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Abstract
Coupling with social progress, traffic development and so on, the natural
environment is going into patches. There are differences between population in
differential patches. The population living in a patchy environment is affected by the
space structures. It is important to depict the dynamical behaviors of the population
in the present world. In this work, a state-dependent impulsive differential model,
which focuses on impulsively unilateral diffusion between two patches, aims for the
simulation of the factual population dynamical behaviors. With the approaches of
mathematical analysis, we obtain sufficient conditions of the existence and orbitally
asymptotic stability of a periodic solution of the investigated system. Finally, the
numerical simulations verify our results.
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1 Introduction
The population diffusion affecting the dynamical behaviors of populations in differential
patches are investigated by many researchers [–]. Two unable to be competitive pop-
ulations can be stabilized by the population diffusion []. The persistence of competitive
systems of two or three populations can be increased under appropriate diffusion condi-
tions []. Some papers assume that the individuals’ mobility is mainly induced by intrinsic
factors of population such as genetic characteristics. Nevertheless, more and more re-
searchers have found that the population diffusion could be affected by many factors such
as qualities and quantities of food, the pressures from competitors, and the predation risk
from enemies. Abrams et al. [] found that prey diffusion may be accelerated by poor
reproduction conditions and high predation risks in local habitat. Because of attraction
from better reproductions or less predation pressure at other patches, the predator may
change behaviors on the basis of prey abundance and demographic advantages. Kuang []
analyzed a delayed two-stage population model with space limited recruitment.
The theory of impulsive differential equations is much richer than the corresponding

theory of differential equations. They generally describe phenomena which are subjected
to steep or instantaneous changes. Impulsive equations are found in almost every domain
of the applied science and have been studied in many works [, ]. Jiao et al. [] and Tang
et al. [] have studied the population models with impulsive perturbation at fixed mo-
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ments. Jiao et al. [] investigated the dynamical behaviors of a stage-structured predator-
prey systemwith birth pulse and impulsive harvesting at differentmoments. Jiao et al. []
provided a fishing policy by investigating a stage-structured model with state-dependent
impulsive harvesting.
Coupling with social progress, traffic development and so on, the natural environ-

ment is going into patches. There are differences between population in differential
patches. For example, when the density of population living in one patch reaches one
threshold, that is to say, when the quantity of population reaches the superior limit, in-
traspecific competition for limited resources increases, the population in this patch will
move to another patch. Although Jiao et al. [] devoted their work to investigation of
the dynamics of a stage-structured predator-prey model with prey impulsively diffus-
ing between two patches, they did not propose a single population model with state-
dependent impulsively unilateral diffusion between two patches. Motivated by these bio-
logical facts and the previous studies, we propose and investigate a state-dependent im-
pulsive differential model, which focuses on impulsively unilateral diffusion between two
patches.
The organization of this paper is as follows. In the next section, we introduce the model

and background concepts. In Section , some important lemmas are presented. In Sec-
tion , we give the sufficient conditions of the existence and orbitally asymptotic stability
of a periodic solution of the investigated system. In Section , numerical simulation and a
brief discussion are given to conclude this work.

2 Themodel
We propose a state-dependent impulsive differential model which focuses on impulsively
unilateral diffusion between two patches

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)(a – bx(t)),

dx(t)
dt = –cx(t),

}
x(t) < x∗

 ,

�x(t) = –dx(t),
�x(t) = dx(t),

}
x(t) = x∗

 ,

xi() >  (i = , ),  < x() < x∗
 ,

(.)

where system (.) is assumed to be composed of two patches. xi(t) (i = , ) denotes the
density of population in ith patch. a >  denotes the intrinsic rate of natural increase in
the population in Patch . b >  denotes the interspecific competition coefficient of the
population in Patch . c >  denotes the death rate of the population in Patch .  < d < 
denotes the diffusive rate coefficient from Patch  to Patch . x∗

 >  is called an environ-
ment pressure threshold of the population in Patch , that is to say, when the density of
the population in Patch  reaches the threshold x∗

