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Abstract

Nanoparticle-decorated tubular microengines were synthesized by a combination of rolled-up nanotechnology and
atomic layer deposition. The presence of Pt nanoparticles with different sizes and distributions on the walls of
microengines fabricated from bilayer nanomembranes with different materials results in promoted catalytic reaction
efficiency, which leads to an ultrafast speed (the highest speed 3200 μm/s). The motion speed of the decorated
microengines fits the theoretical model very well, suggesting that the larger surface area is mainly responsible for
the acceleration of the motion speed. The high-speed nanoparticle-decorated microengines hold considerable
promise for a variety of applications.
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Background
The syntheses of micro-/nano-engines that are able to
perform various tasks have attracted great attention with
the development of nanotechnology. Among these artifi-
cial engines, catalytic micro-/nano-engines with different
shapes of rod [1], sphere [2], helical [3], and tubes [4],
mimicking their counterparts in the nature [5], are cap-
able of moving autonomously in the presence of corre-
sponding fuels or powered by various external stimuli
such as light [6], magnetic [7], or ultrasound fields [8].
Particularly, bubble-propelled tubular microengines have
become highly attractive due to their impressive features
including high-power output, ultrafast movement speed,
and independence of motion on ionic strength in liquid
media [9]. In order to fabricate microtubular structures
with catalytic inner surfaces, different methods have
been employed, including template electrodeposition
methods using porous membranes [10, 11] and roll-up
technology [12]. Rolled-up technology have a few advan-
tages like wide range of materials engaged and easy tun-
ing of length and diameter [12], and the fabricated
microengines have been applied to cargo-towing [13],
tissue-drilling [14], dynamic assembly [15], and so on.
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With further development of micro-/nano-electromech-
anical system, powerful micro-/nano-engines with high
speed and large driving force are demanded to accom-
plish complex tasks by overcoming the viscous force at
low Reynolds number [16], and various measures have
been applied to improve the performance of the catalytic
microengines. For instance, graphene [17], carbon nano-
tube [18], and nanoparticles [19] have been used to pro-
mote catalytic reactions, and the hierarchical nanoporous
microtubular engines [20] have been reported to improve
fuel refilling. Although these methods can improve the
performance of microengines and the motion speeds to
some extent, the preparation process is relatively compli-
cated and the poor utilization of the expensive Pt material
is also an obvious drawback. There exists a need for scal-
able synthetic methods to coat the surface of the microen-
gines with precise control of the catalyst distribution.
Most importantly, the size distribution of nanoparticle
and efficient loading of the noble-metal catalyst should be
of great importance to improve the performance of
microengines.
We consider that a convenient method to commend-

ably satisfy the requirements may be the combination of
rolled-up nanotechnology and atomic layer deposition
(ALD). ALD has emerged as an important technique of
depositing thin films for a variety of applications [21].
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Sequential self-limiting surface reaction steps enable ex-
cellent thickness control, conformal coating on highly
complex nanostructures, and good uniformity over a
large area [22]. The ALD of noble metals such as Pt has
been shown to generate well-dispersed nanoparticles
during the initial stages of growth [23–26]. This feature
could be meaningful for catalytic engines since the
nanoparticle array with large surface area and high
surface-area-to-volume ratio can effectively improve the
utilization efficiency of catalyst [27].
Here, we demonstrate a simplified approach using

ALD of fabricating Pt nanoparticles for the mass pro-
duction of highly efficient microtubular engines. The
presence of Pt nanoparticles with different sizes and dis-
tributions on the walls of microengines results in pro-
moted catalytic reaction efficiency. Correspondingly, the
Pt nanoparticle-decorated microengines exhibit significant
speed acceleration compare to the theoretical speed of
smooth microengines with the same diameter and length.
The high performance of current Pt nanoparticle-decorated
microengines offers a great opportunity for designing and
producing ultrapowerful micro-/nanomachines for practical
applications like cargo and drug delivery.

