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Abstract 

Background: The taxonomic and phylogenetic classification based on sequence analysis of the ITS1 genomic region 
has become a crucial component of fungal ecology and diversity studies. Nowadays, there is no accurate alignment‑
free classification tool for fungal ITS1 sequences for large environmental surveys. This study describes the develop‑
ment of a machine learning‑based classifier for the taxonomical assignment of fungal ITS1 sequences at the genus 
level.

Results: A fungal ITS1 sequence database was built using curated data. Training and test sets were generated from 
it. A Naïve Bayesian classifier was built using features from the primary sequence with an accuracy of 87 % in the clas‑
sification at the genus level.

Conclusions: The final model was based on a Naïve Bayes algorithm using ITS1 sequences from 510 fungal genera. 
This classifier, denoted as Mycofier, provides similar classification accuracy compared to BLASTN, but the database 
used for the classification contains curated data and the tool, independent of alignment, is more efficient and con‑
tributes to the field, given the lack of an accurate classification tool for large data from fungal ITS1 sequences. The 
software and source code for Mycofier are freely available at https://github.com/ldelgado‑serrano/mycofier.git.
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Background
Fungi represent an essential functional component of 
Earth’s biodiversity, not only because of their roles as 
decomposers, mutualists and pathogens, but also because 
they are the second most speciose eukaryotic kingdom 
[1, 2]. Several rRNA genes have been used to explore 
their diversity and used as method for their identification; 
these include the small ribosomal subunit (SSU), the large 
ribosomal subunit (LSU) and the internal transcribed 
spacer (ITS) [3]. The ITS region has a higher PCR ampli-
fication success rate compared with other phylogenetic 
markers such as RPB1, SSU and LSU; also, it has a species 
discrimination power throughout the entire fungal king-
dom and a defined barcode gap. Given these advantages, 
Schoch et  al. [4] proposed ITS as the standard barcode 

for fungi. ITS includes the ITS1 and ITS2 regions, sepa-
rated by the 5.8S gene in the nuclear rDNA repeat unit 
[5]. The entire ITS region has commonly been sequenced 
with traditional Sanger approaches with a typical ampli-
con that ranges between 450 and 700 bp. Either the ITS1 
or the ITS2 regions have been targeted in recent high-
throughput sequencing studies because the entire ITS 
region is still too long for illumina sequencing, the pre-
dominant method today [6–8]. In particular, the ITS1 
region has been used recently for fungal phylogeny, 
taxonomic placement and for environmental surveys 
[9–11]. ITS1 is a hypervariable region that allows spe-
cies identification and subgeneric phylogenetic inference 
[12–14]. However, pairwise alignments are less effective 
and show a comparative lower efficiency than alignment 
free methods when it comes to taxonomic assignment of 
sequences that show a high sequence divergence between 
their members such as ITS1.
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Machine learning-based algorithms have been used as a 
response to the problems in computational biology such 
as classification of biological data. Among these tools, the 
Naïve Bayesian classification method is simple yet can be 
extremely efficient. This type of classifier is based on the 
Bayes theorem and “Naïve” refers to the assumption that 
data attributes are independent from each other. Even 
when the independency of data attributes is violated, the 
Bayesian method can still be optimal [15]. A Naïve Bayes 
classifier assigns an object to a class based on the prob-
ability the object has according to its features. In bioin-
formatics, the Naïve Bayesian classification method has 
been reported to perform well on problems similar to 
the classification of sequence data, such as the Ribosomal 
Database Project (RDP) Classifier [16].

The aim of this work was to develop a machine learn-
ing-based classifier for classifying fungal ITS1 sequences 
according to the NCBI taxonomy at the genus level. Here 
we explored the use of Naïve Bayes with different features 
and parameters in order to develop a classifier for eco-
logical studies using high-throughput data.

Results
The ITS1 database and final dataset
A total of 37,632 fungal ITS sequences were obtained 
from the manual curation process. Table  1 shows the 
composition of the entire database, including taxa rep-
resented by less than 5 sequences. All of these were 
later removed from the analysis. The remaining 35,363 
sequences were used for the construction of the training 
and test sets (Fig. 1).

The ITS1 database was heterogeneous in terms of num-
ber of sequences by genera since there were a 25  % of 
genera with more than 10 sequences and 61 % of genera 
with <5 sequences (Fig. 2).