 , the population will unilaterally diffuse
from Patch  to Patch . It is also assumed that the population in Patch  does not diffuse
from Patch  to Patch .
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3 The definitions and lemmas
Before starting our work, we need two definitions and two lemmas. Consider the au-
tonomous impulsive differential equation

⎧⎨
⎩

dx
dt = f (x, ε), x /∈ σ (ε),

�x = I(x, ε), x ∈ σ (ε),
(.)

where ε ∈ J = (–ε, ε) is a small parameter. For each ε ∈ J , the σ (ε) is a hypersurface in Rn.
Suppose σ (ε) consists of q nonintersecting smooth hypersurfaces σk(ε) which are given
by the equations ϕk(x, ε) =  (k = , , . . . ,q).
Let x = φ(t), t ∈ R+ be a solution of Equation (.) with moments of impulsive effect

τk :  < τ < τ < · · · , limk→∞ τk = +∞, and L+ = {x ∈ Rn : x = φ(t), t ∈ R+}. Let x(t, t,x)
denote the solution of Equation (.) for which x(t+, t,x) = x, and let J+(t,x) denote
the right maximal interval of the existence of this solution.

Lemma . The solution x = φ(t) of Equation (.) is said to be
(i) orbitally stable, if

(∀ρ > ) (∀η > )
(∀t ∈ R+, |t – τk| > η

)
(∃δ > )(∀x ∈ Rn,d(x,L+) < δ,x /∈ Bη

(
φ
(
τ+)) ∪ Bη

(
φ(τ )

)) (∀t ∈ J+(t,x)
)

d
(
x(t, t,x),L+

)
< ρ;

(ii) orbitally attractive, if

(∀η > )
(∀t ∈ R+, |t – τk| > η

)
(∃λ > )(∀x ∈ Rn,d(x,L+) < λ,x /∈ Bη

(
φ
(
τ+)) ∪ Bη

(
φ(τ )

)) (∀t ∈ J+(t,x)
)
(∀ρ > )(∃σ > , t + σ ∈ J+(t,x)

) (∀t ≥ t + σ , t ∈ J+(t,x)
)

d
(
x(t, t,x),L+

)
< ρ;

(iii) orbitally asymptotically stable, if it is orbitally stable and orbitally attractive.

Definition . The solution x = φ(t) of Equation (.) is said to enjoy the property of
asymptotic phase if

(∀η > )
(∀t ∈ R+, |t – τk| > η

)
(∃λ > )(∀x ∈ Rn,

∣∣x – φ(t)
∣∣ < λ

)
(∃c ∈ R) (∀ρ > )(∃σ > |c|, t + σ ∈ J+(t,x)
) (∀t > t + σ , t ∈ J+(t,x), |t – τk| > η

)
∣∣x(t, t,x) – φ(t)

∣∣ < ρ.

Lemma . [] For Equation (.) with ε > , the following conditions hold:
(c) For ε = , Equation (.) has a τ-periodic solution x = φ(t) with moments of impul-

sive effect τk : τk+q = τk + τ (k ∈ Z) and φ′(t) �≡  (t ∈ R).
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(c) For each k = , , . . . ,q, the function ϕ(x, ε) is differentiable in some neighborhood of
the point (φ(τk), ) and

ϕk
(
φ(τk), 

)
= ,

∂ϕk

∂x
(
φ(τk), 

)
f
(
φ(τk), 

) �= .

(c) There exists a δ >  such that for each ε ∈ (–δ, δ) and x ∈ Rn, |x – φ()| < δ, the
solution x(t,x, ε) of Equation (.) is defined for t ∈ [, τ + δ]. Let the multipliers μj (j =
, , . . . ,n) of the variational equation

⎧⎨
⎩

dz
dt =

∂f (φ(t),)
∂x z, t �= τk ,

�z =Nkz, t = τk ,
(.)

where

Nk =
∂I
∂x

(
φ(τk), 

)

+
[
f
(
φ
(
τ+
k
)
, 

)
– f

(
φ(τk), 

)(
 +

∂I
∂x

(
φ(τk), 

))] ∂ϕ

∂x
∂ϕ

∂x f
,

satisfy the condition

μ = , |μj| <  (j = , , . . . ,n),

then the τ-periodic solution x = φ(t) of Equation (.) with ε =  is orbitally asymptotically
stable and enjoys the property of asymptotic phase.
If n = , Equation (.) has the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx
dt = P(x, y),
dy
dt =Q(x, y),

}
ϕ(x, y) �= ,

�x = α(x, y),
�y = β(x, y),

}
ϕ(x, y) = .