Results and Discussion
Fabrication of Pt Nanoparticle-Decorated Tubular
Microengine
Figure 1a illustrates the experimental procedure for the
fabrication of Pt nanoparticle-decorated microengine. The
fabrication strategy was based on rolled-up technology
Fig. 1 Fabrication of Pt nanoparticle-decorated tubular microengine. a Dia
nanoparticle microtube. c An enlarged image of the Pt nanoparticles on th
using photoresist as a sacrificial layer (see the “Experimen-
tal Section” section for details) [12]. Briefly, bilayer nano-
membranes with different thicknesses and thickness ratios
(e.g., SiO/SiO2 5/20 nm, Ti/SiO2 20/10 nm, Ti/Co 10/
10 nm, SiO2/Ti 10/20 nm) were deposited on photoresist
patterns via electron beam evaporation. After selective
etching of the sacrificial layer, the bilayer was set free and
the strain gradient causes rolling of the bilayer nanomem-
brane into microtube [12]. Geometrical parameters such
as the length, diameter, and shape of the microtubes can
be tuned on one hand by changing the dimensions of the
photoresist patterns and on the other hand by controlling
the angles, rates, and thicknesses during the depositions
of the nanomembranes [28]. After formation of micro-
tubes, Pt nanoparticles were coated on the tube wall by
ALD, where two self-limiting and complementary reac-
tions are used in an alternating sequence [29]. On the first
circle, the PtOx was produced during piping in a pulse of
O2. Then, a pulse of methylcyclopentadienyl-(trimethyl)
platinum(IV) ((MeCp)Pt(Me)3) is forced into the genera-
tor’s chamber, which reacted with the PtOx layer and O
atoms are removed, leaving only Pt. On the next cycle, the
unreacted precursor was removed and Pt surface was oxi-
dized during the pulse of O2, preparing it for the next
cycle [30, 31]. Due to its high surface energy, Pt deposition
on supports proceeds via an island growth mechanism
(Volmer–Weber mechanism) during the initial stages of
ALD processes [30, 31]. Ultimately, after a sufficient num-
ber of exposure cycles, the islands will merge to form a
film. However, for applications in catalysis, it is typically
gram of the fabrication procedure. b SEM image of a SiO/SiO2/Pt
e inner wall of the microtube



Fig. 2 Optical images of microtube arrays made from different bilayers:
a SiO/SiO2 (5/20 nm), b Ti/SiO2 (20/10 nm), c Ti/Co (10/10 nm), and d
SiO2/Ti (10/20 nm). e–h Corresponding SEM images demonstrate the
distribution of Pt nanoparticles on the inner tube walls
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undesirable to obtain a continuous film: the island struc-
ture should be maintained because the islands/nanoparti-
cles with a high surface-area-to-volume ratio should have
better catalytic activity compared with flat layer [32, 33].
In current work, Pt nanoparticles were uniformly coated
on the surface of the tube walls by precisely controlling
the number of cycles adopted.
Figure 1b displays bird-view scanning electron micros-

copy (SEM) image of a typical 50-μm-long Pt nanoparticle-
decorated SiO/SiO2 microtube under low magnification. A
close examination of such tubular structure (Fig. 1c) re-
veals that, unlike common rolled-up microtube with a Pt
smooth surface [34], the current microtube is covered by
nanoparticles with average diameters of ~10 nm. As will be
illustrated below, such Pt nanostructure leads to a dramat-
ically increased catalytic surface area [35] and correspond-
ing improved propulsion efficiency [36].
We further investigated formation of Pt nanoparticles