The final dataset for classification analyses included 
sequences from 822 validated fungal genera (about 39 % 
of the ITS1 database genera) spanning 28 classes (and 3 
orders incertae sedis) and 6 phyla (and 2 subphyla incer-
tae sedis). The taxonomic composition of the entire Weka 
dataset (training and test sets) is shown in Table 2. Most 

of the sequences (~67  %) represented 14 classes within 
the Ascomycota. Twenty-nine percent of the sequences 
represented 8 classes within the Basidiomycota. Among 
the most abundant classes of fungi were Agaricomycetes 
(25.3  %), Sordariomycetes (23.02  %), Lecanoromycetes 
(12.95  %), Dothideomycetes (11.75  %), and Eurotio-
mycetes (9.24  %). This result reflects the bias existing 
towards these groups in databases (Table 2).

This dataset was split afterwards in order to construct 
the training set (80 % of the dataset) and test set (20 % of 
it) by picking a random sequence from the Weka dataset 
without replacement until the test set was 20 % of the size 
of the Weka dataset (Fig. 1).

Classification accuracy
Effect of k‑mer size
We conducted a systematic search of features in order 
to determine what features would result in the best per-
forming vector. The first feature evaluated was the k-mer 
feature that refers to all the possible subsequences (4 k) of 
length k from a sequence. We changed the size of the k-
mer of the primary sequence, starting from 2 (dimers) up 
to a value of 6 and then calculated their frequencies. The 
length of the sequence normalized by the average length 
and the percent GC content were also used as features. 
The Naïve Bayes model was trained with different input 
vectors (changing only the k-mer content feature) and the 
accuracy was calculated for each model by a tenfold cross 
validation, dividing the data in 10 subsets, leaving one 
out and doing the training on the remaining 9. The “left 
out” dataset is used as test-set.

Between k-mer sizes from 2 to 5, as the value of k 
increased, the accuracy also increased. After 5-mers, 

Table 1 Taxonomic composition of  the fungal ITS1 data-
base

In total, there were 37,632 sequences

Classification level No. of taxa

Phylum 7

Class 32

Order 121

Family 383

Genus 2112

Fig. 1 Pipeline scheme for fungal ITS1 database and data set con‑
struction
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accuracy dropped (Fig.  3). For k-mers of length 7 or 
higher, frequencies could not be evaluated due to the fact 
that Weka is implemented in Java and it needs significant 
amounts of memory to run large datasets such as data of 
vectors with more than 16,000 features. After this analy-
sis, the best features to construct the vector were: k-mer 
size of 5 (1024 possible 5-mers or features), sequence 
length normalized by the average length of the group and 
GC content expressed as percentage. This resulted in a 
vector of 1026 attributes.

Training set influence
As shown above, there were some fungal genera that have 
only one sequence affiliated whereas others were repre-
sented by more than 100 sequences (Fig. 2). In order to 
obtain the best classifier, three datasets were tested to 
construct the models. Each dataset was composed by a 
training set for training the algorithm and by a test set 
used to estimate the accuracy. The three datasets varied 
in terms of the minimum number of sequences per class 
(see Table 3; N models: 0–2).

The number of records (sequence vectors) and the 
number of classes (fungal genera) decreased as the mini-
mum number of sequences per genus increased. Model 
accuracies were also affected by the different training 
datasets; when there were more sequences or records by 
class the accuracy was higher. Furthermore, a reduction 
of the dataset was performed at the species level, so that 
species having 4 or less sequences were removed from 
the dataset. As a result of this filter we ended up having 
a dataset with less genera, but with more sequences per 
genera (Table 3; Model 2).

In order to analyse the use of an already curated data-
base versus our own curated database, ITS sequences 
from CBS and Refseq were downloaded and only full 
length ITS1 sequences were selected. As done for our 
own ITS1 database, the genera included for building the 
classifier were the ones which had a minimum of five 
sequences. These two databases did not improve the 
classification power due to a reduction of information 
(Table 3), as there were less sequences per genus. These 
results show that our database works as well as a curated 
external database, with the advantage that our database 
includes more sequences per genus and the classifier per-
formed with better accuracy.