(.)

If Equation (.) has a τ-periodic solution x = ζ (t), y = η(t) and the condition of Lemma .
are satisfied, then it can be (check []) that the corresponding variational system has mul-
tipliers μ and

μ =
q∏

k=

�k– exp

{∫ τ



(
∂P
∂x

(
ζ (t),η(t)

)
+

∂Q
∂y

(
ζ (t),η(t)

))
dt

}
, (.)

where

�k =
P+( ∂β

∂y
∂φ

∂x –
∂β

∂x
∂φ

∂y +
∂φ

∂x ) +Q+( ∂α
∂x

∂φ

∂y –
∂α
∂y

∂φ

∂x +
∂φ

∂y )

P ∂φ

∂y +Q ∂φ

∂y

,

and P, Q, ∂α
∂x ,

∂α
∂y ,

∂β

∂x ,
∂β

∂y ,
∂φ

∂x ,
∂φ

∂y are calculated at point (ζ (τk),η(τk)) and P+ = P(ζ (τ+
k ),

η(τ+
k )), Q+ =Q(ζ (τ+

k ),η(τ
+
k )).
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Lemma . [] The T-periodic solution (x(t), y(t)) = (ζ (t),η(t)) of system (.) is orbitally
asymptotically stable and enjoys the property of asymptotic phase if the multiplier μ cal-
culated by (.) satisfies |μ| < .

4 The dynamical analysis
Set

τ =min
{
t >  : x(t) = x∗


}
.

Theorem . If

( – d)eaτ > , (.)

system (.) has a uniquely τ -periodic solution.

Proof In view of the impulsive effect of system (.), if x() = x(τ+) and x() = x(τ+),
there exists a τ -periodic solution of system (.). It is easy to calculate

⎧⎨
⎩x(t) = ax()eat

a+bx()(eat–)
,

x(t) = x()e–ct ,
(.)

with the initial conditions (x(),x()). When t = τ , we obtain
⎧⎨
⎩x(τ ) = ax()eaτ

a+bx()(eaτ–)
,

x(τ ) = x()e–cτ .
(.)

In view of the effect of the state-dependent impulsively unilateral diffusion of system (.)
as

�x(t) =

⎧⎨
⎩, x(t) < x∗

 ,

–dx(t), x(t) = x∗
 ,

(.)

and

�x(t) =

⎧⎨
⎩, x(t) < x∗

 ,

dx(t), x(t) = x∗
 ,

(.)

we have⎧⎨
⎩x(τ+) = ( – d)x(τ ),

x(τ+) = x(τ ) + dx(τ ).
(.)

Considering x() = x(τ+) and x() = x(τ+), and substituting (.) into (.) and (.),
we get (x(),x()) = ( a[(–d)e

aτ–]
b(eaτ–) , da[(–d)eaτ–]

(–d)b(eaτ–)(–e–cτ ) ), and (x(),x()) = (, ). From the
impulsive effect ( – d)x∗

 = x(), we cast out (x(),x()) = (, ). This completes the
proof. �
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Remark . From Theorem . and ( – d)x∗
 = x(), we can easily calculate

τ =

a
ln

( – d)bx∗
 – a

( – d)(bx∗
 – a)

.

Theorem . If condition (.) and

( – d)[a – b( – d)x∗
 ]

a – bx∗


× e(a–c)τ <  (.)

hold, then the periodic solution of system (.) is orbitally asymptotically stable.

Proof From condition (.) and Theorem ., we know that there exists a τ -periodic so-
lution of system (.). Here

τ =

a
ln

( – d)bx∗
 – a

( – d)(bx∗
 – a)

.

System (.) can be rewritten as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx
dt = x(a – bx),
dx
dt = –cx,

}
x – x∗

 �= ,

�x = –dx,
�x = dx,

}
x – x∗

 = .
(.)