on different microtubular structures. Figure 2a–d shows
that the microtubes of well-defined lengths and geom-
etries by rolling different nanomembranes can be arranged
into ordered arrays. Such arrays can be mass-produced by
normal photolithography and this makes it easier to pre-
pare a large number of microengines simultaneously [37].
As demonstrated in our previous work [12], the diameter
can be tuned by changing the layer thicknesses, the thick-
ness ratios, and the built-in strain in the nanomembrane.
In present case, the SiO/SiO2 microtubes have diameter of
5 μm and Ti/SiO2 microtubes have lager diameter of
12 μm due to different nanomembrane thicknesses and
stress gradient therein. In order to illustrate the Pt nano-
particles on the inner tube wall for details, Fig. 2e–h
shows the corresponding SEM images. It is found that
nanometer-scale islands nucleate on the wall of micro-
tubes after ALD cycles. The energy dispersive X-ray spec-
tra of the samples (not shown) clearly prove the presence
of Pt on the tube walls. However, the nanoparticles on dif-
ferent top layer of nanomembranes (inner tube wall) show
different sizes and morphologies after the same ALD
process. The nanomembranes with oxide top layers (i.e.,
SiO/SiO2 and Ti/SiO2 bilayers) exhibit very flat and
smooth surface and the Pt nanoparticles on them appear
in the form of irregular shapes like ellipses and bars
(Fig. 2e, f ). On the other hand, the nanomembrane con-
taining metallic layers (Ti/Co and SiO2/Ti in present case)
is relatively rough and uneven, and Pt nanoparticles in the
form of small semi-spheres on the surface can be observed
(Fig. 2g, h). We believe that the morphological difference
in the bilayer nanomembranes is mainly due to different
growth models and surface energies between oxide and
metals during electron beam evaporation [38, 39]. In such
incoherent growth condition, the growth of large parti-
cles/islands as a result of dissolution of small particles/
islands can be explained by Ostwald ripening mechanism
[38]. These factors also cause the change of the shapes of
Pt nanoparticles when they are deposited on nanomem-
branes with oxide and metal top layer. However, it should
be mentioned that, for the sake of simplicity, we suppose
the nanoparticles are all in the shape of semi-spheres in
the following model. This certainly introduces deviation in
the model, but as we will discuss later, the experimental
results can fit theoretical prediction well, suggesting that
this simplicity is acceptable. Based on Fig. 2e–h, we have
calculated the mean sizes of Pt nanoparticle on the inner
wall (top layer). The results are 11, 10, 5, and 6 nm for
nanoparticles on the surfaces of SiO/SiO2, Ti/SiO2, Ti/Co,
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and SiO2/Ti nanomembranes, respectively (Additional file
1: Figure S1). And the densities of nanoparticles are as
high as 3.07 × 1015, 4.62 × 1015, and 1.85 × 1016, and
3.18 × 1016 m−2, respectively. It is clear that the Pt nano-
particles on the inner tube wall of SiO/SiO2 and Ti/SiO2

microtubes are larger than those on the inner tube wall of
Ti/Co and SiO2/Ti microtubes, but the densities show the
opposite result.

The Motion of Pt Nanoparticle-Decorated Tubular
Microengine
Figure 3a–d shows time-lapse images of the movement
of Pt nanoparticle-decorated SiO/SiO2 microengines in
Fig. 3 a–d Selected motion images of SiO/SiO2/Pt microengines at a 0, b
four microengines decorated with Pt nanoparticles: e SiO/SiO2, f Ti/SiO2, g
period of 0.5 s in 10 % H2O2
10 % H2O2 (see also Additional file 2: Video 1). Oxygen
bubbles ejected from one large end of microengine
through the decomposition of H2O2 and propelled the
microengine in opposite direction [40]. It is worth not-
ing that both inner and outer surfaces are covered with
Pt nanoparticles after Pt coating by ALD, but we ob-
served no O2 bubbles generating on the outer surfaces
of microengines. This indicates that O2 molecules have
different nucleation behaviors on the inner and outer
surfaces. The similar phenomenon had also been found
in single-component metal oxide tubular microengines
controlled by UV light [41]. It is considered that the
geometries of the microengines have significant
0.1, c 0.2, and d 0.3 s in 10 % H2O2 solution. e–h Trajectories of the
Ti/Co, and h SiO2/Ti. The red trajectories were recorded over a time
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influence on bubble nucleation and generation. Gener-
ally, the bubbles can be formed on solid surfaces, if the
gases reach heterogeneous nucleation energy [42]. Previ-
ous literature demonstrated that there are two factors
determine the heterogeneous nucleation energy: the gas
saturation concentration and the curvature of the sur-
face [43]. The energy required for bubble formation on a
flat surface is less than on a convex surface, and even
less energy is required on a concave surface. It indicated
that the gas produced on the concave surface of inner
tube wall is much easier to nucleate compared than that
on the convex surface of outer tube wall. In addition,
different from other microengines such as Janus–motor
[44] and Au-Pt nanorod [45], our microtubes can be
used as a gas collecting chamber and O2 molecules pro-
duced inside the microtube will easily reach the super-
saturation concentration for the bubble nucleation due
to the accumulative effect of the inner confined space
[46]. The accumulated O2 gas in the microtube can fur-
ther facilitate the bubble nucleation. We noticed that the
existence of Pt nanoparticles on the surface of the tube
wall makes the catalytic decomposing reaction much
more intense compared with smooth Pt layer, and high
frequency bubble generation forms a long tail at the tube
end. In our previous work [47], for a microtubular
engine, we used the following Eq. (1) to calculate the
oxygen productivity dVO2/dt:

dVO2=dt ¼ nCH2O2
πRL ð1Þ

where n is O2 production rate constant which was ex-
perimentally estimated to be ≈9.8 × 10−4 ms−1 in our
previous work [46] and CH2O2

is the concentration of
H2O2. This equation is considered to be valid for the
microengines with a smooth inner surface. However, for
the current microengines decorated with Pt nanoparti-
cles, the inner surface area is much bigger than 2πRL.
Apparently, the oxygen production is much higher than
the microengines with smooth Pt layer, suggesting that
Pt nanoparticle-decorated microengines can produce
more oxygen. The corresponding bubble generation fre-
quency makes the decorated microengines move in
higher speed as we will explain in detail later. Detailed
analysis of the video and time-lapse images demon-
strates that the microengine was propelled at an ultrafast
speed of around 3200 μm s−1 (Additional file 2: Video 1).
According to the literature, for swimmer at low Reynolds
number, the drag force (F) acted on the microengine is
proportional to the motion speed (v) [47],

F ¼ −
2πμLv

1n Xð Þ−0:72 ð2Þ

where X = 2 L/R is a geometrical parameter (L and R are
the length and radius of the microengine, respectively)
and μ is the fluid viscosity. The motion with faster
speed means that the Pt-coated microengines need to
overcome higher resistance. Moreover, the output
power is proportional to the square of the motion
speed since the output power is the product of the
driving force and speed. In present case, one can
deduce that the output power of Pt nanoparticle-
decorated Ti/SiO2 microengines is also remarkably
increased due to its ultrafast speed, and quantitative
analyses of the speed promotion will be given below.
We believe that the higher output power could enable
this kind of microengines to accomplish more complex
tasks in the future. For instance, we observed a power-
ful microengine spewing tiny bubbles off their back
and push along a big bubble in the front (see the
Additional file 3: Video 2), suggesting potential applica-
tions of powerful microengines in the field of microde-
livery [48] or smart drug delivery [49]. It is worth
noting that the performance enhancement is not
limited to SiO/SiO2 microengine after decoration with
Pt nanoparticles. Our results indicate that Pt nanopar-
ticle decoration also leads to acceleration of other
kinds of microtubular engines. In order to elucidate
this phenomenon clearly, in Fig. 3e–f, we show the tra-
jectories of four microengines moving in 10 % H2O2,
extracting from the corresponding Additional files 4, 5,
6, and 7: Videos 3–6. One may note that the trajector-
ies and the microbubble tails show unique geometries
like linear, circular, and helical curves (Additional file 1:
Figure S2). It is considered to be due to the imperfection
in the microtubular structures, which generates a torque
which is not parallel to the axis of microtubes resulting
in different movement behaviors [40]. Quantitatively,
the moving distances over a period of 0.5 s are 1489,
1121, 762, and 830 μm for Pt nanoparticle-decorated
SiO/SiO2, Ti/SiO2, Ti/Co, and SiO2/Ti microtubes, re-
spectively (Fig. 3). We found that particle distribution
and size have a great influence on the surface area and
therefore the performance of microengines. The surface
area of SiO/SiO2/Pt, Ti/SiO2/Pt, Ti/Co/Pt, and SiO2/Ti/
Pt microengines is 1.48, 1.80, 1.42, and 1.20 times lar-
ger, respectively, compared with smooth microtubular
structure (Additional file 1: Figure S3), and thus, they
demonstrated efficient catalytic effect, powerful propul-
sion thrust, and distinct moving trajectories, as shown
in the Additional files 8, 9, 10 and 11: Videos 7–10. In
addition, the enhanced surface area due to the existence
of Pt nanoparticles also makes the microengines avail-
able to work in solution with low H2O2 concentration,
and the motion of Pt nanoparticle-decorated microen-
gines in 5 mL 10 % H2O2 after 24 h was shown in
Additional file 12: Video 11. We experimentally found
that the threshold H2O2 concentration for current Pt
nanoparticle-decorated microengine can be as low as
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~0.5 %. The time-lapse images in Additional file 1:
Figure S4 display a Pt nanoparticle-decorated SiO/SiO2