Model selection
Table 3 shows the accuracy of the N models constructed 
with different training sets, as we mentioned in the sec-
tion above. The Naïve Bayes models number 1 and 2 were 
selected since they covered a greater number of genera 
and yielded high accuracies. These two models were 
evaluated to see if the same genera were being correctly 
classified or if each classifier worked better for particular 
fungal genera. Figure  4 shows the behaviour of the two 
classifiers for the 510 genera that were common between 
the two. Blue represents taxa that were better classified 
by model 2, red represents taxa that was better classi-
fied by model 1. Color intensity represents the accu-
racy of each model and color overlaps represent taxa for 
which both models had similar classification accuracy. 
The center of the graphic (violet region) represents taxa 
for which the performance of both models was equally 
high. Overall, the performance of approximately 39  % 

Fig. 2 Number of sequences throughout the 2112 fungal genera in the ITS1 database
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of the genera was the same in both models. The figure 
also shows that the predominant color is blue, indicating 
that model 2 had better performance than model 1 (an 
additional file shows the background data of the Fig.  4; 

Table 2 Taxonomic composition of the 35,363-sequence fungal ITS1 region dataset used for the classifier analyses

Phylum (% of sequences) Class No. of genera No. (%) of sequences

Basidiomycota (29.37) Agaricomycetes 207 8942 (25.3)

Agaricostilbomycetes 3 30 (0.08)

Cystobasidiomycetes 2 42 (0,12)

Exobasidiomycetes 5 151 (0.43)

Microbotryomycetes 5 184 (0.52)

Pucciniomycetes 12 527 (1.49)

Tremellomycetes 12 384 (1.09)

Ustilaginomycetes 4 65 (0.18)

Ascomycota (67.11) Arthoniomycetes 4 168 (0.47)

Coniocybomycetes 1 41 (0.12)

Dothideomycetes 105 4157 (11.75)

Eurotiomycetes 59 3267 (9.24)

Geoglossomycetes 1 7 (0.02)

Lecanoromycetes 123 4579 (12.95)

Leotiomycetes 51 1414 (4)

Orbiliomycetes 7 143 (0.40)

Pezizomycetes 19 814 (2.30)

Pneumocystidomycetes 1 13 (0.04)

Saccharomycetes 29 1013 (2.86)

Schizosaccharomycetes 1 5 (0.01)

Sordariomycetes 144 8141 (23.02)

Taphrinomycetes 1 5 (0.01)

Glomeromycota (1.58) Archaeosporomycetes 2 52 (0.15)

Glomeromycetes 6 483 (1.37)

Paraglomeromycetes 1 17 (0.05)

Blastocladiomycota (0.04) Blastocladiomycetes 1 15 (0.04)

Chytridiomycota (0.24) Chytridiomycetes 5 83 (0.23)

Neocallimastigomycota (0.03) Neocallimastigomycetes 1 11 (0.03)

Entomophthoromycotina (0.08) (Subphylum) Entomophthorales (Order) 3 29 (0.08)

Mucoromycotina (1.55) (Subphylum) Mucorales (Order) 15 551 (1.56)

Endogonales (Order) 1 5 (0.01)

Fig. 3 Effect of k value on the accuracy of the models for primary 
sequence

Table 3 Accuracy of  the model constructed with  different 
training sets at genus level

Number of features were 1027

N model Dataset (N seq/
class)

N records N classes Accuracy 
(%)

NA ITS1 (1/genus) 37,632 2112 72.73

0 ITS1 (5/genus) 35,363 822 76.90

1 ITS1 (100/genus) 18,941 75 90.58

2 ITS1 (5/sps) 21,083 510 87.01

NA CBS 8336 256 86.73

NA Refseq 831 55 81.47
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see Additional file  1: Table S1). Therefore model 2 was 
selected for the classification.

Performance of Naïve Bayesian classifiers versus BLASTN
In order to have a control for comparison, classification 
using model 2 was compared against BLASTN using 
the same training set as the blast database and the test 
set as query sequences. The accuracy of the results 
obtained using the BLASTN approach was 94  %, sim-
ilar and slightly higher to the obtained using model 2 
(87 %).

Discussion
Accurate sequence classification is a crucial factor to 
assess fungal community diversity and ecological stud-
ies. At present, high-throughput sequencing technolo-
gies produce millions of sequences such as ITS1 with no 
bioinformatics tool to correctly classify such sequences. 
Supervised machine learning approaches have been very 
accurate in several bioinformatic prediction methods. 
This work describes the construction of a fungal ITS1 
database based on criteria that would minimize incorrect 
assignment of taxa, and its use in the development of a 
machine learning-based classifier.