We can easily derive

P(x,x) = x(a – bx), Q(x,x) = –cx,

φ(x,x) = x – x∗
 ,

α(x,x) = –dx, β(x,x) = dx.

Then we calculate

∂P
∂x

= a – bx,
∂Q
∂x

= –c,
∂α

∂x
= –d,

∂α

∂x
= ,

∂β

∂x
= d,

∂β

∂x
= ,

∂φ

∂x
= ,

∂φ

∂x
= ,

� =
P+( ∂β

∂x
∂φ

∂x
– ∂β

∂x
∂φ

∂x
+ ∂φ

∂x
) +Q+( ∂α

∂x
∂φ

∂x
– ∂α

∂x
∂φ

∂x
+ ∂φ

∂x
)

P ∂φ

∂x
+Q ∂φ

∂x

=
P+

P
=
P(ζ (τ+

k ),η(τ
+
k ))

P(ζ (τk),η(τk))

=
( – d)x∗

 [a – b( – d)x∗
 ]

x∗
 [a – bx∗

 ]

=
( – d)[a – b( – d)x∗

 ]
a – bx∗


.
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From (.), it is also calculated

μ = �e
∫ τ
 ( ∂P

∂x
(ζ (t),η(t))+ ∂Q

∂x
(ζ (t),η(t)))dt =

( – d)[a – b( – d)x∗
 ]

a – bx∗


× e
∫ τ
 (a–bx(t)–c)dt

≤ ( – d)[a – b( – d)x∗
 ]

a – bx∗


× e(a–c)τ .

In view of (.), it follows from Lemma . that the τ -periodic solution of system (.) is
orbitally asymptotically stable. This completes the proof. �

5 Discussion
In this work, we investigate a single populationmodel with state-dependent impulsively

unilateral diffusion between two patches. From Theorem . and Theorem ., we obtain
the sufficient conditions of the existence of a periodic solution of system (.), and the
sufficient conditions for orbitally asymptotic stability of a periodic solution of system (.)
are also obtained. It is assumed that x() = ., x() = ., x∗

 = , a = , b = , c = ,
d = , that is to say, there is no diffusion between these two patches; the time-series of
x(t) and x(t) and the phase portrait of system (.) can be seen in Figure . We assume

Figure 1 There is no diffusion in system (2.1) with x1(0) = 0.5, x2(0) = 0.3, x∗
1 = 1, a = 3, b = 1, c = 1,

d = 0, (a) time-series of x1(t); (b) time-series of x2(t); (c) the phase portrait of system (2.1).
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Figure 2 There is a small diffusion rate in system (2.1) with x1(0) = 0.5, x2(0) = 0.3, x∗
1 = 1, a = 3, b = 1,

c = 1, d = 0.1, (a) time-series of x1(t); (b) time-series of x2(t); (c) the phase portrait of system (2.1).

that x() = ., x() = ., x∗
 = , a = , b = , c = , d = ., that is to say, there is a small

diffusion rate between these two patches; the time-series of x(t) and x(t) and the phase
portrait of system (.) can be seen in Figure .We also assume that x() = ., x() = .,
x∗
 = , a = , b = , c = , d = ., that is to say, there is a relatively great diffusion rate
between these two patches; the time-series of x(t) and x(t) and the phase portrait of
system (.) can be seen in Figure . From the results of the numerical analysis, we can
know that the diffusion plays an important role in the permanence of system (.), that
is to say, when there is no diffusion between two patches, the population in Patch  will
go extinct; when there is a relatively small diffusion rate, the population in Patch  will be
permanent. Furthermore, for d = . and d = . with x() = ., x() = ., a = , b = ,
c = , we know that these parameters satisfy the conditions of Theorem .. The pictures
in Figure  and Figure  show that there is existence and orbitally asymptotic stability of
periodic solution of system (.). The numerical simulations verify our results.
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Figure 3 There is a small diffusion rate in system (2.1) with x1(0) = 0.5, x2(0) = 0.3, x∗
1 = 1, a = 3, b = 1,

c = 1, d = 0.4, (a) time-series of x1(t); (b) time-series of x2(t); (c) the phase portrait of system (2.1).
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