microengine moving in a 0.5 % H2O2 solution. Al-
though the oxygen bubble generation frequency is low,
the microengine is nonetheless self-propelled at a speed
of ~100 μm/s.

The Experimental Results and Theoretical Model
To investigate the motion of decorated microengines in
more details, we have calculated average speed of the
four types of microengines based on statistics of 10
microengines in each case. Figure 4a shows the average
speeds of the four types of Pt nanoparticle-decorated
microengines moving in 5 and 10 % H2O2 solution. It is
obvious that the average speeds of all four types increase
with the concentration of H2O2 due to higher O2 prod-
uctivity (see below).
According to body deformation model [45], the bubbles

propel the microengine in a stepwise manner and the
Fig. 4 Average speed of catalytic microengines decorated with Pt
nanoparticles. a Average speeds of the four types of Pt nanoparticle-
decorated microengines moving in 5 and 10 % H2O2 solutions,
respectively. b The dependence of the average speed of microengines
on the tube geometric parameter (X= 2 L/R) in a 5 % H2O2 aqueous
solution. The red dashed line is from the theoretical prediction. The results
from the experiment are demonstrated by colorized circles, and colorized
squares represent the speeds after the surface areas are normalized
average speed of the smooth tubular microengines (v) can
be theoretically predicted from Eq. (3)

v ¼ 9nCH 2O2
X

6þ X= 1nX−0:72ð Þ ; ð3Þ

The above equation suggests that the average speed
of a microengine is mainly determined by the geomet-
rical parameter X under the certain H2O2 concentra-
tion, as plotted by the red dashed curve in Fig. 4b. One
can see that the Pt nanoparticle-decorated SiO/SiO2,
Ti/SiO2, and SiO2/Ti microengines exhibit higher
speeds compared with the theoretical prediction (1.38,
2, and 1.18 times, respectively), mainly due to the in-
crease in the surface areas. If the surface areas are nor-
malized (red, blue, and black squares in Fig. 4b), the
experimental results can fit theoretical prediction very
well if one notices that the surface areas were calculated
by a simple approach (Additional file 1: Figure S3). This
further proves that the larger surface area of the Pt
nanoparticles (as calculated before) is mainly respon-
sible for the highly efficient propulsion behavior of
microengines, although the nanoparticle geometry may
also affect the catalytic activity [32, 33]. Whereas in the
case of Pt nanoparticle-decorated Ti/Co microengine
(green square in Fig. 4b), the motion speed is slower
than the theoretical prediction if the surface area is
normalized. The surface area increased 1.42 times, but
the speed increased only 1.26 times compared to the
theoretical calculation. We assign this deviation to dif-
ferent surface morphology: the surface of the Ti/Co is
unflat compared to other three samples, especially
those with pure oxide bilayer nanomembrane, as we
have mentioned above (see Fig. 2g). This may signifi-
cantly influence the nucleation of gaseous microbubbles
in the tubular chamber during catalytic motion and
may also influence the dynamics of the microengine
when it moves with high speed at low Reynolds num-
ber. In addition, we cannot rule out the possibility of
the existence of electrochemical process in the O2 pro-
duction. The Ti/Co microengine is the only one in the
current four samples with conductive tube wall. Al-
though this needs further investigation, we consider
that the electrochemical process therein may be one of
the possible reasons leading to smaller O2 productivity
and corresponding slow motion speed.