Besides the fact that reliable reference databases and 
taxonomies are critical to assign sequence reads to their 
right phylogenetic affiliation, the development of super-
vised machine learning classifiers needs curated data for 
the consequent construction of training and exploration 
data sets. In the absence of a curated fungal ITS1 data-
base, the first goal was the construction of a curated data-
base of fungal ITS1 sequences. The primary sequence 
data source (ITS1 sequences from GenBank that recovers 
Refseq, CBS and nr database sequences) had to be filtered 

out due to the presence of low-quality sequence data and 
inaccurate taxonomic information deposited.

The taxonomic and clustering filters were the steps 
where more sequences were discarded, as shown in 
Fig. 1. In public databases there are too many fungal ITS1 
sequences lacking taxonomic annotation at the genus 
level and also many environmental sequences without a 
good annotation [17]. Redundancy was reduced in the 
clustering step, removing all identical sequences and 
also the ones that were subsequences of other longer 
sequences. Nilsson et al. [18] reported that interspecific 
variability varies throughout the different fungal spe-
cies and there is not a unifying stringent upper limit for 
defining all fungal species. In fact, we applied several 
clustering parameters in order to determine the percent-
age of identity that would best define natural groups in 
the fungal kingdom. Our result indicates that there is no 
sweet spot to determine this, as variation between taxa 
is as large as variation within taxa (data not shown). In 
addition to this, clustering even at high percent identity 
(99 %) led to a dataset with insufficient coverage for many 
fungal taxa. However, we selected 99  % to avoid loos-
ing taxonomic resolution, while still reducing sequence 
redundancy.

The reduction of the dataset affected classification 
accuracy since the number of data per class in learning 
algorithms is low and can lead to over fitting and sub-
optimal performances [19]. Indeed, this phenomenon 
was shown in the classification accuracies of the dif-
ferent models constructed according to the number of 
sequences allowed for each fungal genus.

Naïve Bayes classifiers have been developed to clas-
sify other sequences commonly used for bacterial and 
fungal barcoding but that cannot be aligned accurately, 

Fig. 4 Heat map through the 510 common fungal genera of the selected models 1 and 2. The data (genera in the X axis) represented by lines were 
organized according to model performances. The left side shows genera with the best prediction by model 2 (blue) and the right side indicates those 
with better accuracies by model 1 (red). The intensity of blue and red colors indicates the percentage of accuracy of the model 2 and 1, respectively
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such as the RDP classifier [16, 20]. The RDP classifier 
is a Naïve bayes classifier, fast and effective for bacte-
rial and archaeal organisms based on the 16S ribosomal 
RNA gene. Recently, this classifier has been adapted for 
the identification of fungal sequences using two markers, 
the 28S rRNA subunit and the ITS region. For the last 
one, UNITE and the Warcup ITS training set (sequences 
retrieved from the UNITE  +  INSD datasets) are used 
[21]. Deshpande et al. reported the same problem as we 
had in classification of fungal ITS sequences due to taxa 
coverage since several orders could not be represented in 
the Warcup ITS training set [21].

Mycofier is a classifier that was built to accurately clas-
sify fungal ITS1 sequences, choosing the best features 
based on a curated database of only ITS1 sequences. 
Indeed Mycofier was developed to specifically classify 
fungi based on ITS1 sequences.

Although the BLAST approach provided higher classi-
fication accuracy, our classifier does not require a pair-
wise sequence alignment step, which improves speed 
and lowers computational demands. The accuracy of our 
classifier is above 87 %. This is an initial effort to develop 
a machine learning-based classifier for large sequence 
data sets of hyper variable nature like the ITS1. The ITS1 
database and consequently Mycofier are based on the 
availability of high quality sequences. Development of a 
classifier with more coverage will be accomplished with 
the inclusion of underrepresented taxa in the future.

