differences between samples
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Genome Amplificaton (WGA) this must also be consid-
ered as a potential source of generating artifacts. In our
previous report, we described a MitoChip comparison
between pre amplification by (WGA) and genomic DNAs
for a subset of the patient cancer and patient non cancer
specimens reported in this study. The sequence and muta-
tion profiles for the samples using WGA are reported in
this study. In 19 samples compared with and without
WGA, there was no significant difference in the sequence
obtained; 15 differences were seen in a total of 628,672
tiled positions (19 × 16,544 with and without WGA), and
12 of these samples had no differences [51]. If heteroplas-
mies resulted from lower specificity of the assay, it is
unlikely that identical results would be obtained from
separate amplifications (with or without WGA), or be
higher in only the cancer patient blood and tumor DNAs.

The origin of observed sequence changes in the mitochon-
drial genome in cancer remains unclear. Cancer cells
develop in a contiguous field of preneoplastic cells that
are clonally related to the initial tumor. This study did not
detected similar mutations in the body fluids with respect
to the tumor. In most samples, at positions of mutation in
the tumor, the body fluid sequence matched the mtDNA
sequence of the patient's blood sample. This suggests that
the body fluid could not sensitively detect the patient's
mutations. In 5 patients, heteroplasmic changes were
detected in the body fluid that were absent from both
patient blood and the tumor samples. The presence of het-
eroplasmic variance in the body fluid that is absent from
the tumor may suggest that systemic oxidative damage
maybe occurring.

The D-loop region, which accounts for approximately
6.8% of the genome, contained 8.8% (3 of 34) of the
mutations identified in the tumor mtDNAs. Many studies
have focused on the short, hypervariable D-loop region,
as this region has been reported to have a higher rate of
mutation [2]. However, the majority of mutations found
in this study were in the coding region, supporting similar
findings in more recent studies [6,11]. As reported by Mai-
tra [57], the rationale for preferential sequencing of the
non-coding region of mtDNA has been the assumption
that this portion of the mitochondrial genome is particu-
larly susceptible to the rigors of DNA damage encoun-
tered in metabolically active cancer cells. However, his
studies and those of others continue to provide evidence
that the coding region is at least equally susceptible to
DNA alterations in cancer. In as many as 7 of 14 (50%)
preneoplastic samples, somatic alterations restricted to
the coding region of mtDNA were detected in that study,
while two additional cases had only single non-coding D-
loop changes in addition to coding region alterations
[57].

The other sequence variants were spread throughout the
coding region, with clustering in the tRNA and ND genes
(17.6% and 47.1% respectively). The majority of the
tRNA mutations were concentrated in the stem region that
is under greater selective constraints than loop structures
[58]. While an increase in mutations with respect to the
ND complex was identified, none of these mutations were
found in ND6, a region recently implicated in cancer
metastasis [59]. These findings are expected, as the sam-
ples in this study were from early stage cancer. Although
outside the focus of this investigation, Table 3 shows that
certain mutations linked to the ND complex (3450, 4901)
were uniquely associated with lung cancer, while other
mutations linked to 12srRNA (841) and ND5 (12477,
12714) genes were associated with urologic cancers. This
trend is intriguing but it is premature to speculate on
implications for tissue specific markers.

We extend the detection of mtDNA mutations as biomar-
kers of cancer to the detection of mtDNA mutations in
body fluids. The combination of a high-throughput
sequencing method and non-invasively collected speci-
mens make this potentially an attractive diagnostic ame-
nable to current clinical infrastructure. The usefulness of
detecting tumor-specific mtDNA mutations in body fluids
requires further investigation for diagnosis and monitor-
ing applications. The use of urine DNA as a source of
markers for cancer detection has increasing support [60].
In general, genomic biomarkers that are not tissue specific
may be best applied for early detection of recurrence or
the detection of potential risk of a secondary tumor site. It
is worthwhile to investigate ways to enrich certain cell
types, e.g. bladder cells, in order to provide more informa-
tion than just the presence of cancer. This could be accom-
plished with antibody capture methods, such as those
applied for other cancer biomarkers [61]. While urine
analysis cannot indicate the location of a tumor, use of
specific washes or fluids opens the vista for diagnostic
applications.

Conclusion
In summary, our results indicate that mtDNA sequencing
with the MitoChip can be a high-throughput tool for
detecting mutations in clinical samples with potential
utility for cancer detection. In this study, 79% of
lung,100% of the bladder and 69% of the kidney tumors
were found to contain mtDNA mutations; however, these
values are based on a limited number of specimens. Our
results identified more frequent mutations in the coding
region than prior studies with mutation clustering in the
tRNA and ND complex genes.

MtDNA mutations may be useful biomarkers, because
they affect mitochondrial function, but it is currently
unclear the biological relevance of these detected mito-
Page 9 of 11
(page number not for citation purposes)



BMC Cancer 2008, 8:285 http://www.biomedcentral.com/1471-2407/8/285
chondrial mutations. Our data could not fully substanti-
ate that detection and monitoring of the tumor via
mtDNA mutation analysis of body fluids could be a prac-
tical way to assess some remote cancer sites. Additional
studies are needed to identify the most informative collec-
tion procedures and collection site proximity to the
tumor. Further, larger scale studies of the mitochondrial
genome are needed to compare genotype/phenotype
associations in order to understand the pathogenic basis
of neoplastic and non-neoplastic diseases linked to mito-
chondrial dysfunction, and to establish the link between
clinico-pathological features and mtDNA mutations.
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