Conclusions
We have demonstrated a convenient method to pro-
duce modified microtubular structures for high-speed
microengines by employing ALD of Pt nanoparticles.
Experimental results demonstrated that Pt nanoparti-
cles coated on the walls of microtubes enabled a
dramatic enhancement of the catalytic reaction and
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correspondingly acceleration of motion speed due to
increased surface area. The efficient propulsion per-
formance of microengines holds considerable promise
for catalysis support, drug/gene delivery, and medical
imaging/diagnostics.

Methods
Fabrication of Microtubular Structures
Rolled-up microtubes consisting of different bilayer
nanomembranes were prepared on polymer sacrificial
layers. The 3510 T photoresist was spun coated on
silicon substrate for 9 s at 600 rpm and 30 s at
3000 rpm then baked at 100 °C for 1 min, plus
10 min cooling down in the air. The resist got ex-
posed in the mask-aligner for 10 s after the photo-
mask has been aligned, and then resist was developed
for 30~60 s. Ti/Co, SiO/SiO2, SiO2/Ti, and Ti/SiO2

bilayers of 10/10, 5/20, 10/20, and 20/10 nm, respect-
ively, were then deposited on photolithographically
patterned circles and squares via e-beam evaporation.
The samples were deposited with different rates (i.e.,
1/1, 5/0.5, 1/2, and 2/1 Å s−1, respectively) to build a
strain gradient in nanomembrane under a high vac-
uum of 3.0 × 10−4 Pa. The samples were put in differ-
ent angles inclined relatively to the horizontal to
open an etching window at the far end of patterns.
The intrinsic strain gradients in the bilayers after re-
moving sacrificial photoresist layer by acetone made
the bilayers roll into microtubular structures. To
avoid collapse caused by the surface tension of the
etchants, the samples were then dried in a critical
point dryer (Leica CPD 030) using liquid CO2 as the
intermedium.

Pt Nanoparticle Deposition
Seventy cycles of Pt were deposited on the inner and
outer surfaces of the prepared microtubes by ALD in
a fluidized bed reactor. During the ALD process,
(MeCp)Pt(Me)3 and oxygen were used as precursors.
Herein, the precursors (MeCp)Pt(Me)3 and O2 were
pulsed into the reaction chamber by the carrier gas
argon, and the temperature was kept at 70 °C. During
the ALD process, the working pressure in the chamber
was maintained at 5 mbar.

Motion Characterization
H2O2 solutions with different concentrations as fuel
sources were added to activate the microengines at
room temperature. An optical microscope (Olympus
BX51) with an integrated camera was adopted to ob-
serve movement and locomotion of the microengines
at a rate of 30 frame s−1. With the assistance of Image
J, a detailed investigation of trajectories and speed was
carried out.
Additional files

Additional file 1: Figure S1. Pt nanoparticle size distribution on four
different samples: a SiO/SiO2 nanomembrane, b Ti/Co nanomembrane,
c Ti/SiO2 nanomembrane, and d SiO2/Ti nanomembrane. Figure S2.
Propulsion images showing the motion trajectories and corresponding
tracking lines of Pt nanoparticle-decorated microengines. The right
schematic diagrams sketch the corresponding force analysis of
microengines. Movements: a circular and self-rotation, b helical, c linear, and
d snake-like motions. Scale bars 200 μm. Figure S3. The SEM image of Pt
nanoparticles on SiO/SiO2 nanomembrane after being processed with the
software Image J. Figure S4. Time-lapse images of a moving Pt
nanoparticle-decorated SiO/SiO2 microengine in solution with low H2O2

concentration of 0.5 %. The interval of each image is 0.1 s. (DOCX 525 kb)

Additional file 2: Video 1. (AVI 1578 kb)

Additional file 3: Video 2. (AVI 5877 kb)

Additional file 4: Video 3. (AVI 1283 kb)

Additional file 5: Video 4. (AVI 1571 kb)

Additional file 6: Video 5. (AVI 1731 kb)

Additional file 7: Video 6. (AVI 13004 kb)

Additional file 8: Video 7. (AVI 5991 kb)

Additional file 9: Video 8. (AVI 1910 kb)

Additional file 10: Video 9. (AVI 2853 kb)

Additional file 11: Video 10. (AVI 1708 kb)

Additional file 12: Video 11. (AVI 2158 kb)
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