Conclusions
This study reports the Mycofier tool for the classification 
of fungal ITS1 sequences. This classifier includes a novel 
and curated training data set built with a set of sequences 
from specialized and curated databases. Our training set 
can still be improved by including good-quality, curated 
sequence data to improve coverage. Therefore, the classi-
fication tool coupled to the use of this database provides 
accurate identification of ITS1 fungal sequences obtained 
from NGS technologies. The features used for building 
the Mycofier classifier make it advantageous over BLAST 
because it does not require and it is not limited to a pair-
wise comparison between two sequences. Given its prob-
abilistic nature, Mycofier also captures sequence diversity 
within the model, this is something that is not available 
in BLAST searches. In addition, our classifier represents 
an alternative to phylogenetic placement methods such 
as pplacer [22].

Methods
The ITS1 database
An ITS1 fungal sequence database was constructed by 
downloading sequences from NCBI GenBank (http://
www.ncbi.nlm.nih.gov/; accessed May 9, 2012). A set 

of 384,542 fungal ITS1 sequences was downloaded 
using the taxonomic ID 4751 (fungi) and the query 
word ‘ITS1’. Taxonomic information was obtained from 
the NCBI taxonomy database by using the BioSQL 
schema (http://www.biosql.org/) and an in-house Perl 
script. Approximately 80 % of the total set of GenBank 
sequences were discarded due to inconsistent taxo-
nomical information. These included sequences lack-
ing binomials, sequences that did not have phylogenetic 
information at genus level, some incertae sedis groups 
and sequences from environmental samples. An addi-
tional 5813 sequences lacking genomic coordinates in 
their genbank record were also excluded, meaning only 
full length ITS1 sequences were considered. To reduce 
redundancy in the data, a clustering algorithm was 
applied at 100 % identity using UCLUST [23]. The result 
was 38,939 clusters. The ITS extractor software from 
UNITE database [24, 25] was used for the identifica-
tion and extraction of the ITS1 region of the last set of 
sequences. The last filter was applied to the sequences 
excluding the ones with less than 100 and more than 
400 bases long. A schematic representation of this pro-
cess is shown in Fig. 1.

Classifier
Training and test data
The sequences of the ITS1 Database were filtered out 
to obtain only genera that had at least five representa-
tive sequences. This set contained the remaining 35,363 
sequences, 20 % of them were used to construct the test 
set and 80 % were used to build the training set for clas-
sification analyses (Fig. 1).

Refseq and CBS datasets
Sequences from the Centraalbureau voor Schimmelcul-
tures (CBS) Fungal Biodiversity Centre (http://www.cbs.
knaw.nl/) and the new collection of ITS sequences from 
the Refseq database [26] were used as controls to evalu-
ate the quality of the input data for building the Naïve 
Bayesian classifier.

Feature selection and vector construction
The Weka machine learning workbench [27] was used to 
build the models based on Naïve Bayes algorithm. Using 
in-house Perl scripts, the arff files (input for Weka) were 
built with different feature types and vector sizes. This 
step was necessary in order to determine the best set of 
features for the final vector. Vector classes were gener-
ated for each genus the sequences belonged to. Features 
from primary sequences, such as k-mer frequency, nor-
malized length (individual sequence length/average 
length of the entire dataset of sequences) and percent CG 
were also used as features for the vectors.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.biosql.org/
http://www.cbs.knaw.nl/
http://www.cbs.knaw.nl/
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In order to select those features in each vector that 
had more predictive power, the CfSubsetEval and Info-
GainAttributeEval feature selection tools implemented 
in Weka were used. The first one evaluates the worth of 
a subset of features by considering the individual pre-
dictive ability of each feature along with the degree of 
redundancy between them. The second tool evaluates 
the worth of a feature by measuring the information gain 
with respect to the class. These kinds of tools are related 
to the analysis of variance and are implemented in Weka 
because of their good performance-selecting features for 
machine learning algorithms.

Comparison against BLASTN classification
BLASTN is commonly used to classify rRNA gene 
sequences and so far it is the only available bioinformatic 
tool used for ITS1. It was used here for comparison pur-
poses. BLAST+ [28] was downloaded from GenBank 
(http://www.ncbi.nlm.nih.gov/) and installed locally. 
The training dataset was used as the database (subjects) 
and the queries were the sequences of the testing data-
set. BLASTN parameters were set to the default values 
except for an E-value threshold of 0.0001. Best hits from 
the BLAST search (the ones with lowest E-value and 
highest bitscore) were parsed out in order to get both 
their taxonomic information at the genus level and to 
evaluate accuracy as the percentage of correctly assigned 
taxa.
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